id
stringlengths
27
136
text
stringlengths
4
1.05M
algebraic-stack_agda0000_doc_5256
module bee2 where open import Bee2.Crypto.Belt open import Data.ByteString.Utf8 open import Data.ByteString.IO open import Data.String using (toList) open import Data.Product using (proj₁) open import IO -- beltPBKDF : Password → ℕ → Salt → Kek main = run (writeBinaryFile "pbkdf2" (proj₁ (beltPBKDF (packStrict "zed") 1000 (packStrict "salt"))))
algebraic-stack_agda0000_doc_5257
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Union where -- Stdlib imports open import Level using (Level; _⊔_) open import Data.Sum using (_⊎_; inj₁; inj₂; swap) open import Relation.Binary using (REL) -- Local imports open import Dodo.Binary.Equality -- # Definitions infixl 19 _∪₂_ _∪₂_ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL A B ℓ₂ → REL A B (ℓ₁ ⊔ ℓ₂) _∪₂_ p q x y = p x y ⊎ q x y -- # Properties module _ {a b ℓ : Level} {A : Set a} {B : Set b} {R : REL A B ℓ} where ∪₂-idem : (R ∪₂ R) ⇔₂ R ∪₂-idem = ⇔: ⊆-proof ⊇-proof where ⊆-proof : (R ∪₂ R) ⊆₂' R ⊆-proof _ _ (inj₁ Rxy) = Rxy ⊆-proof _ _ (inj₂ Rxy) = Rxy ⊇-proof : R ⊆₂' (R ∪₂ R) ⊇-proof _ _ = inj₁ module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where ∪₂-comm : (P ∪₂ Q) ⇔₂ (Q ∪₂ P) ∪₂-comm = ⇔: (λ _ _ → swap) (λ _ _ → swap) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∪₂-assoc : (P ∪₂ Q) ∪₂ R ⇔₂ P ∪₂ (Q ∪₂ R) ∪₂-assoc = ⇔: ⊆-proof ⊇-proof where ⊆-proof : ((P ∪₂ Q) ∪₂ R) ⊆₂' (P ∪₂ (Q ∪₂ R)) ⊆-proof _ _ (inj₁ (inj₁ Pxy)) = inj₁ Pxy ⊆-proof _ _ (inj₁ (inj₂ Qxy)) = inj₂ (inj₁ Qxy) ⊆-proof _ _ (inj₂ Rxy) = inj₂ (inj₂ Rxy) ⊇-proof : (P ∪₂ (Q ∪₂ R)) ⊆₂' ((P ∪₂ Q) ∪₂ R) ⊇-proof _ _ (inj₁ Pxy) = inj₁ (inj₁ Pxy) ⊇-proof _ _ (inj₂ (inj₁ Qxy)) = inj₁ (inj₂ Qxy) ⊇-proof _ _ (inj₂ (inj₂ Rxy)) = inj₂ Rxy -- # Operations -- ## Operations: ⊆₂ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∪₂-combine-⊆₂ : P ⊆₂ Q → R ⊆₂ Q → (P ∪₂ R) ⊆₂ Q ∪₂-combine-⊆₂ (⊆: P⊆Q) (⊆: R⊆Q) = ⊆: (λ{x y → λ{(inj₁ Px) → P⊆Q x y Px; (inj₂ Rx) → R⊆Q x y Rx}}) module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where ∪₂-introˡ : P ⊆₂ (Q ∪₂ P) ∪₂-introˡ = ⊆: λ{_ _ → inj₂} ∪₂-introʳ : P ⊆₂ (P ∪₂ Q) ∪₂-introʳ = ⊆: λ{_ _ → inj₁} module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∪₂-introˡ-⊆₂ : P ⊆₂ R → P ⊆₂ (Q ∪₂ R) ∪₂-introˡ-⊆₂ (⊆: P⊆R) = ⊆: (λ x y Pxy → inj₂ (P⊆R x y Pxy)) ∪₂-introʳ-⊆₂ : P ⊆₂ Q → P ⊆₂ (Q ∪₂ R) ∪₂-introʳ-⊆₂ (⊆: P⊆Q) = ⊆: (λ x y Pxy → inj₁ (P⊆Q x y Pxy)) ∪₂-elimˡ-⊆₂ : (P ∪₂ Q) ⊆₂ R → Q ⊆₂ R ∪₂-elimˡ-⊆₂ (⊆: [P∪Q]⊆R) = ⊆: (λ x y Qxy → [P∪Q]⊆R x y (inj₂ Qxy)) ∪₂-elimʳ-⊆₂ : (P ∪₂ Q) ⊆₂ R → P ⊆₂ R ∪₂-elimʳ-⊆₂ (⊆: [P∪Q]⊆R) = ⊆: (λ x y Pxy → [P∪Q]⊆R x y (inj₁ Pxy)) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∪₂-substˡ-⊆₂ : P ⊆₂ Q → (P ∪₂ R) ⊆₂ (Q ∪₂ R) ∪₂-substˡ-⊆₂ (⊆: P⊆Q) = ⊆: (λ{x y → λ{(inj₁ Pxy) → inj₁ (P⊆Q x y Pxy); (inj₂ Rxy) → inj₂ Rxy}}) ∪₂-substʳ-⊆₂ : P ⊆₂ Q → (R ∪₂ P) ⊆₂ (R ∪₂ Q) ∪₂-substʳ-⊆₂ (⊆: P⊆Q) = ⊆: (λ{x y → λ{(inj₁ Rxy) → inj₁ Rxy; (inj₂ Pxy) → inj₂ (P⊆Q x y Pxy)}}) -- ## Operations: ⇔₂ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∪₂-substˡ : P ⇔₂ Q → (P ∪₂ R) ⇔₂ (Q ∪₂ R) ∪₂-substˡ = ⇔₂-compose ∪₂-substˡ-⊆₂ ∪₂-substˡ-⊆₂ ∪₂-substʳ : P ⇔₂ Q → (R ∪₂ P) ⇔₂ (R ∪₂ Q) ∪₂-substʳ = ⇔₂-compose ∪₂-substʳ-⊆₂ ∪₂-substʳ-⊆₂
algebraic-stack_agda0000_doc_5258
postulate F : @0 Set → Set G : @0 Set → Set G A = F (λ { → A })
algebraic-stack_agda0000_doc_5259
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import homotopy.PushoutSplit open import cw.CW module cw.cohomology.WedgeOfCells {i} (OT : OrdinaryTheory i) {n} (⊙skel : ⊙Skeleton {i} (S n)) where open OrdinaryTheory OT open import cohomology.Bouquet OT open import cw.WedgeOfCells (⊙Skeleton.skel ⊙skel) module _ (m : ℤ) where CXₙ/Xₙ₋₁ : Group i CXₙ/Xₙ₋₁ = C m ⊙Xₙ/Xₙ₋₁ CEl-Xₙ/Xₙ₋₁ : Type i CEl-Xₙ/Xₙ₋₁ = Group.El CXₙ/Xₙ₋₁ abstract CXₙ/Xₙ₋₁-is-abelian : is-abelian CXₙ/Xₙ₋₁ CXₙ/Xₙ₋₁-is-abelian = C-is-abelian m ⊙Xₙ/Xₙ₋₁ CXₙ/Xₙ₋₁-abgroup : AbGroup i CXₙ/Xₙ₋₁-abgroup = CXₙ/Xₙ₋₁ , CXₙ/Xₙ₋₁-is-abelian CXₙ/Xₙ₋₁-diag-β : ⊙has-cells-with-choice 0 ⊙skel i → CXₙ/Xₙ₋₁ (ℕ-to-ℤ (S n)) ≃ᴳ Πᴳ (⊙cells-last ⊙skel) (λ _ → C2 0) CXₙ/Xₙ₋₁-diag-β ac = C-Bouquet-diag (S n) (⊙cells-last ⊙skel) (⊙cells-last-has-choice ⊙skel ac) ∘eᴳ C-emap (ℕ-to-ℤ (S n)) Bouquet-⊙equiv-Xₙ/Xₙ₋₁ abstract CXₙ/Xₙ₋₁-≠-is-trivial : ∀ {m} (m≠Sn : m ≠ ℕ-to-ℤ (S n)) → ⊙has-cells-with-choice 0 ⊙skel i → is-trivialᴳ (CXₙ/Xₙ₋₁ m) CXₙ/Xₙ₋₁-≠-is-trivial {m} m≠Sn ac = iso-preserves'-trivial (C-emap m Bouquet-⊙equiv-Xₙ/Xₙ₋₁) $ C-Bouquet-≠-is-trivial m (⊙cells-last ⊙skel) (S n) m≠Sn (⊙cells-last-has-choice ⊙skel ac) CXₙ/Xₙ₋₁-<-is-trivial : ∀ {m} (m<Sn : m < S n) → ⊙has-cells-with-choice 0 ⊙skel i → is-trivialᴳ (CXₙ/Xₙ₋₁ (ℕ-to-ℤ m)) CXₙ/Xₙ₋₁-<-is-trivial m<Sn = CXₙ/Xₙ₋₁-≠-is-trivial (ℕ-to-ℤ-≠ (<-to-≠ m<Sn)) CXₙ/Xₙ₋₁->-is-trivial : ∀ {m} (m>Sn : S n < m) → ⊙has-cells-with-choice 0 ⊙skel i → is-trivialᴳ (CXₙ/Xₙ₋₁ (ℕ-to-ℤ m)) CXₙ/Xₙ₋₁->-is-trivial m>Sn = CXₙ/Xₙ₋₁-≠-is-trivial (≠-inv (ℕ-to-ℤ-≠ (<-to-≠ m>Sn)))
algebraic-stack_agda0000_doc_5260
{-# OPTIONS --safe --without-K #-} module Literals.Number where open import Agda.Builtin.FromNat public open Number ⦃ ... ⦄ public
algebraic-stack_agda0000_doc_5261
module StateSizedIO.Base where open import Size open import SizedIO.Base open import Data.Product record IOInterfaceˢ : Set₁ where field IOStateˢ : Set Commandˢ : IOStateˢ → Set Responseˢ : (s : IOStateˢ) → (m : Commandˢ s) → Set IOnextˢ : (s : IOStateˢ) → (m : Commandˢ s) → (Responseˢ s m) → IOStateˢ open IOInterfaceˢ public record Interfaceˢ : Set₁ where field Stateˢ : Set Methodˢ : Stateˢ → Set Resultˢ : (s : Stateˢ) → (m : Methodˢ s) → Set nextˢ : (s : Stateˢ) → (m : Methodˢ s) → (Resultˢ s m) → Stateˢ open Interfaceˢ public {- module _ (ioinf : IOInterface) -- (let C = Command ioi) (let R = Response ioi) (objinf : Interfaceˢ) {-(let S = Stateˢ oi)-} --(let M = Methodˢ objinf) (let Rt = Resultˢ objinf) -- (let n = nextˢ objinf) where @BEGIN@IOObject record IOObjectˢ (i : Size) (s : Stateˢ objinf) : Set where coinductive field HIDE-END method : ∀{j : Size< i} (m : Methodˢ objinf s) → IO ioinf ∞ ( Σ[ r ∈ objinf .Resultˢ s m ] IOObjectˢ j (objinf .nextˢ s m r)) @END -} module _ (ioinf : IOInterface) (oinf : Interfaceˢ) where record IOObjectˢ (i : Size) (s : oinf .Stateˢ) : Set where coinductive field method : ∀{j : Size< i} (m : oinf .Methodˢ s) → IO ioinf ∞ (Σ[ r ∈ oinf .Resultˢ s m ] IOObjectˢ j (oinf .nextˢ s m r)) module _ (ioi : IOInterface) (let C = Command ioi) (let R = Response ioi) (oi : Interfaceˢ) (let S = Stateˢ oi) (let M = Methodˢ oi) (let Rt = Resultˢ oi) (let n = nextˢ oi) where record IOObjectˢ- (i : Size) (s : S) : Set where coinductive field method : ∀{j : Size< i} (m : M s) → IO ioi ∞ (Rt s m ) open IOObjectˢ public open IOObjectˢ- public module _ (I : IOInterfaceˢ ) (let S = IOStateˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let n = IOnextˢ I) where mutual record IOˢ (i : Size) (A : S → Set) (s : S) : Set where coinductive -- constructor delay field forceˢ : {j : Size< i} → IOˢ' j A s data IOˢ' (i : Size) (A : S → Set) (s : S) : Set where doˢ' : (c : C s) (f : (r : R s c) → IOˢ i A (n s c r)) → IOˢ' i A s returnˢ' : (a : A s) → IOˢ' i A s data IOˢ+ (i : Size) (A : S → Set) (s : S) : Set where doˢ' : (c : C s) (f : (r : R s c) → IOˢ i A (n s c r)) → IOˢ+ i A s open IOˢ public delayˢ : {i : Size}{I : IOInterfaceˢ}{A : IOStateˢ I → Set}{s : IOStateˢ I} → IOˢ' I i A s → IOˢ I (↑ i) A s delayˢ p .forceˢ = p module _ {I : IOInterfaceˢ } (let S = IOStateˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let n = IOnextˢ I) where returnˢ : ∀{i}{A : S → Set} (s : S) (a : A s) → IOˢ I i A s returnˢ s a .forceˢ = returnˢ' a -- 2017-04-05: Argument s is hidden now. doˢ : ∀{i}{A : S → Set} {s : S} (c : C s) (f : (r : R s c) → IOˢ I i A (n s c r)) → IOˢ I i A s doˢ c f .forceˢ = doˢ' c f mutual fmapˢ : (i : Size) → {A B : S → Set} → (f : (s : S) → A s → B s) → (s : S) → IOˢ I i A s → IOˢ I i B s fmapˢ i {A} {B} f s p .forceˢ {j} = fmapˢ' j {A} {B} f s (p .forceˢ {j}) fmapˢ' : (i : Size) → {A B : S → Set} → (f : (s : S) → A s → B s) → (s : S) → IOˢ' I i A s → IOˢ' I i B s fmapˢ' i {A} {B} f s (doˢ' c f₁) = doˢ' c (λ r → fmapˢ i {A} {B} f (IOnextˢ I s c r) (f₁ r)) fmapˢ' i {A} {B} f s (returnˢ' a) = returnˢ' (f s a)
algebraic-stack_agda0000_doc_5262
module Untyped.Abstract where open import Function open import Data.String open import Data.Nat open import Data.Unit open import Data.Product open import Data.List open import Data.Sum as Sum open import Data.Maybe open import Strict open import Debug.Trace open import Category.Monad open import Untyped.Monads postulate fail : ∀ {a : Set} → a willneverhappenipromise : ∀ {a : Set} → String → a willneverhappenipromise m = trace m fail module _ where Var = ℕ Chan = ℕ mutual record Closure : Set where inductive constructor ⟨_⊢_⟩ field env : Env body : Exp data Val : Set where tt : Val nat : ℕ → Val chan : Chan → Val ⟨_,_⟩ : Val → Val → Val -- pairs clos : Closure → Val -- closures Env = List Val data Exp : Set where -- the functional core nat : ℕ → Exp var : Var → Exp ƛ : Exp → Exp _·_ : Exp → Exp → Exp -- products pair : Exp → Exp → Exp letp : Exp → Exp → Exp -- communication close : Exp → Exp receive : Exp → Exp send : (ch : Exp) → (v : Exp) → Exp -- threading fork : Exp → Exp extend : Val → Env → Env extend = _∷_ unsafeLookup : ∀ {a} → ℕ → List a → a unsafeLookup _ [] = willneverhappenipromise "lookup fail" unsafeLookup zero (x ∷ xs) = x unsafeLookup (suc n) (x ∷ xs) = unsafeLookup n xs unsafeUpdate : ∀ {a} → ℕ → List a → a → List a unsafeUpdate n [] a = willneverhappenipromise "update fail" unsafeUpdate zero (x ∷ xs) a = a ∷ xs unsafeUpdate (suc n) (x ∷ xs) a = x ∷ unsafeUpdate n xs a -- Ideally this should be two different dispatch sets data Comm : Set where -- communication send : Chan → Val → Comm recv : Chan → Comm clos : Chan → Comm data Threading : Set where -- threading fork : Closure → Threading yield : Threading Cmd = Comm ⊎ Threading ⟦_⟧-comm : Comm → Set ⟦ clos x ⟧-comm = ⊤ ⟦ send x x₁ ⟧-comm = ⊤ ⟦ recv x ⟧-comm = Val ⟦_⟧-thr : Threading → Set ⟦ fork x ⟧-thr = Chan ⟦ yield ⟧-thr = ⊤ ⟦_⟧ : Cmd → Set ⟦ inj₁ x ⟧ = ⟦ x ⟧-comm ⟦ inj₂ y ⟧ = ⟦ y ⟧-thr data Thread : Set where thread : Free Cmd ⟦_⟧ Val → Thread ThreadPool = List Thread Links = Chan → Chan data Blocked : Set where blocked : Blocked {- Free an expression from its earthly -} module _ {m} ⦃ m-monad : RawMonad m ⦄ ⦃ m-read : MonadReader m Env ⦄ ⦃ m-res : MonadResumption m Closure Chan ⦄ ⦃ m-comm : MonadComm m Chan Val ⦄ where open M {-# NON_TERMINATING #-} eval : Exp → m Val eval (nat n) = do return (nat n) eval (var x) = do asks (unsafeLookup x) eval (ƛ e) = do asks (clos ∘ ⟨_⊢ e ⟩) eval (f · e) = do clos ⟨ env ⊢ body ⟩ ← eval f where _ → willneverhappenipromise "not a closure" v ← eval e local (λ _ → extend v env) (eval body) -- products eval (pair e₁ e₂) = do v₁ ← eval e₁ v₂ ← eval e₂ return ⟨ v₁ , v₂ ⟩ eval (letp b e) = do ⟨ v₁ , v₂ ⟩ ← eval b where _ → willneverhappenipromise "not a pair" local (extend v₂ ∘ extend v₁) $ eval e -- communication eval (close e) = do chan c ← eval e where _ → willneverhappenipromise "not a channel to close" M.close c return tt eval (receive e) = do chan c ← eval e where _ → willneverhappenipromise "not a channel to receive on" M.recv c eval (send e₁ e₂) = do chan c ← eval e₁ where _ → willneverhappenipromise "not a channel to send on" v ← eval e₂ M.send c v return tt -- threading eval (fork e) = do clos cl ← eval e where _ → willneverhappenipromise "not a closure to fork" c ← M.fork cl return (chan c) {- Interpreting communication commands -} module _ {com} ⦃ com-comm : MonadComm com Chan Val ⦄ where communicate : (cmd : Comm) → com ⟦ cmd ⟧-comm communicate (Comm.send c v) = M.send c v communicate (Comm.recv x) = M.recv x communicate (clos x) = M.close x {- Interpreting threading commands -} module _ {thr} ⦃ thr-res : MonadResumption thr Closure Chan ⦄ where threading : (cmd : Threading) → thr ⟦ cmd ⟧-thr threading (Threading.fork cl) = M.fork cl threading Threading.yield = M.yield module _ {cmd} ⦃ cmd-comm : MonadComm cmd Chan Val ⦄ ⦃ cmd-res : MonadResumption cmd Closure Chan ⦄ where handle : (c : Cmd) → cmd ⟦ c ⟧ handle = Sum.[ communicate , threading ] {- Round robin scheduling -} module _ {w : Set} {m} ⦃ monad : RawMonad m ⦄ ⦃ read : MonadState m (List w) ⦄ (atomic : w → m ⊤) where open M {-# NON_TERMINATING #-} robin : m ⊤ robin = do (h ∷ tl) ← get where [] → return tt put tl atomic h robin
algebraic-stack_agda0000_doc_5263
-- Andreas, 2011-05-09 -- {-# OPTIONS -v tc.inj:40 -v tc.meta:30 #-} module Issue383b where postulate Σ : (A : Set) → (A → Set) → Set U : Set El : U → Set mutual data Ctxt : Set where _▻_ : (Γ : Ctxt) → (Env Γ → U) → Ctxt Env : Ctxt → Set Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (σ γ) postulate Δ : Ctxt σ : Env Δ → U δ : U → Env (Δ ▻ σ) data Foo : (Γ : Ctxt) → (U → Env Γ) → Set where foo : Foo _ δ -- WORKS NOW; OLD COMPLAINT: -- Agda does not solve or simplify the following constraint. Why? Env -- is constructor-headed. -- -- _40 := δ if [(Σ (Env Δ) (λ γ → El (σ γ))) =< (Env _39) : Set]
algebraic-stack_agda0000_doc_6944
------------------------------------------------------------------------ -- The Agda standard library -- -- Examples showing how the reflective ring solver may be used. ------------------------------------------------------------------------ module README.Tactic.RingSolver where -- You can ignore this bit! We're just overloading the literals Agda uses for -- numbers. This bit isn't necessary if you're just using Nats, or if you -- construct your type directly. We only really do it here so that we can use -- different numeric types in the same file. open import Agda.Builtin.FromNat open import Data.Nat using (ℕ) open import Data.Integer using (ℤ) import Data.Nat.Literals as ℕ import Data.Integer.Literals as ℤ instance numberNat : Number ℕ numberNat = ℕ.number instance numberInt : Number ℤ numberInt = ℤ.number ------------------------------------------------------------------------------ -- Imports! open import Data.List as List using (List; _∷_; []) open import Function open import Relation.Binary.PropositionalEquality as ≡ using (subst; _≡_; module ≡-Reasoning) open import Data.Bool as Bool using (Bool; true; false; if_then_else_) open import Data.Unit using (⊤; tt) open import Tactic.RingSolver.Core.AlmostCommutativeRing using (AlmostCommutativeRing) ------------------------------------------------------------------------------ -- Integer examples ------------------------------------------------------------------------------ module IntegerExamples where open import Data.Integer.Tactic.RingSolver open AlmostCommutativeRing ring -- Everything is automatic: you just ask Agda to solve it and it does! lemma₁ : ∀ x y → x + y * 1 + 3 ≈ 3 + 1 + y + x + - 1 lemma₁ = solve-∀ lemma₂ : ∀ x y → (x + y) ^ 2 ≈ x ^ 2 + 2 * x * y + y ^ 2 lemma₂ = solve-∀ -- It can interact with manual proofs as well. lemma₃ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x lemma₃ x y = begin x + y * 1 + 3 ≡⟨ +-comm x (y * 1) ⟨ +-cong ⟩ refl ⟩ y * 1 + x + 3 ≡⟨ solve (x ∷ y ∷ []) ⟩ 3 + y + x ≡⟨⟩ 2 + 1 + y + x ∎ where open ≡-Reasoning ------------------------------------------------------------------------------ -- Natural examples ------------------------------------------------------------------------------ module NaturalExamples where open import Data.Nat.Tactic.RingSolver open AlmostCommutativeRing ring -- The solver is flexible enough to work with ℕ (even though it asks -- for rings!) lemma₁ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x lemma₁ = solve-∀ ------------------------------------------------------------------------------ -- Checking invariants ------------------------------------------------------------------------------ -- The solver makes it easy to prove invariants, without having to rewrite -- proof code every time something changes in the data structure. module _ {a} {A : Set a} (_≤_ : A → A → Bool) where open import Data.Nat.Tactic.RingSolver open AlmostCommutativeRing ring -- A Skew Heap, indexed by its size. data Tree : ℕ → Set a where leaf : Tree 0 node : ∀ {n m} → A → Tree n → Tree m → Tree (1 + n + m) -- A substitution operator, to clean things up. infixr 1 _⇒_ _⇒_ : ∀ {n} → Tree n → ∀ {m} → n ≈ m → Tree m x ⇒ n≈m = subst Tree n≈m x open ≡-Reasoning _∪_ : ∀ {n m} → Tree n → Tree m → Tree (n + m) leaf ∪ ys = ys node {a} {b} x xl xr ∪ leaf = node x xl xr ⇒ solve (a ∷ b ∷ []) node {a} {b} x xl xr ∪ node {c} {d} y yl yr = if x ≤ y then node x (node y yl yr ∪ xr) xl ⇒ begin 1 + (1 + c + d + b) + a ≡⟨ solve (a ∷ b ∷ c ∷ d ∷ []) ⟩ 1 + a + b + (1 + c + d) ∎ else node y (node x xl xr ∪ yr) yl ⇒ begin 1 + (1 + a + b + d) + c ≡⟨ solve (a ∷ b ∷ c ∷ d ∷ []) ⟩ 1 + a + b + (1 + c + d) ∎
algebraic-stack_agda0000_doc_6945
{-# OPTIONS --sized-types #-} -- {-# OPTIONS -v tc.size.solve:100 -v tc.meta.new:50 #-} module CheckSizeMetaBounds where open import Common.Size postulate Size< : (_ : Size) → Set {-# BUILTIN SIZELT Size< #-} data Nat {i : Size} : Set where zero : Nat suc : {j : Size< i} → Nat {j} → Nat one : Nat one = suc {i = ∞} zero data ⊥ : Set where record ⊤ : Set where NonZero : Nat → Set NonZero zero = ⊥ NonZero (suc n) = ⊤ -- magic conversion must of course fail magic : {i : Size} → Nat {∞} → Nat {i} magic zero = zero magic (suc n) = suc (magic n) lem : (n : Nat) → NonZero n → NonZero (magic n) lem (zero) () lem (suc n) _ = _ -- otherwise, we exploit it for an infinite loop loop : {i : Size} → (x : Nat {i}) → NonZero x → ⊥ loop zero () loop (suc {j} n) p = loop {j} (magic one) (lem one _) bot : ⊥ bot = loop one _
algebraic-stack_agda0000_doc_6946
-- The bug documented below was exposed by the fix to issue 274. module Issue274 where open import Common.Level record Q a : Set (a ⊔ a) where record R a : Set a where field q : Q a A : Set₁ A = Set postulate ℓ : Level r : R (ℓ ⊔ ℓ) foo : R ℓ foo = r -- Issue274.agda:32,7-8 -- ℓ ⊔ ℓ !=< ℓ of type Level -- when checking that the expression r has type R ℓ
algebraic-stack_agda0000_doc_6947
{-# OPTIONS --copatterns #-} module SplitResult where open import Common.Product test : {A B : Set} (a : A) (b : B) → A × B test a b = {!!} -- expected: -- proj₁ (test a b) = {!!} -- proj₂ (test a b) = {!!} testFun : {A B : Set} (a : A) (b : B) → A × B testFun = {!!} -- expected: -- testFun a b = {!!} record FunRec A : Set where field funField : A → A open FunRec testFunRec : ∀{A} → FunRec A testFunRec = {!!} -- expected (since 2016-05-03): -- funField testFunRec = {!!}
algebraic-stack_agda0000_doc_6948
{-# OPTIONS --without-K --rewriting #-} module lib.types.Suspension where open import lib.types.Suspension.Core public open import lib.types.Suspension.Flip public open import lib.types.Suspension.Iterated public open import lib.types.Suspension.IteratedFlip public open import lib.types.Suspension.IteratedTrunc public open import lib.types.Suspension.IteratedEquivs public open import lib.types.Suspension.Trunc public
algebraic-stack_agda0000_doc_6949
------------------------------------------------------------------------ -- The Agda standard library -- -- Rational numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Rational where open import Data.Integer as ℤ using (ℤ; +_) open import Data.String using (String; _++_) ------------------------------------------------------------------------ -- Publicly re-export contents of core module open import Data.Rational.Base public ------------------------------------------------------------------------ -- Publicly re-export queries open import Data.Nat.Properties public using (_≟_; _≤?_) ------------------------------------------------------------------------ -- Method for displaying rationals show : ℚ → String show p = ℤ.show (↥ p) ++ "/" ++ ℤ.show (↧ p) ------------------------------------------------------------------------ -- Deprecated -- Version 1.0 open import Data.Rational.Properties public using (drop-*≤*; ≃⇒≡; ≡⇒≃)
algebraic-stack_agda0000_doc_6950
module Data.Num.Redundant.Properties where open import Data.Num.Bij open import Data.Num.Redundant renaming (_+_ to _+R_) open import Data.Nat renaming (_<_ to _<ℕ_) open import Data.Nat.Etc open import Data.Nat.Properties.Simple open import Data.Sum open import Data.List hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Negation using (contradiction; contraposition) open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong; cong₂; trans; sym; inspect) open PropEq.≡-Reasoning -------------------------------------------------------------------------------- -- Digits -------------------------------------------------------------------------------- ⊕-comm : (a b : Digit) → a ⊕ b ≡ b ⊕ a ⊕-comm zero zero = refl ⊕-comm zero one = refl ⊕-comm zero two = refl ⊕-comm one zero = refl ⊕-comm one one = refl ⊕-comm one two = refl ⊕-comm two zero = refl ⊕-comm two one = refl ⊕-comm two two = refl ⊕-assoc : (a b c : Digit) → (a ⊕ b) ⊕ c ≡ a ⊕ (b ⊕ c) ⊕-assoc zero b c = refl ⊕-assoc one zero c = refl ⊕-assoc one one zero = refl ⊕-assoc one one one = refl ⊕-assoc one one two = refl ⊕-assoc one two zero = refl ⊕-assoc one two one = refl ⊕-assoc one two two = refl ⊕-assoc two zero c = refl ⊕-assoc two one zero = refl ⊕-assoc two one one = refl ⊕-assoc two one two = refl ⊕-assoc two two zero = refl ⊕-assoc two two one = refl ⊕-assoc two two two = refl ⊕-right-identity : (a : Digit) → a ⊕ zero ≡ a ⊕-right-identity zero = refl ⊕-right-identity one = refl ⊕-right-identity two = refl ⊙-comm : (a b : Digit) → a ⊙ b ≡ b ⊙ a ⊙-comm zero zero = refl ⊙-comm zero one = refl ⊙-comm zero two = refl ⊙-comm one zero = refl ⊙-comm one one = refl ⊙-comm one two = refl ⊙-comm two zero = refl ⊙-comm two one = refl ⊙-comm two two = refl -------------------------------------------------------------------------------- -- Sequence of Digits -------------------------------------------------------------------------------- {- [x∷xs≡0⇒xs≡0] : (d : Digit) → (xs : Redundant) → [ d ∷ xs ] ≡ [ zero ∷ [] ] → [ xs ] ≡ [ zero ∷ [] ] [x∷xs≡0⇒xs≡0] d [] _ = refl [x∷xs≡0⇒xs≡0] zero (zero ∷ xs) p = {! no-zero-divisor 2 (0 + 2 * [ xs ]) (λ ()) p !} [x∷xs≡0⇒xs≡0] zero (one ∷ xs) p = {! !} [x∷xs≡0⇒xs≡0] zero (two ∷ xs) p = {! !} -- no-zero-divisor 2 ([ x ] + 2 * [ xs ]) (λ ()) p [x∷xs≡0⇒xs≡0] one (x ∷ xs) p = contradiction p (λ ()) [x∷xs≡0⇒xs≡0] two (x ∷ xs) p = contradiction p (λ ()) [>>xs]≡2*[xs] : (xs : Redundant) → [ >> xs ] ≡ *2 [ xs ] [>>xs]≡2*[xs] xs = refl [n>>>xs]≡2^n*[xs] : (n : ℕ) → (xs : Redundant) → [ n >>> xs ] ≡ 2 ^ n *Bij [ xs ] [n>>>xs]≡2^n*[xs] zero xs = sym (+-right-identity [ xs ]) [n>>>xs]≡2^n*[xs] (suc n) xs = begin [ n >>> (zero ∷ xs) ] ≡⟨ [n>>>xs]≡2^n*[xs] n (zero ∷ xs) ⟩ 2 ^ n * [ zero ∷ xs ] ≡⟨ sym (*-assoc (2 ^ n) 2 [ xs ]) ⟩ 2 ^ n * 2 * [ xs ] ≡⟨ cong (λ x → x * [ xs ]) (*-comm (2 ^ n) 2) ⟩ 2 * 2 ^ n * [ xs ] ∎ -- >> 0 ≈ 0 >>-zero : (xs : Redundant) → xs ≈ zero ∷ [] → >> xs ≈ zero ∷ [] >>-zero [] _ = eq refl >>-zero (x ∷ xs) (eq x∷xs≈0) = eq (begin *2 [ x ∷ xs ] ≡⟨ cong (λ w → 2 * w) x∷xs≈0 ⟩ 2 * 0 ≡⟨ *-right-zero 2 ⟩ 0 ∎) -- << 0 ≈ 0 <<-zero : (xs : Redundant) → xs ≈ zero ∷ [] → << xs ≈ zero ∷ [] <<-zero [] _ = eq refl <<-zero (x ∷ xs) (eq x∷xs≡0) = eq ([x∷xs≡0⇒xs≡0] x xs x∷xs≡0) -} {- >>>-zero : ∀ {n} (xs : Redundant) → {xs≈0 : xs ≈ zero ∷ []} → n >>> xs ≈ zero ∷ [] >>>-zero {n} xs {eq xs≡0} = eq ( begin [ n >>> xs ] ≡⟨ [n>>>xs]≡2^n*[xs] n xs ⟩ 2 ^ n * [ xs ] ≡⟨ cong (λ x → 2 ^ n * x) xs≡0 ⟩ 2 ^ n * 0 ≡⟨ *-right-zero (2 ^ n) ⟩ 0 ∎) <<<-zero : (n : ℕ) (xs : Redundant) → {xs≈0 : xs ≈ zero ∷ []} → n <<< xs ≈ zero ∷ [] <<<-zero zero [] = eq refl <<<-zero (suc n) [] = eq refl <<<-zero zero (x ∷ xs) {x∷xs≈0} = x∷xs≈0 <<<-zero (suc n) (x ∷ xs) {eq x∷xs≡0} = <<<-zero n xs {eq ([x∷xs≡0⇒xs≡0] x xs x∷xs≡0)} -} -------------------------------------------------------------------------------- -- Properties of the relations on Redundant -------------------------------------------------------------------------------- ≈-Setoid : Setoid _ _ ≈-Setoid = record { Carrier = Redundant ; _≈_ = _≈_ ; isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } } where ≈-refl : Reflexive _≈_ ≈-refl = eq refl ≈-sym : Symmetric _≈_ ≈-sym (eq a≈b) = eq (sym a≈b) ≈-trans : Transitive _≈_ ≈-trans (eq a≈b) (eq b≈c) = eq (trans a≈b b≈c) private ≤-isDecTotalOrder = DecTotalOrder.isDecTotalOrder decTotalOrder ≤-isTotalOrder = IsDecTotalOrder.isTotalOrder ≤-isDecTotalOrder ≤-total = IsTotalOrder.total ≤-isTotalOrder ≤-isPartialOrder = IsTotalOrder.isPartialOrder ≤-isTotalOrder ≤-antisym = IsPartialOrder.antisym ≤-isPartialOrder ≤-isPreorder = IsPartialOrder.isPreorder ≤-isPartialOrder ≤-isEquivalence = IsPreorder.isEquivalence ≤-isPreorder ≤-reflexive = IsPreorder.reflexive ≤-isPreorder ≤-trans = IsPreorder.trans ≤-isPreorder ≲-refl : _≈_ ⇒ _≲_ ≲-refl (eq [x]≡[y]) = {! !} -- le (≤-reflexive [x]≡[y]) ≲-trans : Transitive _≲_ ≲-trans [a]≤[b] [b]≤[c] = {! !} -- le (≤-trans [a]≤[b] [b]≤[c]) ≲-antisym : Antisymmetric _≈_ _≲_ ≲-antisym [x]≤[y] [y]≤[x] = {! !} -- eq (≤-antisym [x]≤[y] [y]≤[x]) ≲-isPreorder : IsPreorder _ _ ≲-isPreorder = record { isEquivalence = Setoid.isEquivalence ≈-Setoid ; reflexive = ≲-refl ; trans = ≲-trans } ≲-isPartialOrder : IsPartialOrder _ _ ≲-isPartialOrder = record { isPreorder = ≲-isPreorder ; antisym = ≲-antisym } {- ≲-total : Total _≲_ ≲-total x y with ≤-total [ x ] [ y ] ≲-total x y | inj₁ [x]≤[y] = inj₁ ? -- (le [x]≤[y]) ≲-total x y | inj₂ [y]≤[x] = inj₂ ? -- (le [y]≤[x]) ≲-isTotalOrder : IsTotalOrder _ _ ≲-isTotalOrder = record { isPartialOrder = ≲-isPartialOrder ; total = ≲-total } ≲-isDecTotalOrder : IsDecTotalOrder _ _ ≲-isDecTotalOrder = record { isTotalOrder = ≲-isTotalOrder ; _≟_ = _≈?_ ; _≤?_ = _≲?_ } ≲-decTotalOrder : DecTotalOrder _ _ _ ≲-decTotalOrder = record { Carrier = Redundant ; _≈_ = _≈_ ; _≤_ = _≲_ ; isDecTotalOrder = ≲-isDecTotalOrder } a≲a+1 : (a : Redundant) → a ≲ incr one a a≲a+1 [] = le z≤n a≲a+1 (x ∷ xs) = le {! !} <-asym : Asymmetric _<_ <-asym {[]} {[]} (le ()) (le [y]<[[]]) <-asym {[]} {y ∷ ys} (le [x]<[y]) (le [y]<[[]]) = {! !} <-asym {x ∷ xs} {[]} (le [x]<[y]) (le [y]<[x∷xs]) = {! !} <-asym {x ∷ xs} {y ∷ ys} (le [x]<[y]) (le [y]<[x∷xs]) = {! !} <-irr : Irreflexive _≈_ _<_ -- goal: ¬ (x < y) <-irr {a} {b} (eq [a]≡[b]) (le [a]<[b]) = {! !} trichotomous : Trichotomous _≈_ _<_ trichotomous x y with x ≈? y trichotomous x y | yes p = tri≈ {! !} p {! !} trichotomous x y | no ¬p with incr one x ≲? y trichotomous x y | no ¬p | yes q = tri< q ¬p {! !} trichotomous x y | no ¬p | no ¬q = tri> ¬q ¬p {! !} -} {- begin {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ∎ -}
algebraic-stack_agda0000_doc_6951
-- Andreas, 2018-03-03, issue #2989 -- Internal error, fixable with additional 'reduce'. -- {-# OPTIONS --show-implicit --show-irrelevant #-} -- {-# OPTIONS -v tc.rec:70 -v tc:10 #-} postulate N : Set P : N → Set record Σ (A : Set) (B : A → Set) : Set where constructor pair field fst : A snd : B fst Σ' : (A : Set) → (A → Set) → Set Σ' = Σ record R : Set where constructor mkR field .p : Σ' N P f : R → Set f x = let mkR (pair k p) = x in N -- WAS: -- Internal error in Agda.TypeChecking.Records.getRecordTypeFields -- Error goes away if Σ' is replaced by Σ -- or field is made relevant -- SAME Problem: -- f x = let record { p = pair k p } = x in N -- f x = let record { p = record { fst = k ; snd = p }} = x in N
algebraic-stack_agda0000_doc_6952
module Derivative where open import Sets open import Functor import Isomorphism ∂ : U -> U ∂ (K A) = K [0] ∂ Id = K [1] ∂ (F + G) = ∂ F + ∂ G ∂ (F × G) = ∂ F × G + F × ∂ G open Semantics -- Plugging a hole plug-∂ : {X : Set}(F : U) -> ⟦ ∂ F ⟧ X -> X -> ⟦ F ⟧ X plug-∂ (K _) () x plug-∂ Id <> x = x plug-∂ (F + G) (inl c) x = inl (plug-∂ F c x) plug-∂ (F + G) (inr c) x = inr (plug-∂ G c x) plug-∂ (F × G) (inl < c , g >) x = < plug-∂ F c x , g > plug-∂ (F × G) (inr < f , c >) x = < f , plug-∂ G c x >
algebraic-stack_agda0000_doc_6953
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra where open import Cubical.Algebra.CommAlgebra.Base public open import Cubical.Algebra.CommAlgebra.Properties public
algebraic-stack_agda0000_doc_6954
-- Andreas, 2012-01-12 module Common.Irrelevance where open import Common.Level postulate .irrAxiom : ∀ {a}{A : Set a} → .A → A {-# BUILTIN IRRAXIOM irrAxiom #-} record Squash {a}(A : Set a) : Set a where constructor squash field .unsquash : A open Squash public
algebraic-stack_agda0000_doc_6955
-- define ∑ and ∏ as the bigOps of a Ring when interpreted -- as an additive/multiplicative monoid {-# OPTIONS --safe #-} module Cubical.Algebra.Ring.BigOps where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Bool open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Data.Sigma open import Cubical.Data.FinData open import Cubical.Algebra.Monoid.BigOp open import Cubical.Algebra.Ring.Base open import Cubical.Algebra.Ring.Properties private variable ℓ ℓ' : Level module KroneckerDelta (R' : Ring ℓ) where private R = fst R' open RingStr (snd R') δ : {n : ℕ} (i j : Fin n) → R δ i j = if i == j then 1r else 0r module Sum (R' : Ring ℓ) where private R = fst R' open RingStr (snd R') open MonoidBigOp (Ring→AddMonoid R') open RingTheory R' open KroneckerDelta R' ∑ = bigOp ∑Ext = bigOpExt ∑0r = bigOpε ∑Last = bigOpLast ∑Split : ∀ {n} → (V W : FinVec R n) → ∑ (λ i → V i + W i) ≡ ∑ V + ∑ W ∑Split = bigOpSplit +Comm ∑Split++ : ∀ {n m : ℕ} (V : FinVec R n) (W : FinVec R m) → ∑ (V ++Fin W) ≡ ∑ V + ∑ W ∑Split++ = bigOpSplit++ +Comm ∑Mulrdist : ∀ {n} → (x : R) → (V : FinVec R n) → x · ∑ V ≡ ∑ λ i → x · V i ∑Mulrdist {n = zero} x _ = 0RightAnnihilates x ∑Mulrdist {n = suc n} x V = x · (V zero + ∑ (V ∘ suc)) ≡⟨ ·DistR+ _ _ _ ⟩ x · V zero + x · ∑ (V ∘ suc) ≡⟨ (λ i → x · V zero + ∑Mulrdist x (V ∘ suc) i) ⟩ x · V zero + ∑ (λ i → x · V (suc i)) ∎ ∑Mulldist : ∀ {n} → (x : R) → (V : FinVec R n) → (∑ V) · x ≡ ∑ λ i → V i · x ∑Mulldist {n = zero} x _ = 0LeftAnnihilates x ∑Mulldist {n = suc n} x V = (V zero + ∑ (V ∘ suc)) · x ≡⟨ ·DistL+ _ _ _ ⟩ V zero · x + (∑ (V ∘ suc)) · x ≡⟨ (λ i → V zero · x + ∑Mulldist x (V ∘ suc) i) ⟩ V zero · x + ∑ (λ i → V (suc i) · x) ∎ ∑Mulr0 : ∀ {n} → (V : FinVec R n) → ∑ (λ i → V i · 0r) ≡ 0r ∑Mulr0 V = sym (∑Mulldist 0r V) ∙ 0RightAnnihilates _ ∑Mul0r : ∀ {n} → (V : FinVec R n) → ∑ (λ i → 0r · V i) ≡ 0r ∑Mul0r V = sym (∑Mulrdist 0r V) ∙ 0LeftAnnihilates _ ∑Mulr1 : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → V i · δ i j) ≡ V j ∑Mulr1 (suc n) V zero = (λ k → ·IdR (V zero) k + ∑Mulr0 (V ∘ suc) k) ∙ +IdR (V zero) ∑Mulr1 (suc n) V (suc j) = (λ i → 0RightAnnihilates (V zero) i + ∑ (λ x → V (suc x) · δ x j)) ∙∙ +IdL _ ∙∙ ∑Mulr1 n (V ∘ suc) j ∑Mul1r : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → (δ j i) · V i) ≡ V j ∑Mul1r (suc n) V zero = (λ k → ·IdL (V zero) k + ∑Mul0r (V ∘ suc) k) ∙ +IdR (V zero) ∑Mul1r (suc n) V (suc j) = (λ i → 0LeftAnnihilates (V zero) i + ∑ (λ i → (δ j i) · V (suc i))) ∙∙ +IdL _ ∙∙ ∑Mul1r n (V ∘ suc) j ∑Dist- : ∀ {n : ℕ} (V : FinVec R n) → ∑ (λ i → - V i) ≡ - ∑ V ∑Dist- V = ∑Ext (λ i → -IsMult-1 (V i)) ∙ sym (∑Mulrdist _ V) ∙ sym (-IsMult-1 _) module SumMap (Ar@(A , Astr) : Ring ℓ) (Br@(B , Bstr) : Ring ℓ') (f'@(f , fstr) : RingHom Ar Br) where open IsRingHom fstr open RingStr Astr using () renaming ( _+_ to _+A_ ) open RingStr Bstr using () renaming ( _+_ to _+B_ ) ∑Map : {n : ℕ} → (V : FinVec A n) → f (Sum.∑ Ar V) ≡ Sum.∑ Br (λ k → f (V k)) ∑Map {n = zero} V = pres0 ∑Map {n = suc n} V = f ((V zero) +A helper) ≡⟨ pres+ (V zero) helper ⟩ ((f (V zero)) +B (f helper)) ≡⟨ cong (λ X → f (V zero) +B X) (∑Map (λ k → (V ∘ suc) k)) ⟩ Sum.∑ Br (λ k → f (V k)) ∎ where helper : _ helper = foldrFin _+A_ (RingStr.0r (snd Ar)) (λ x → V (suc x)) -- anything interesting to prove here? module Product (R' : Ring ℓ) where private R = fst R' open RingStr (snd R') open RingTheory R' open MonoidBigOp (Ring→MultMonoid R') ∏ = bigOp ∏Ext = bigOpExt ∏0r = bigOpε ∏Last = bigOpLast -- only holds in CommRings! -- ∏Split : ∀ {n} → (V W : FinVec R n) → ∏ (λ i → V i · W i) ≡ ∏ V · ∏ W -- ∏Split = bigOpSplit MultR' ·-comm
algebraic-stack_agda0000_doc_6956
module UpTo where open import Level open import Relation.Binary using (Rel; IsEquivalence) open import Data.Product open import Categories.Support.Equivalence open import Categories.Category open import Categories.2-Category open import Categories.Functor open import Categories.NaturalTransformation renaming (id to natId; _≡_ to _≡N_; setoid to natSetoid) hiding (_∘ˡ_; _∘ʳ_) open import Categories.Support.EqReasoning open import NaturalTransFacts Cat₀ = Category zero zero zero EndoFunctor : Cat₀ → Set zero EndoFunctor C = Functor C C record Endo⇒ (C₁ : Cat₀) (F₁ : EndoFunctor C₁) (C₂ : Cat₀) (F₂ : EndoFunctor C₂) : Set zero where field T : Functor C₁ C₂ ρ : NaturalTransformation (T ∘ F₁) (F₂ ∘ T) record UpTo⇒ {C₁ : Cat₀} {F : EndoFunctor C₁} {C₂ : Cat₀} {G : EndoFunctor C₂} (S₁ S₂ : Endo⇒ C₁ F C₂ G) : Set zero where module S₁ = Endo⇒ S₁ module S₂ = Endo⇒ S₂ field γ : NaturalTransformation S₁.T S₂.T -- The following diagram must commute -- T₁F - ρ₁ -> GT₁ -- | | -- γF Gγ -- | | -- v v -- T₂G - ρ₂ -> GT₂ .square : S₂.ρ ∘₁ (γ ∘ʳ F) ≡N (G ∘ˡ γ) ∘₁ S₁.ρ record _≡U_ {C₁ : Cat₀} {C₂ : Cat₀} {F : EndoFunctor C₁} {G : EndoFunctor C₂} {T₁ T₂ : Endo⇒ C₁ F C₂ G} (A : UpTo⇒ T₁ T₂) (B : UpTo⇒ T₁ T₂) : Set where field ≡U-proof : UpTo⇒.γ A ≡N UpTo⇒.γ B open _≡U_ infix 4 _≡U_ .≡U-equiv : {C₁ : Cat₀} {C₂ : Cat₀} {F : EndoFunctor C₁} {G : EndoFunctor C₂} → {A B : Endo⇒ C₁ F C₂ G} → IsEquivalence {A = UpTo⇒ A B} (_≡U_ {C₁} {C₂} {F} {G}) ≡U-equiv = record { refl = λ {A} → record { ≡U-proof = Setoid.refl natSetoid {UpTo⇒.γ A} } ; sym = λ {A} {B} p → record { ≡U-proof = Setoid.sym natSetoid {UpTo⇒.γ A} {UpTo⇒.γ B} (≡U-proof p) } ; trans = λ {A} {B} {C} p₁ p₂ → record { ≡U-proof = Setoid.trans natSetoid {UpTo⇒.γ A} {UpTo⇒.γ B} {UpTo⇒.γ C} (≡U-proof p₁) (≡U-proof p₂) } } id-UpTo⇒ : {C₁ : Cat₀} {F : EndoFunctor C₁} {C₂ : Cat₀} {G : EndoFunctor C₂} {A : Endo⇒ C₁ F C₂ G} → UpTo⇒ A A id-UpTo⇒ {C₁} {F} {C₂} {G} {A} = record { γ = natId ; square = begin Endo⇒.ρ A ∘₁ (natId {F = Endo⇒.T A} ∘ʳ F) ↓⟨ ∘₁-resp-≡ {f = Endo⇒.ρ A} {h = Endo⇒.ρ A} {g = natId {F = Endo⇒.T A} ∘ʳ F} {i = natId {F = Endo⇒.T A ∘ F}} (Setoid.refl natSetoid {Endo⇒.ρ A}) (identityNatʳ {F = Endo⇒.T A} F) ⟩ Endo⇒.ρ A ∘₁ (natId {F = Endo⇒.T A ∘ F}) ↓⟨ identity₁ʳ {X = Endo⇒.ρ A} ⟩ Endo⇒.ρ A ↑⟨ identity₁ˡ {X = Endo⇒.ρ A} ⟩ natId {F = G ∘ Endo⇒.T A} ∘₁ Endo⇒.ρ A ↑⟨ ∘₁-resp-≡ {f = G ∘ˡ natId {F = Endo⇒.T A}} {h = natId {F = G ∘ Endo⇒.T A}} {g = Endo⇒.ρ A} {i = Endo⇒.ρ A} (identityNatˡ {F = Endo⇒.T A} G) (Setoid.refl natSetoid {Endo⇒.ρ A}) ⟩ (G ∘ˡ natId {F = Endo⇒.T A}) ∘₁ Endo⇒.ρ A ∎ } where open SetoidReasoning (natSetoid {F = Endo⇒.T A ∘ F} {G ∘ Endo⇒.T A}) _•_ : {C₁ : Cat₀} {F : EndoFunctor C₁} {C₂ : Cat₀} {G : EndoFunctor C₂} {A B C : Endo⇒ C₁ F C₂ G} → UpTo⇒ B C → UpTo⇒ A B → UpTo⇒ A C _•_ {F = F} {G = G} {A = A} {B} {C} g f = record { γ = γ ∘₁ φ ; square = -- AF - A.ρ -> GA -- | | -- φF Gφ -- | | -- v v -- BF - B.ρ -> GB -- | | -- γF Gγ -- | | -- v v -- CF - C.ρ -> GC begin C.ρ ∘₁ ((γ ∘₁ φ) ∘ʳ F) ↓⟨ ∘₁-resp-≡ʳ {f = C.ρ} {(γ ∘₁ φ) ∘ʳ F} {(γ ∘ʳ F) ∘₁ (φ ∘ʳ F)} (∘ʳ-distr-∘₁ γ φ F) ⟩ C.ρ ∘₁ ((γ ∘ʳ F) ∘₁ (φ ∘ʳ F)) ↑⟨ assoc₁ {X = (φ ∘ʳ F)} {(γ ∘ʳ F)} {C.ρ} ⟩ (C.ρ ∘₁ (γ ∘ʳ F)) ∘₁ (φ ∘ʳ F) ↓⟨ ∘₁-resp-≡ˡ {f = C.ρ ∘₁ (γ ∘ʳ F)} {G ∘ˡ γ ∘₁ B.ρ} {φ ∘ʳ F} (UpTo⇒.square g) ⟩ (G ∘ˡ γ ∘₁ B.ρ) ∘₁ (φ ∘ʳ F) ↓⟨ assoc₁ {X = (φ ∘ʳ F)} {B.ρ} {G ∘ˡ γ} ⟩ (G ∘ˡ γ) ∘₁ (B.ρ ∘₁ (φ ∘ʳ F)) ↓⟨ ∘₁-resp-≡ʳ {f = G ∘ˡ γ} {B.ρ ∘₁ (φ ∘ʳ F)} {(G ∘ˡ φ) ∘₁ A.ρ} (UpTo⇒.square f) ⟩ (G ∘ˡ γ) ∘₁ ((G ∘ˡ φ) ∘₁ A.ρ) ↑⟨ assoc₁ {X = A.ρ} {G ∘ˡ φ} {G ∘ˡ γ} ⟩ ((G ∘ˡ γ) ∘₁ (G ∘ˡ φ)) ∘₁ A.ρ ↑⟨ ∘₁-resp-≡ˡ {f = G ∘ˡ (γ ∘₁ φ)} {(G ∘ˡ γ) ∘₁ (G ∘ˡ φ)} {A.ρ} (∘ˡ-distr-∘₁ G γ φ) ⟩ (G ∘ˡ (γ ∘₁ φ)) ∘₁ A.ρ ∎ } where module A = Endo⇒ A module B = Endo⇒ B module C = Endo⇒ C open SetoidReasoning (natSetoid {F = A.T ∘ F} {G ∘ C.T}) φ : A.T ⇒ B.T φ = UpTo⇒.γ f γ : B.T ⇒ C.T γ = UpTo⇒.γ g -- | Category of morphisms between endofunctors, where the morphisms -- are certain natural transformations (see UpTo⇒). -- This category will be the the setting in which we can talk about -- properties of up-to techniques. EndoMor : Σ Cat₀ (λ C → Functor C C) → Σ Cat₀ (λ C → Functor C C) → Cat₀ EndoMor (C₁ , F) (C₂ , G) = record { Obj = Endo⇒ C₁ F C₂ G ; _⇒_ = UpTo⇒ ; _≡_ = _≡U_ ; id = id-UpTo⇒ ; _∘_ = _•_ ; assoc = λ {_} {_} {_} {_} {f} {g} {h} → record { ≡U-proof = assoc₁ {X = UpTo⇒.γ f} {UpTo⇒.γ g} {UpTo⇒.γ h} } ; identityˡ = λ {_} {_} {f} → record { ≡U-proof = identity₁ˡ {X = UpTo⇒.γ f} } ; identityʳ = λ {_} {_} {f} → record { ≡U-proof = identity₁ʳ {X = UpTo⇒.γ f} } ; equiv = ≡U-equiv ; ∘-resp-≡ = λ {_} {_} {_} {f} {h} {g} {i} f≡h g≡i → record { ≡U-proof = ∘₁-resp-≡ {f = UpTo⇒.γ f} {UpTo⇒.γ h} {UpTo⇒.γ g} {UpTo⇒.γ i} (≡U-proof f≡h) (≡U-proof g≡i) } } -- | The 2-category of endofunctors, their morphisms and UpTo⇒ as 2-cells. -- This is the 2-category of endofunctors defined by Lenisa, Power and Watanabe. {- Endo : 2-Category (suc zero) zero zero zero Endo = record { Obj = Σ Cat₀ (λ C → Functor C C) ; _⇒_ = EndoMor ; id = record { F₀ = λ _ → record { T = id ; ρ = natId } ; F₁ = λ _ → id-UpTo⇒ ; identity = IsEquivalence.refl ≡U-equiv ; homomorphism = λ {_} {_} {_} {_} {F} → {!!} ; F-resp-≡ = {!!} } ; —∘— = {!!} ; assoc = {!!} ; identityˡ = {!!} ; identityʳ = {!!} } -}
algebraic-stack_agda0000_doc_6957
open import Oscar.Prelude open import Oscar.Class.IsDecidable open import Oscar.Data.Fin open import Oscar.Data.Decidable open import Oscar.Data.Proposequality module Oscar.Class.IsDecidable.Fin where instance IsDecidableFin : ∀ {n} → IsDecidable (Fin n) IsDecidableFin .IsDecidable._≟_ ∅ ∅ = ↑ ∅ IsDecidableFin .IsDecidable._≟_ ∅ (↑ _) = ↓ λ () IsDecidableFin .IsDecidable._≟_ (↑ _) ∅ = ↓ λ () IsDecidableFin .IsDecidable._≟_ (↑ x) (↑ y) with x ≟ y … | ↑ ∅ = ↑ ∅ … | ↓ x≢y = ↓ λ {∅ → x≢y ∅}
algebraic-stack_agda0000_doc_6958
------------------------------------------------------------------------------ -- Even predicate ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Even where open import FOTC.Base open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ data Even : D → Set where ezero : Even zero enext : ∀ {n} → Even n → Even (succ₁ (succ₁ n)) Even-ind : (A : D → Set) → A zero → (∀ {n} → A n → A (succ₁ (succ₁ n))) → ∀ {n} → Even n → A n Even-ind A A0 h ezero = A0 Even-ind A A0 h (enext En) = h (Even-ind A A0 h En) Even→N : ∀ {n} → Even n → N n Even→N ezero = nzero Even→N (enext En) = nsucc (nsucc (Even→N En))
algebraic-stack_agda0000_doc_6959
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.LawvereTheories where -- Category of Lawvere Theories open import Level open import Categories.Category.Core using (Category) open import Categories.Functor.Cartesian using (CartesianF) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; associator; sym-associator; unitorˡ; unitorʳ; unitor²; refl; sym; trans; _ⓘₕ_) open import Categories.Theory.Lawvere using (LawvereTheory; LT-Hom; LT-id; LT-∘) LawvereTheories : (ℓ e : Level) → Category (suc (ℓ ⊔ e)) (ℓ ⊔ e) (ℓ ⊔ e) LawvereTheories ℓ e = record { Obj = LawvereTheory ℓ e ; _⇒_ = LT-Hom ; _≈_ = λ H₁ H₂ → cartF.F H₁ ≃ cartF.F H₂ ; id = LT-id ; _∘_ = LT-∘ ; assoc = λ { {f = f} {g} {h} → associator (cartF.F f) (cartF.F g) (cartF.F h) } ; sym-assoc = λ { {f = f} {g} {h} → sym-associator (cartF.F f) (cartF.F g) (cartF.F h) } ; identityˡ = unitorˡ ; identityʳ = unitorʳ ; identity² = unitor² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = _ⓘₕ_ } where open LT-Hom
algebraic-stack_agda0000_doc_6768
------------------------------------------------------------------------------ -- Testing the η-expansion ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Eta5 where postulate D : Set _≈_ : D → D → Set data ∃ (A : D → Set) : Set where _,_ : (t : D) → A t → ∃ A P : D → Set P ws = ∃ (λ zs → ws ≈ zs) {-# ATP definition P #-} postulate foo : ∀ ws → P ws → ∃ (λ zs → ws ≈ zs) {-# ATP prove foo #-}
algebraic-stack_agda0000_doc_6769
module Text.Greek.SBLGNT.Mark where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΚΑΤΑ-ΜΑΡΚΟΝ : List (Word) ΚΑΤΑ-ΜΑΡΚΟΝ = word (Ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Mark.1.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.1" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.1.1" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.1" ∷ word (Κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.1.2" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.2" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.2" ∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ ᾳ ∷ []) "Mark.1.2" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.2" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ῃ ∷ []) "Mark.1.2" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.1.2" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Mark.1.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.2" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.1.2" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.2" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "Mark.1.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.1.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.2" ∷ word (ὃ ∷ ς ∷ []) "Mark.1.2" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.2" ∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.1.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.1.3" ∷ word (β ∷ ο ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.1.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.3" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.3" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.3" ∷ word (Ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.1.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.3" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.1.3" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.3" ∷ word (ε ∷ ὐ ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.3" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.1.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.3" ∷ word (τ ∷ ρ ∷ ί ∷ β ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.3" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.4" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.4" ∷ word (ὁ ∷ []) "Mark.1.4" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.1.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.4" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.4" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.4" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.4" ∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.1.4" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.4" ∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.4" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.5" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Mark.1.5" ∷ word (ἡ ∷ []) "Mark.1.5" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ []) "Mark.1.5" ∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ []) "Mark.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.1.5" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ υ ∷ μ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.5" ∷ word (ὑ ∷ π ∷ []) "Mark.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.5" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.5" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.5" ∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ῃ ∷ []) "Mark.1.5" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῷ ∷ []) "Mark.1.5" ∷ word (ἐ ∷ ξ ∷ ο ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.1.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.5" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.6" ∷ word (ὁ ∷ []) "Mark.1.6" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.6" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.6" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ μ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6" ∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.6" ∷ word (δ ∷ ε ∷ ρ ∷ μ ∷ α ∷ τ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.6" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.6" ∷ word (ὀ ∷ σ ∷ φ ∷ ὺ ∷ ν ∷ []) "Mark.1.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6" ∷ word (ἔ ∷ σ ∷ θ ∷ ω ∷ ν ∷ []) "Mark.1.6" ∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ α ∷ ς ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6" ∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Mark.1.6" ∷ word (ἄ ∷ γ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.7" ∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ σ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.7" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.7" ∷ word (ὁ ∷ []) "Mark.1.7" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.1.7" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.7" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.7" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.7" ∷ word (ο ∷ ὗ ∷ []) "Mark.1.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.1.7" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "Mark.1.7" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.1.7" ∷ word (κ ∷ ύ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.1.7" ∷ word (∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.7" ∷ word (ἱ ∷ μ ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.1.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.7" ∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.7" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.1.8" ∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "Mark.1.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.8" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.1.8" ∷ word (δ ∷ ὲ ∷ []) "Mark.1.8" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.8" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.8" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Mark.1.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.9" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.9" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.9" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.9" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.1.9" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.9" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.1.9" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ ὲ ∷ τ ∷ []) "Mark.1.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.9" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.9" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.1.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.9" ∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.9" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.1.9" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.10" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.10" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.1.10" ∷ word (ἐ ∷ κ ∷ []) "Mark.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.10" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.1.10" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.10" ∷ word (σ ∷ χ ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.10" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.10" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.10" ∷ word (ὡ ∷ ς ∷ []) "Mark.1.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ὰ ∷ ν ∷ []) "Mark.1.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.1.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.11" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.1.11" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.11" ∷ word (ἐ ∷ κ ∷ []) "Mark.1.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.1.11" ∷ word (Σ ∷ ὺ ∷ []) "Mark.1.11" ∷ word (ε ∷ ἶ ∷ []) "Mark.1.11" ∷ word (ὁ ∷ []) "Mark.1.11" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.1.11" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.11" ∷ word (ὁ ∷ []) "Mark.1.11" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.1.11" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.11" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.1.11" ∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ α ∷ []) "Mark.1.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.12" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.12" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.12" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.12" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.1.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.12" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.13" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.13" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.13" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.13" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.1.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.1.13" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.1.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.13" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Mark.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.13" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.13" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13" ∷ word (ο ∷ ἱ ∷ []) "Mark.1.13" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.1.13" ∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.1.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.14" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.14" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.1.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.14" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.14" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.14" ∷ word (ὁ ∷ []) "Mark.1.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.14" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.14" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.14" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.15" ∷ word (Π ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.15" ∷ word (ὁ ∷ []) "Mark.1.15" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15" ∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.15" ∷ word (ἡ ∷ []) "Mark.1.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.1.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.15" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.1.15" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.15" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.15" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Mark.1.15" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.16" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.16" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.1.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.16" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.16" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.16" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.16" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.16" ∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ν ∷ []) "Mark.1.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.16" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.1.16" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.16" ∷ word (ἀ ∷ μ ∷ φ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.16" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.16" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.16" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.1.16" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.16" ∷ word (ἁ ∷ ∙λ ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.17" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.17" ∷ word (ὁ ∷ []) "Mark.1.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.17" ∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.1.17" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.17" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.1.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.17" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.1.17" ∷ word (ἁ ∷ ∙λ ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.17" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.18" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.18" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.18" ∷ word (τ ∷ ὰ ∷ []) "Mark.1.18" ∷ word (δ ∷ ί ∷ κ ∷ τ ∷ υ ∷ α ∷ []) "Mark.1.18" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19" ∷ word (π ∷ ρ ∷ ο ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.1.19" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Mark.1.19" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.19" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.1.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.19" ∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.19" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.1.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.19" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.19" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.19" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.1.19" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.19" ∷ word (τ ∷ ὰ ∷ []) "Mark.1.19" ∷ word (δ ∷ ί ∷ κ ∷ τ ∷ υ ∷ α ∷ []) "Mark.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.20" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.20" ∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.20" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.20" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20" ∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.1.20" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.20" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.20" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.1.20" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ω ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.20" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.21" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.21" ∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ύ ∷ μ ∷ []) "Mark.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.21" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.21" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.21" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.21" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ή ∷ ν ∷ []) "Mark.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.22" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.22" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.1.22" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.22" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.1.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.22" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.22" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.1.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.22" ∷ word (ὡ ∷ ς ∷ []) "Mark.1.22" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.22" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.22" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.1.22" ∷ word (ὡ ∷ ς ∷ []) "Mark.1.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.1.22" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.23" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.23" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.23" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.23" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῇ ∷ []) "Mark.1.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.23" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.1.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.23" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.23" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.1.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.23" ∷ word (ἀ ∷ ν ∷ έ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.23" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.24" ∷ word (Τ ∷ ί ∷ []) "Mark.1.24" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.1.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.24" ∷ word (σ ∷ ο ∷ ί ∷ []) "Mark.1.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.1.24" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ έ ∷ []) "Mark.1.24" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ς ∷ []) "Mark.1.24" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.24" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.24" ∷ word (ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Mark.1.24" ∷ word (σ ∷ ε ∷ []) "Mark.1.24" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.1.24" ∷ word (ε ∷ ἶ ∷ []) "Mark.1.24" ∷ word (ὁ ∷ []) "Mark.1.24" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.1.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.25" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.25" ∷ word (ὁ ∷ []) "Mark.1.25" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.25" ∷ word (Φ ∷ ι ∷ μ ∷ ώ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.1.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.25" ∷ word (ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.1.25" ∷ word (ἐ ∷ ξ ∷ []) "Mark.1.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.26" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ν ∷ []) "Mark.1.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.26" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.26" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.1.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.26" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.26" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.1.26" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.1.26" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.26" ∷ word (ἐ ∷ ξ ∷ []) "Mark.1.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27" ∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.27" ∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.27" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.1.27" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.27" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.27" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.27" ∷ word (Τ ∷ ί ∷ []) "Mark.1.27" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.1.27" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.1.27" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ή ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.1.27" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.27" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ σ ∷ ι ∷ []) "Mark.1.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.27" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.27" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.28" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.28" ∷ word (ἡ ∷ []) "Mark.1.28" ∷ word (ἀ ∷ κ ∷ ο ∷ ὴ ∷ []) "Mark.1.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.28" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.28" ∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.1.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.28" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.1.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.28" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ χ ∷ ω ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.28" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.28" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.28" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.29" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.29" ∷ word (ἐ ∷ κ ∷ []) "Mark.1.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.29" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "Mark.1.29" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.29" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.29" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.29" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.29" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.29" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.29" ∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ ο ∷ υ ∷ []) "Mark.1.29" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.29" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.1.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.29" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.1.29" ∷ word (ἡ ∷ []) "Mark.1.30" ∷ word (δ ∷ ὲ ∷ []) "Mark.1.30" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ε ∷ ρ ∷ ὰ ∷ []) "Mark.1.30" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.30" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Mark.1.30" ∷ word (π ∷ υ ∷ ρ ∷ έ ∷ σ ∷ σ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.1.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.30" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.30" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.1.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.1.31" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.1.31" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.1.31" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.1.31" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.31" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.1.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.31" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.1.31" ∷ word (ὁ ∷ []) "Mark.1.31" ∷ word (π ∷ υ ∷ ρ ∷ ε ∷ τ ∷ ό ∷ ς ∷ []) "Mark.1.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31" ∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ε ∷ ι ∷ []) "Mark.1.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.31" ∷ word (Ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.1.32" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.32" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.1.32" ∷ word (ἔ ∷ δ ∷ υ ∷ []) "Mark.1.32" ∷ word (ὁ ∷ []) "Mark.1.32" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.1.32" ∷ word (ἔ ∷ φ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.32" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.32" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.32" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.32" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.1.32" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.32" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.32" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.33" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Mark.1.33" ∷ word (ἡ ∷ []) "Mark.1.33" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Mark.1.33" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ η ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.1.33" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.33" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.33" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.1.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.34" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.34" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.1.34" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.34" ∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.34" ∷ word (ν ∷ ό ∷ σ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.34" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.34" ∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.1.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.1.34" ∷ word (ἤ ∷ φ ∷ ι ∷ ε ∷ ν ∷ []) "Mark.1.34" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.34" ∷ word (τ ∷ ὰ ∷ []) "Mark.1.34" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.34" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.34" ∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.34" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.35" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.1.35" ∷ word (ἔ ∷ ν ∷ ν ∷ υ ∷ χ ∷ α ∷ []) "Mark.1.35" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.35" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.1.35" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.35" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.35" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.35" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.1.35" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.1.35" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.1.35" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.36" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ δ ∷ ί ∷ ω ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.36" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.1.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.36" ∷ word (ο ∷ ἱ ∷ []) "Mark.1.36" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.1.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.37" ∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.37" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.37" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.37" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.37" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.37" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.1.37" ∷ word (σ ∷ ε ∷ []) "Mark.1.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.38" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.38" ∷ word (Ἄ ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.1.38" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.1.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.38" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.38" ∷ word (ἐ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Mark.1.38" ∷ word (κ ∷ ω ∷ μ ∷ ο ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.1.38" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.1.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.38" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.1.38" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ ω ∷ []) "Mark.1.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.38" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.1.38" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.38" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.39" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.39" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.39" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.39" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.39" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὰ ∷ ς ∷ []) "Mark.1.39" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.39" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.39" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.1.39" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.39" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.39" ∷ word (τ ∷ ὰ ∷ []) "Mark.1.39" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.39" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.1.39" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.40" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.40" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.40" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.40" ∷ word (∙λ ∷ ε ∷ π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.40" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.1.40" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.40" ∷ word (γ ∷ ο ∷ ν ∷ υ ∷ π ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.40" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.40" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.40" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.40" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.1.40" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "Mark.1.40" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ α ∷ ί ∷ []) "Mark.1.40" ∷ word (μ ∷ ε ∷ []) "Mark.1.40" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.41" ∷ word (ὀ ∷ ρ ∷ γ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.1.41" ∷ word (ἐ ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Mark.1.41" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.41" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.1.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.41" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.1.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.41" ∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.1.41" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.1.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.42" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.42" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.42" ∷ word (ἀ ∷ π ∷ []) "Mark.1.42" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.42" ∷ word (ἡ ∷ []) "Mark.1.42" ∷ word (∙λ ∷ έ ∷ π ∷ ρ ∷ α ∷ []) "Mark.1.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.42" ∷ word (ἐ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.1.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.43" ∷ word (ἐ ∷ μ ∷ β ∷ ρ ∷ ι ∷ μ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.43" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.43" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.43" ∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.1.43" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.44" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.44" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.44" ∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Mark.1.44" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.1.44" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.1.44" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ ς ∷ []) "Mark.1.44" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.44" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.1.44" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.44" ∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ ο ∷ ν ∷ []) "Mark.1.44" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.44" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.1.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.44" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ []) "Mark.1.44" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.44" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.44" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.1.44" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.44" ∷ word (ἃ ∷ []) "Mark.1.44" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.44" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.1.44" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.44" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.44" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.44" ∷ word (ὁ ∷ []) "Mark.1.45" ∷ word (δ ∷ ὲ ∷ []) "Mark.1.45" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.1.45" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.1.45" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.1.45" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.45" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ η ∷ μ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.1.45" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.1.45" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.1.45" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.1.45" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.1.45" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ῶ ∷ ς ∷ []) "Mark.1.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.45" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.1.45" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.45" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.45" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.1.45" ∷ word (ἐ ∷ π ∷ []) "Mark.1.45" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.45" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.45" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.45" ∷ word (ἤ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.45" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.45" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.45" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.1" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.2.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.2.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.1" ∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ὺ ∷ μ ∷ []) "Mark.2.1" ∷ word (δ ∷ ι ∷ []) "Mark.2.1" ∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.2.1" ∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ θ ∷ η ∷ []) "Mark.2.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.1" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "Mark.2.1" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.2.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.2" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.2" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.2" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.2.2" ∷ word (χ ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.2" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.2.2" ∷ word (τ ∷ ὰ ∷ []) "Mark.2.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.2" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.2" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.2.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.3" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.3" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "Mark.2.3" ∷ word (α ∷ ἰ ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.3" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.2.3" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.4" ∷ word (μ ∷ ὴ ∷ []) "Mark.2.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ι ∷ []) "Mark.2.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.4" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.2.4" ∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ έ ∷ γ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.4" ∷ word (σ ∷ τ ∷ έ ∷ γ ∷ η ∷ ν ∷ []) "Mark.2.4" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.4" ∷ word (ἦ ∷ ν ∷ []) "Mark.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.4" ∷ word (χ ∷ α ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ []) "Mark.2.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.4" ∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.4" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.4" ∷ word (ὁ ∷ []) "Mark.2.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Mark.2.4" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Mark.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.5" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.2.5" ∷ word (ὁ ∷ []) "Mark.2.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.5" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.5" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.5" ∷ word (Τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.5" ∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.2.5" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.5" ∷ word (α ∷ ἱ ∷ []) "Mark.2.5" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Mark.2.5" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.6" ∷ word (δ ∷ έ ∷ []) "Mark.2.6" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.2.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.6" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.2.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.2.6" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.6" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.6" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.6" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.6" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Mark.2.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.6" ∷ word (Τ ∷ ί ∷ []) "Mark.2.7" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.2.7" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.7" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.2.7" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ []) "Mark.2.7" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.2.7" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.7" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.7" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.2.7" ∷ word (ε ∷ ἰ ∷ []) "Mark.2.7" ∷ word (μ ∷ ὴ ∷ []) "Mark.2.7" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.2.7" ∷ word (ὁ ∷ []) "Mark.2.7" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.8" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.2.8" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.8" ∷ word (ὁ ∷ []) "Mark.2.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.8" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.8" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.8" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.8" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.8" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.8" ∷ word (Τ ∷ ί ∷ []) "Mark.2.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.2.8" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.2.8" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.8" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.8" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Mark.2.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.2.8" ∷ word (τ ∷ ί ∷ []) "Mark.2.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.9" ∷ word (ε ∷ ὐ ∷ κ ∷ ο ∷ π ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.9" ∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.9" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.9" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.9" ∷ word (Ἀ ∷ φ ∷ ί ∷ ε ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.2.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.9" ∷ word (α ∷ ἱ ∷ []) "Mark.2.9" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Mark.2.9" ∷ word (ἢ ∷ []) "Mark.2.9" ∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.9" ∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.9" ∷ word (ἆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.9" ∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.9" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Mark.2.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.2.10" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.10" ∷ word (ε ∷ ἰ ∷ δ ∷ ῆ ∷ τ ∷ ε ∷ []) "Mark.2.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.10" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.2.10" ∷ word (ὁ ∷ []) "Mark.2.10" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.2.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.10" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.2.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.2.10" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.10" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.2.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.10" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.10" ∷ word (Σ ∷ ο ∷ ὶ ∷ []) "Mark.2.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.2.11" ∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.2.11" ∷ word (ἆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.11" ∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.11" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.11" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.2.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.11" ∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.2.11" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12" ∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.2.12" ∷ word (ἄ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.2.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.12" ∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.12" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.12" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.2.12" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.12" ∷ word (ἐ ∷ ξ ∷ ί ∷ σ ∷ τ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.12" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Mark.2.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.2.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.12" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.12" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.2.12" ∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.2.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.13" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.13" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.2.13" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.2.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.13" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.13" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.2.13" ∷ word (ὁ ∷ []) "Mark.2.13" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.2.13" ∷ word (ἤ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.13" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.2.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.2.14" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.2.14" ∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ ν ∷ []) "Mark.2.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.14" ∷ word (Ἁ ∷ ∙λ ∷ φ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.2.14" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.2.14" ∷ word (τ ∷ ε ∷ ∙λ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.14" ∷ word (Ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.2.14" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.2.14" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.15" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.15" ∷ word (τ ∷ ῇ ∷ []) "Mark.2.15" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15" ∷ word (τ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ έ ∷ κ ∷ ε ∷ ι ∷ ν ∷ τ ∷ ο ∷ []) "Mark.2.15" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.15" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.15" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.2.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.16" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.2.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.2.16" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.16" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Mark.2.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.2.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16" ∷ word (τ ∷ ε ∷ ∙λ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.16" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.16" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.16" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.2.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.2.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (τ ∷ ε ∷ ∙λ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Mark.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.2.17" ∷ word (ὁ ∷ []) "Mark.2.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.17" ∷ word (Ο ∷ ὐ ∷ []) "Mark.2.17" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.17" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.17" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.17" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.17" ∷ word (ἰ ∷ α ∷ τ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.2.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.2.17" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.17" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.2.17" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.17" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.2.17" ∷ word (κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Mark.2.17" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.2.17" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.2.18" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.18" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.2.18" ∷ word (τ ∷ ί ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.18" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.2.18" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.18" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.2.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.2.18" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.19" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.2.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.19" ∷ word (ὁ ∷ []) "Mark.2.19" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.2.19" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.19" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.19" ∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.2.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.19" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.19" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.19" ∷ word (ᾧ ∷ []) "Mark.2.19" ∷ word (ὁ ∷ []) "Mark.2.19" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.2.19" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.19" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.19" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.2.19" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.19" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.19" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.2.19" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.19" ∷ word (ο ∷ ὐ ∷ []) "Mark.2.19" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.19" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.19" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.20" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.2.20" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.2.20" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ θ ∷ ῇ ∷ []) "Mark.2.20" ∷ word (ἀ ∷ π ∷ []) "Mark.2.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.20" ∷ word (ὁ ∷ []) "Mark.2.20" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.20" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.2.20" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.20" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.20" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.2.20" ∷ word (τ ∷ ῇ ∷ []) "Mark.2.20" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.2.20" ∷ word (Ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.2.21" ∷ word (ἐ ∷ π ∷ ί ∷ β ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Mark.2.21" ∷ word (ῥ ∷ ά ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.21" ∷ word (ἀ ∷ γ ∷ ν ∷ ά ∷ φ ∷ ο ∷ υ ∷ []) "Mark.2.21" ∷ word (ἐ ∷ π ∷ ι ∷ ρ ∷ ά ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Mark.2.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.21" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.2.21" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ό ∷ ν ∷ []) "Mark.2.21" ∷ word (ε ∷ ἰ ∷ []) "Mark.2.21" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.21" ∷ word (μ ∷ ή ∷ []) "Mark.2.21" ∷ word (α ∷ ἴ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.2.21" ∷ word (τ ∷ ὸ ∷ []) "Mark.2.21" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "Mark.2.21" ∷ word (ἀ ∷ π ∷ []) "Mark.2.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.21" ∷ word (τ ∷ ὸ ∷ []) "Mark.2.21" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.2.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.21" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ []) "Mark.2.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.21" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.21" ∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "Mark.2.21" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.2.22" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.2.22" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.22" ∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "Mark.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.22" ∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22" ∷ word (ε ∷ ἰ ∷ []) "Mark.2.22" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.22" ∷ word (μ ∷ ή ∷ []) "Mark.2.22" ∷ word (ῥ ∷ ή ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.2.22" ∷ word (ὁ ∷ []) "Mark.2.22" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22" ∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22" ∷ word (ὁ ∷ []) "Mark.2.22" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.22" ∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ ∙λ ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.22" ∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ί ∷ []) "Mark.2.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.2.22" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.22" ∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "Mark.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.22" ∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.23" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.23" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.23" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.23" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.23" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.23" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.23" ∷ word (σ ∷ π ∷ ο ∷ ρ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.23" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.23" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.23" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.2.23" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.2.23" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.23" ∷ word (τ ∷ ί ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.23" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.23" ∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ α ∷ ς ∷ []) "Mark.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.24" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.24" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.2.24" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.24" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.2.24" ∷ word (τ ∷ ί ∷ []) "Mark.2.24" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.24" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.24" ∷ word (ὃ ∷ []) "Mark.2.24" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.24" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.25" ∷ word (Ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.2.25" ∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.2.25" ∷ word (τ ∷ ί ∷ []) "Mark.2.25" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.25" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.2.25" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.2.25" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.25" ∷ word (ἔ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.2.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.25" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.2.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.25" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.25" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.2.26" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.26" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.2.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.26" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.2.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.26" ∷ word (Ἀ ∷ β ∷ ι ∷ α ∷ θ ∷ ὰ ∷ ρ ∷ []) "Mark.2.26" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.26" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.2.26" ∷ word (π ∷ ρ ∷ ο ∷ θ ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.2.26" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Mark.2.26" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.2.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.26" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.26" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.26" ∷ word (ε ∷ ἰ ∷ []) "Mark.2.26" ∷ word (μ ∷ ὴ ∷ []) "Mark.2.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.26" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.26" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.2.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.26" ∷ word (ο ∷ ὖ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.27" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.2.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.27" ∷ word (Τ ∷ ὸ ∷ []) "Mark.2.27" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.27" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.27" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.2.27" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.27" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.2.27" ∷ word (ὁ ∷ []) "Mark.2.27" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.2.27" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.27" ∷ word (τ ∷ ὸ ∷ []) "Mark.2.27" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.27" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.28" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "Mark.2.28" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.28" ∷ word (ὁ ∷ []) "Mark.2.28" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.2.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.28" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.28" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.2.28" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.1" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.3.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.3.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.1" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ή ∷ ν ∷ []) "Mark.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.1" ∷ word (ἦ ∷ ν ∷ []) "Mark.3.1" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.3.1" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.3.1" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.3.1" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.3.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.1" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.2" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.2" ∷ word (ε ∷ ἰ ∷ []) "Mark.3.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.2" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.2" ∷ word (θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.2" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.2" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.3" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.3" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.3.3" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.3" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.3" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.3.3" ∷ word (ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ []) "Mark.3.3" ∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.3.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.3" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.3" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.4" ∷ word (Ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.4" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.4" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4" ∷ word (ἢ ∷ []) "Mark.3.4" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.3.4" ∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4" ∷ word (ἢ ∷ []) "Mark.3.4" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.4" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.4" ∷ word (δ ∷ ὲ ∷ []) "Mark.3.4" ∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.5" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.3.5" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Mark.3.5" ∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.3.5" ∷ word (τ ∷ ῇ ∷ []) "Mark.3.5" ∷ word (π ∷ ω ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.3.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.5" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.5" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.3.5" ∷ word (Ἔ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Mark.3.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.5" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5" ∷ word (ἐ ∷ ξ ∷ έ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Mark.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ τ ∷ ε ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Mark.3.5" ∷ word (ἡ ∷ []) "Mark.3.5" ∷ word (χ ∷ ε ∷ ὶ ∷ ρ ∷ []) "Mark.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.6" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.6" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.6" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.3.6" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.3.6" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.3.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.6" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.3.6" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.6" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.6" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.3.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.6" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "Mark.3.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.6" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.7" ∷ word (ὁ ∷ []) "Mark.3.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.3.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.3.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.7" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.3.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.7" ∷ word (ἀ ∷ ν ∷ ε ∷ χ ∷ ώ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.7" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.7" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Mark.3.7" ∷ word (π ∷ ∙λ ∷ ῆ ∷ θ ∷ ο ∷ ς ∷ []) "Mark.3.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.7" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.7" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.7" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.8" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.8" ∷ word (Ἰ ∷ δ ∷ ο ∷ υ ∷ μ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.3.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.8" ∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ο ∷ υ ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.8" ∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (Σ ∷ ι ∷ δ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.3.8" ∷ word (π ∷ ∙λ ∷ ῆ ∷ θ ∷ ο ∷ ς ∷ []) "Mark.3.8" ∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ []) "Mark.3.8" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.8" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.3.8" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ ε ∷ ι ∷ []) "Mark.3.8" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.8" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.9" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.3.9" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.9" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.3.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.9" ∷ word (π ∷ ∙λ ∷ ο ∷ ι ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ρ ∷ ῇ ∷ []) "Mark.3.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.3.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.9" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.3.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.9" ∷ word (μ ∷ ὴ ∷ []) "Mark.3.9" ∷ word (θ ∷ ∙λ ∷ ί ∷ β ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.9" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.10" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.10" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.3.10" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.10" ∷ word (ἅ ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.10" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Mark.3.10" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.3.10" ∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ α ∷ ς ∷ []) "Mark.3.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.11" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.11" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.11" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.11" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Mark.3.11" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.3.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.11" ∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ι ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.11" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.3.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.3.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.11" ∷ word (Σ ∷ ὺ ∷ []) "Mark.3.11" ∷ word (ε ∷ ἶ ∷ []) "Mark.3.11" ∷ word (ὁ ∷ []) "Mark.3.11" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.3.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.3.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.12" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.3.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.12" ∷ word (μ ∷ ὴ ∷ []) "Mark.3.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.12" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.3.12" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.13" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Mark.3.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.13" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.13" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.13" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.3.13" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.13" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.14" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.14" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.3.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.14" ∷ word (ὦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.14" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.3.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.14" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Mark.3.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.14" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.15" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.15" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.15" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.15" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.15" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.3.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.16" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.16" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.16" ∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.16" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.3.16" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.16" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ι ∷ []) "Mark.3.16" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.3.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.17" ∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.3.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.17" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.17" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17" ∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.17" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.17" ∷ word (Β ∷ ο ∷ α ∷ ν ∷ η ∷ ρ ∷ γ ∷ έ ∷ ς ∷ []) "Mark.3.17" ∷ word (ὅ ∷ []) "Mark.3.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.17" ∷ word (Υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.3.17" ∷ word (Β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Φ ∷ ί ∷ ∙λ ∷ ι ∷ π ∷ π ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Β ∷ α ∷ ρ ∷ θ ∷ ο ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Μ ∷ α ∷ θ ∷ θ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Θ ∷ ω ∷ μ ∷ ᾶ ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.18" ∷ word (Ἁ ∷ ∙λ ∷ φ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Θ ∷ α ∷ δ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.3.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.18" ∷ word (Κ ∷ α ∷ ν ∷ α ∷ ν ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.19" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ν ∷ []) "Mark.3.19" ∷ word (Ἰ ∷ σ ∷ κ ∷ α ∷ ρ ∷ ι ∷ ώ ∷ θ ∷ []) "Mark.3.19" ∷ word (ὃ ∷ ς ∷ []) "Mark.3.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.19" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.19" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.19" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.20" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.20" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.20" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.20" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.3.20" ∷ word (ὁ ∷ []) "Mark.3.20" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.20" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.3.20" ∷ word (μ ∷ ὴ ∷ []) "Mark.3.20" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.20" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.3.20" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.20" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.21" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.21" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.21" ∷ word (π ∷ α ∷ ρ ∷ []) "Mark.3.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.21" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.21" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.21" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.21" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.21" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.21" ∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.3.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.22" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.3.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.22" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.22" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.3.22" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.22" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.22" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.22" ∷ word (Β ∷ ε ∷ ε ∷ ∙λ ∷ ζ ∷ ε ∷ β ∷ ο ∷ ὺ ∷ ∙λ ∷ []) "Mark.3.22" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.22" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.22" ∷ word (ἐ ∷ ν ∷ []) "Mark.3.22" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.22" ∷ word (ἄ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.3.22" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.22" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Mark.3.22" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.3.22" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.22" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.3.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.23" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.3.23" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.3.23" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.3.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.23" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.3.23" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.23" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.3.23" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ν ∷ []) "Mark.3.23" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.24" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.3.24" ∷ word (ἐ ∷ φ ∷ []) "Mark.3.24" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.3.24" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Mark.3.24" ∷ word (ο ∷ ὐ ∷ []) "Mark.3.24" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.24" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.24" ∷ word (ἡ ∷ []) "Mark.3.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.3.24" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.3.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.25" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.25" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ []) "Mark.3.25" ∷ word (ἐ ∷ φ ∷ []) "Mark.3.25" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.3.25" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Mark.3.25" ∷ word (ο ∷ ὐ ∷ []) "Mark.3.25" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.25" ∷ word (ἡ ∷ []) "Mark.3.25" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ []) "Mark.3.25" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.3.25" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.26" ∷ word (ε ∷ ἰ ∷ []) "Mark.3.26" ∷ word (ὁ ∷ []) "Mark.3.26" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.3.26" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.3.26" ∷ word (ἐ ∷ φ ∷ []) "Mark.3.26" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.26" ∷ word (ἐ ∷ μ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.3.26" ∷ word (ο ∷ ὐ ∷ []) "Mark.3.26" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.26" ∷ word (σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.26" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.3.27" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.3.27" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.27" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.27" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.3.27" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.3.27" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.27" ∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Mark.3.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27" ∷ word (δ ∷ ι ∷ α ∷ ρ ∷ π ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.27" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.27" ∷ word (μ ∷ ὴ ∷ []) "Mark.3.27" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.27" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.3.27" ∷ word (δ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.27" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.3.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.27" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27" ∷ word (δ ∷ ι ∷ α ∷ ρ ∷ π ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.27" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.3.28" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.3.28" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.3.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.3.28" ∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.28" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.28" ∷ word (υ ∷ ἱ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.28" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.3.28" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.28" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.28" ∷ word (α ∷ ἱ ∷ []) "Mark.3.28" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "Mark.3.28" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.3.28" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.28" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.28" ∷ word (ὃ ∷ ς ∷ []) "Mark.3.29" ∷ word (δ ∷ []) "Mark.3.29" ∷ word (ἂ ∷ ν ∷ []) "Mark.3.29" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.29" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.29" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.3.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.29" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.29" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.3.29" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.29" ∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.29" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.29" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.29" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.3.29" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.29" ∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ό ∷ ς ∷ []) "Mark.3.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.29" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.29" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.3.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.30" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.30" ∷ word (Π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.3.30" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.30" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.30" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.31" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.31" ∷ word (ἡ ∷ []) "Mark.3.31" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.31" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Mark.3.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.31" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.3.31" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.31" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.3.31" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.31" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.31" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.31" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ η ∷ τ ∷ ο ∷ []) "Mark.3.32" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.32" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.32" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.3.32" ∷ word (ἡ ∷ []) "Mark.3.32" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.32" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.3.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.32" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.32" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.3.32" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.3.32" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.3.32" ∷ word (σ ∷ ε ∷ []) "Mark.3.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.33" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.3.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.33" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.3.33" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.33" ∷ word (ἡ ∷ []) "Mark.3.33" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.33" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.33" ∷ word (ἢ ∷ []) "Mark.3.33" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.33" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.33" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.34" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.34" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.34" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.34" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.34" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.3.34" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.3.34" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.34" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.3.34" ∷ word (ἡ ∷ []) "Mark.3.34" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.34" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.34" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.34" ∷ word (ὃ ∷ ς ∷ []) "Mark.3.35" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.35" ∷ word (ἂ ∷ ν ∷ []) "Mark.3.35" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.35" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Mark.3.35" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.35" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.3.35" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.3.35" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ς ∷ []) "Mark.3.35" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.35" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ []) "Mark.3.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.35" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.3.35" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.4.1" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.4.1" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.1" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.1" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.1" ∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.4.1" ∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.4.1" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.1" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.1" ∷ word (ἐ ∷ μ ∷ β ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.1" ∷ word (κ ∷ α ∷ θ ∷ ῆ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.1" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.1" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.4.1" ∷ word (ὁ ∷ []) "Mark.4.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.4.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.1" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.1" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.1" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.2" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.4.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.4.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.2" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.2" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.2" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.4.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.2" ∷ word (Ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.3" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.4.3" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.4.3" ∷ word (ὁ ∷ []) "Mark.4.3" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.4.3" ∷ word (σ ∷ π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.4" ∷ word (τ ∷ ῷ ∷ []) "Mark.4.4" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.4" ∷ word (ὃ ∷ []) "Mark.4.4" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.4.4" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.4" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.4" ∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.4.4" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.4" ∷ word (π ∷ ε ∷ τ ∷ ε ∷ ι ∷ ν ∷ ὰ ∷ []) "Mark.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.4" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.5" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Mark.4.5" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.5" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.5" ∷ word (π ∷ ε ∷ τ ∷ ρ ∷ ῶ ∷ δ ∷ ε ∷ ς ∷ []) "Mark.4.5" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.4.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.5" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.4.5" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.5" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.5" ∷ word (ἐ ∷ ξ ∷ α ∷ ν ∷ έ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.5" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.5" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.5" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.5" ∷ word (β ∷ ά ∷ θ ∷ ο ∷ ς ∷ []) "Mark.4.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.6" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.4.6" ∷ word (ἀ ∷ ν ∷ έ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.6" ∷ word (ὁ ∷ []) "Mark.4.6" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.4.6" ∷ word (ἐ ∷ κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.6" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.6" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.6" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.6" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ ν ∷ []) "Mark.4.6" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Mark.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Mark.4.7" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.7" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.7" ∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ α ∷ ς ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.7" ∷ word (α ∷ ἱ ∷ []) "Mark.4.7" ∷ word (ἄ ∷ κ ∷ α ∷ ν ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ π ∷ ν ∷ ι ∷ ξ ∷ α ∷ ν ∷ []) "Mark.4.7" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.4.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.7" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.4.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.8" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.4.8" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (α ∷ ὐ ∷ ξ ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἔ ∷ φ ∷ ε ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.4.8" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.8" ∷ word (τ ∷ ρ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.8" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.8" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.9" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.9" ∷ word (Ὃ ∷ ς ∷ []) "Mark.4.9" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.9" ∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.4.9" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.9" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.4.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.10" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.4.10" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.10" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.4.10" ∷ word (μ ∷ ό ∷ ν ∷ α ∷ ς ∷ []) "Mark.4.10" ∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.10" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.10" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.4.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.10" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.4.10" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ά ∷ ς ∷ []) "Mark.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.11" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.11" ∷ word (Ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.11" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.11" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.11" ∷ word (δ ∷ έ ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.11" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.4.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.4.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.4.11" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.11" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.4.11" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.11" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.11" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.12" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.12" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ []) "Mark.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.12" ∷ word (ἴ ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.12" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ σ ∷ ι ∷ []) "Mark.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.12" ∷ word (σ ∷ υ ∷ ν ∷ ι ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12" ∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.4.12" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12" ∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.4.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.13" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.4.13" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.4.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.4.13" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.4.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.13" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.4.13" ∷ word (π ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.4.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.4.13" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.4.13" ∷ word (ὁ ∷ []) "Mark.4.14" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.4.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.14" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.14" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.4.14" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.4.15" ∷ word (δ ∷ έ ∷ []) "Mark.4.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.15" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.15" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.15" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.4.15" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.4.15" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.15" ∷ word (ὁ ∷ []) "Mark.4.15" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Mark.4.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.15" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.15" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.15" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.15" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.15" ∷ word (ὁ ∷ []) "Mark.4.15" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.4.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.15" ∷ word (α ∷ ἴ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.4.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.15" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.15" ∷ word (ἐ ∷ σ ∷ π ∷ α ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.4.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.4.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.16" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.4.16" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Mark.4.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.16" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.16" ∷ word (π ∷ ε ∷ τ ∷ ρ ∷ ώ ∷ δ ∷ η ∷ []) "Mark.4.16" ∷ word (σ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.4.16" ∷ word (ο ∷ ἳ ∷ []) "Mark.4.16" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.16" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.16" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.16" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.4.16" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Mark.4.16" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.17" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.17" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ ν ∷ []) "Mark.4.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.17" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.4.17" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ί ∷ []) "Mark.4.17" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.17" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.17" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.4.17" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.4.17" ∷ word (ἢ ∷ []) "Mark.4.17" ∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.4.17" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.17" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.17" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.18" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.4.18" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.4.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.18" ∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ α ∷ ς ∷ []) "Mark.4.18" ∷ word (σ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.4.18" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.4.18" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.18" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.18" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19" ∷ word (α ∷ ἱ ∷ []) "Mark.4.19" ∷ word (μ ∷ έ ∷ ρ ∷ ι ∷ μ ∷ ν ∷ α ∷ ι ∷ []) "Mark.4.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.19" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19" ∷ word (ἡ ∷ []) "Mark.4.19" ∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ η ∷ []) "Mark.4.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.19" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19" ∷ word (α ∷ ἱ ∷ []) "Mark.4.19" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.4.19" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.19" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "Mark.4.19" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "Mark.4.19" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Mark.4.19" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ν ∷ ί ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19" ∷ word (ἄ ∷ κ ∷ α ∷ ρ ∷ π ∷ ο ∷ ς ∷ []) "Mark.4.19" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ί ∷ []) "Mark.4.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.20" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.4.20" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.20" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.4.20" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.20" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.20" ∷ word (τ ∷ ρ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.20" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.20" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.21" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.21" ∷ word (Μ ∷ ή ∷ τ ∷ ι ∷ []) "Mark.4.21" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.21" ∷ word (ὁ ∷ []) "Mark.4.21" ∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.4.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.21" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.21" ∷ word (μ ∷ ό ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.21" ∷ word (τ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.21" ∷ word (ἢ ∷ []) "Mark.4.21" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.21" ∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.4.21" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.4.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.21" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.21" ∷ word (τ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.21" ∷ word (ο ∷ ὐ ∷ []) "Mark.4.22" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.4.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.22" ∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.22" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.4.22" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.22" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.4.22" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.4.22" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.22" ∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ρ ∷ υ ∷ φ ∷ ο ∷ ν ∷ []) "Mark.4.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.4.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.22" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.4.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.22" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.4.22" ∷ word (ε ∷ ἴ ∷ []) "Mark.4.23" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.4.23" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.23" ∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.4.23" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.23" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.4.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.24" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.24" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.24" ∷ word (τ ∷ ί ∷ []) "Mark.4.24" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.24" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.24" ∷ word (ᾧ ∷ []) "Mark.4.24" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.4.24" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.4.24" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.24" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.24" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ε ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.24" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.24" ∷ word (ὃ ∷ ς ∷ []) "Mark.4.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.4.25" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25" ∷ word (δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.25" ∷ word (ὃ ∷ ς ∷ []) "Mark.4.25" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.25" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.25" ∷ word (ὃ ∷ []) "Mark.4.25" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25" ∷ word (ἀ ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.25" ∷ word (ἀ ∷ π ∷ []) "Mark.4.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.25" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.26" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.26" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.4.26" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.4.26" ∷ word (ἡ ∷ []) "Mark.4.26" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.4.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.26" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.26" ∷ word (ὡ ∷ ς ∷ []) "Mark.4.26" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.4.26" ∷ word (β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.4.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.26" ∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.4.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.26" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ῃ ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.27" ∷ word (ν ∷ ύ ∷ κ ∷ τ ∷ α ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (ὁ ∷ []) "Mark.4.27" ∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.4.27" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ τ ∷ ᾷ ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (μ ∷ η ∷ κ ∷ ύ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.27" ∷ word (ὡ ∷ ς ∷ []) "Mark.4.27" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.27" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.4.27" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.4.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ η ∷ []) "Mark.4.28" ∷ word (ἡ ∷ []) "Mark.4.28" ∷ word (γ ∷ ῆ ∷ []) "Mark.4.28" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.4.28" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.28" ∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ ν ∷ []) "Mark.4.28" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.28" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ η ∷ ς ∷ []) "Mark.4.28" ∷ word (σ ∷ ῖ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.28" ∷ word (τ ∷ ῷ ∷ []) "Mark.4.28" ∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ ϊ ∷ []) "Mark.4.28" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.29" ∷ word (δ ∷ ὲ ∷ []) "Mark.4.29" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.4.29" ∷ word (ὁ ∷ []) "Mark.4.29" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ό ∷ ς ∷ []) "Mark.4.29" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.29" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.29" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Mark.4.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.29" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.29" ∷ word (ὁ ∷ []) "Mark.4.29" ∷ word (θ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ό ∷ ς ∷ []) "Mark.4.29" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.30" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.30" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.4.30" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.30" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.30" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.30" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.30" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.30" ∷ word (ἢ ∷ []) "Mark.4.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.30" ∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "Mark.4.30" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.4.30" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "Mark.4.30" ∷ word (θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.30" ∷ word (ὡ ∷ ς ∷ []) "Mark.4.31" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ῳ ∷ []) "Mark.4.31" ∷ word (σ ∷ ι ∷ ν ∷ ά ∷ π ∷ ε ∷ ω ∷ ς ∷ []) "Mark.4.31" ∷ word (ὃ ∷ ς ∷ []) "Mark.4.31" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.31" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ ῇ ∷ []) "Mark.4.31" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.31" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.31" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.31" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.4.31" ∷ word (ὂ ∷ ν ∷ []) "Mark.4.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.31" ∷ word (σ ∷ π ∷ ε ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.31" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.31" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.31" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.32" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ ῇ ∷ []) "Mark.4.32" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Mark.4.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.32" ∷ word (μ ∷ ε ∷ ῖ ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.4.32" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.32" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.32" ∷ word (∙λ ∷ α ∷ χ ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "Mark.4.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Mark.4.32" ∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.32" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.32" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.32" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.32" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.32" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.32" ∷ word (σ ∷ κ ∷ ι ∷ ὰ ∷ ν ∷ []) "Mark.4.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.32" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.32" ∷ word (π ∷ ε ∷ τ ∷ ε ∷ ι ∷ ν ∷ ὰ ∷ []) "Mark.4.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.32" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.4.32" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.4.32" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.33" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Mark.4.33" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.33" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.33" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.33" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.33" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.33" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.4.33" ∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.4.33" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.33" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Mark.4.34" ∷ word (δ ∷ ὲ ∷ []) "Mark.4.34" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.4.34" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.34" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.34" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.4.34" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.34" ∷ word (δ ∷ ὲ ∷ []) "Mark.4.34" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.34" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.4.34" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.34" ∷ word (ἐ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.4.34" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.4.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.35" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.35" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.4.35" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.35" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.4.35" ∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.4.35" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.4.35" ∷ word (Δ ∷ ι ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.35" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.35" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.35" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.4.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.36" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.36" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.36" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.4.36" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.36" ∷ word (ὡ ∷ ς ∷ []) "Mark.4.36" ∷ word (ἦ ∷ ν ∷ []) "Mark.4.36" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.4.36" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.4.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.36" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.4.36" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ α ∷ []) "Mark.4.36" ∷ word (ἦ ∷ ν ∷ []) "Mark.4.36" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.4.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.37" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.37" ∷ word (∙λ ∷ α ∷ ῖ ∷ ∙λ ∷ α ∷ ψ ∷ []) "Mark.4.37" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.4.37" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ []) "Mark.4.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.37" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.37" ∷ word (κ ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.4.37" ∷ word (ἐ ∷ π ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.37" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.37" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.37" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.37" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.37" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.4.37" ∷ word (γ ∷ ε ∷ μ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.37" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.37" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.4.38" ∷ word (ἦ ∷ ν ∷ []) "Mark.4.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.38" ∷ word (π ∷ ρ ∷ ύ ∷ μ ∷ ν ∷ ῃ ∷ []) "Mark.4.38" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.38" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.38" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ω ∷ ν ∷ []) "Mark.4.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.38" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.38" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.38" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.4.38" ∷ word (ο ∷ ὐ ∷ []) "Mark.4.38" ∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.38" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.4.38" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.38" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Mark.4.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39" ∷ word (δ ∷ ι ∷ ε ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.4.39" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.39" ∷ word (τ ∷ ῷ ∷ []) "Mark.4.39" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ῳ ∷ []) "Mark.4.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.4.39" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.39" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.4.39" ∷ word (Σ ∷ ι ∷ ώ ∷ π ∷ α ∷ []) "Mark.4.39" ∷ word (π ∷ ε ∷ φ ∷ ί ∷ μ ∷ ω ∷ σ ∷ ο ∷ []) "Mark.4.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39" ∷ word (ἐ ∷ κ ∷ ό ∷ π ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.39" ∷ word (ὁ ∷ []) "Mark.4.39" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.4.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.39" ∷ word (γ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Mark.4.39" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.4.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.40" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.4.40" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.40" ∷ word (Τ ∷ ί ∷ []) "Mark.4.40" ∷ word (δ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.4.40" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.40" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.4.40" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.40" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.41" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Mark.4.41" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Mark.4.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.41" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.41" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.41" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.4.41" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Mark.4.41" ∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.4.41" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.41" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41" ∷ word (ὁ ∷ []) "Mark.4.41" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.4.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41" ∷ word (ἡ ∷ []) "Mark.4.41" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Mark.4.41" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ []) "Mark.4.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.41" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.1" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.1" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.1" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.5.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.1" ∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.1" ∷ word (Γ ∷ ε ∷ ρ ∷ α ∷ σ ∷ η ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.2" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.2" ∷ word (ἐ ∷ κ ∷ []) "Mark.5.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.2" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.2" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.2" ∷ word (ὑ ∷ π ∷ ή ∷ ν ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.2" ∷ word (ἐ ∷ κ ∷ []) "Mark.5.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.2" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.2" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.5.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.2" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.5.2" ∷ word (ὃ ∷ ς ∷ []) "Mark.5.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.3" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.3" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.5.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.3" ∷ word (μ ∷ ν ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.5.3" ∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.3" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.3" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.3" ∷ word (δ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.3" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.5.4" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Mark.5.4" ∷ word (π ∷ έ ∷ δ ∷ α ∷ ι ∷ ς ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4" ∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ σ ∷ ι ∷ []) "Mark.5.4" ∷ word (δ ∷ ε ∷ δ ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ π ∷ ά ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4" ∷ word (ὑ ∷ π ∷ []) "Mark.5.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.4" ∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.4" ∷ word (π ∷ έ ∷ δ ∷ α ∷ ς ∷ []) "Mark.5.4" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ τ ∷ ρ ∷ ῖ ∷ φ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.4" ∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.5.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.4" ∷ word (δ ∷ α ∷ μ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.5.5" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.5" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.5" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.5" ∷ word (μ ∷ ν ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.5" ∷ word (ὄ ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.5" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.5" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ό ∷ π ∷ τ ∷ ω ∷ ν ∷ []) "Mark.5.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.5" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.6" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.5.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.5.6" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.6" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.6" ∷ word (ἔ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.6" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.6" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.7" ∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.5.7" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.5.7" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.7" ∷ word (Τ ∷ ί ∷ []) "Mark.5.7" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.7" ∷ word (σ ∷ ο ∷ ί ∷ []) "Mark.5.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.7" ∷ word (υ ∷ ἱ ∷ ὲ ∷ []) "Mark.5.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.5.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.7" ∷ word (ὑ ∷ ψ ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.5.7" ∷ word (ὁ ∷ ρ ∷ κ ∷ ί ∷ ζ ∷ ω ∷ []) "Mark.5.7" ∷ word (σ ∷ ε ∷ []) "Mark.5.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.7" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Mark.5.7" ∷ word (μ ∷ ή ∷ []) "Mark.5.7" ∷ word (μ ∷ ε ∷ []) "Mark.5.7" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ί ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.5.7" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.8" ∷ word (Ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.5.8" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.8" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.5.8" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.8" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.5.8" ∷ word (ἐ ∷ κ ∷ []) "Mark.5.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.8" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.9" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.9" ∷ word (Τ ∷ ί ∷ []) "Mark.5.9" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.5.9" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.9" ∷ word (Λ ∷ ε ∷ γ ∷ ι ∷ ὼ ∷ ν ∷ []) "Mark.5.9" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.5.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.5.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.5.9" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.10" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.10" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.10" ∷ word (μ ∷ ὴ ∷ []) "Mark.5.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.5.10" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.10" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.5.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.10" ∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.10" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.5.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.11" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.11" ∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.5.11" ∷ word (ἀ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.5.11" ∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.5.11" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.5.11" ∷ word (β ∷ ο ∷ σ ∷ κ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.12" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.12" ∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.5.12" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.5.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.12" ∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.5.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.12" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.5.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.13" ∷ word (τ ∷ ὰ ∷ []) "Mark.5.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.5.13" ∷ word (τ ∷ ὰ ∷ []) "Mark.5.13" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Mark.5.13" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.13" ∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13" ∷ word (ὥ ∷ ρ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.13" ∷ word (ἡ ∷ []) "Mark.5.13" ∷ word (ἀ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.5.13" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.5.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.13" ∷ word (κ ∷ ρ ∷ η ∷ μ ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.5.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.13" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.13" ∷ word (ὡ ∷ ς ∷ []) "Mark.5.13" ∷ word (δ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13" ∷ word (ἐ ∷ π ∷ ν ∷ ί ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.13" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.13" ∷ word (τ ∷ ῇ ∷ []) "Mark.5.13" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.5.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.14" ∷ word (ο ∷ ἱ ∷ []) "Mark.5.14" ∷ word (β ∷ ό ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.14" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.5.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.14" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.14" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.14" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.14" ∷ word (τ ∷ ί ∷ []) "Mark.5.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.5.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.14" ∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ ό ∷ ς ∷ []) "Mark.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.15" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15" ∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15" ∷ word (ἐ ∷ σ ∷ χ ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Mark.5.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15" ∷ word (∙λ ∷ ε ∷ γ ∷ ι ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.16" ∷ word (δ ∷ ι ∷ η ∷ γ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.5.16" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.16" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.5.16" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.5.16" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.16" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Mark.5.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.16" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.5.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.16" ∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.5.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.17" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.17" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.17" ∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.5.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.18" ∷ word (ἐ ∷ μ ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.18" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.18" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.5.18" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.18" ∷ word (ὁ ∷ []) "Mark.5.18" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.18" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.18" ∷ word (ᾖ ∷ []) "Mark.5.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.19" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.19" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.19" ∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.5.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.19" ∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.5.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.19" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.19" ∷ word (σ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19" ∷ word (ἀ ∷ π ∷ ά ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.19" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.5.19" ∷ word (ὁ ∷ []) "Mark.5.19" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "Mark.5.19" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.5.19" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19" ∷ word (ἠ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ έ ∷ ν ∷ []) "Mark.5.19" ∷ word (σ ∷ ε ∷ []) "Mark.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.20" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.5.20" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.20" ∷ word (τ ∷ ῇ ∷ []) "Mark.5.20" ∷ word (Δ ∷ ε ∷ κ ∷ α ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.20" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.5.20" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.20" ∷ word (ὁ ∷ []) "Mark.5.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.20" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.5.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.21" ∷ word (δ ∷ ι ∷ α ∷ π ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.21" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.21" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.21" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.5.21" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.5.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.21" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.21" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.21" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ χ ∷ θ ∷ η ∷ []) "Mark.5.21" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.5.21" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ς ∷ []) "Mark.5.21" ∷ word (ἐ ∷ π ∷ []) "Mark.5.21" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.21" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.21" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.5.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.21" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.22" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.22" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.5.22" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.22" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.5.22" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.22" ∷ word (Ἰ ∷ ά ∷ ϊ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.5.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.22" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.5.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.22" ∷ word (π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Mark.5.22" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.22" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.5.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.23" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.5.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.23" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.23" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.5.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.23" ∷ word (Τ ∷ ὸ ∷ []) "Mark.5.23" ∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ ρ ∷ ι ∷ ό ∷ ν ∷ []) "Mark.5.23" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.23" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ω ∷ ς ∷ []) "Mark.5.23" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.5.23" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.23" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.5.23" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ ς ∷ []) "Mark.5.23" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.23" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.23" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.23" ∷ word (σ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.5.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.23" ∷ word (ζ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.5.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.24" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.24" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.24" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.24" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.5.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.24" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.5.24" ∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ ς ∷ []) "Mark.5.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.24" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ θ ∷ ∙λ ∷ ι ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.24" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.25" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.5.25" ∷ word (ο ∷ ὖ ∷ σ ∷ α ∷ []) "Mark.5.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.25" ∷ word (ῥ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.25" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.25" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.5.25" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Mark.5.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.26" ∷ word (π ∷ α ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.26" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.5.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.5.26" ∷ word (ἰ ∷ α ∷ τ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.5.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26" ∷ word (δ ∷ α ∷ π ∷ α ∷ ν ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.5.26" ∷ word (τ ∷ ὰ ∷ []) "Mark.5.26" ∷ word (π ∷ α ∷ ρ ∷ []) "Mark.5.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.5.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.5.26" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.5.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.26" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.26" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.5.26" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.26" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.5.27" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.5.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.27" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.27" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.27" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.27" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.5.27" ∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.27" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.28" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.28" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.5.28" ∷ word (ἅ ∷ ψ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.5.28" ∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.5.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.28" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.28" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.5.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.29" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.29" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Mark.5.29" ∷ word (ἡ ∷ []) "Mark.5.29" ∷ word (π ∷ η ∷ γ ∷ ὴ ∷ []) "Mark.5.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.29" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.5.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.29" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "Mark.5.29" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.29" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.29" ∷ word (ἴ ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.29" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.29" ∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ ο ∷ ς ∷ []) "Mark.5.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.30" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.30" ∷ word (ὁ ∷ []) "Mark.5.30" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.30" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.30" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Mark.5.30" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.5.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.30" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.5.30" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.30" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ α ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.30" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.30" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.5.30" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.30" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.5.30" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.30" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.30" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.30" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.31" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.31" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.5.31" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.5.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.31" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.31" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.31" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.31" ∷ word (σ ∷ υ ∷ ν ∷ θ ∷ ∙λ ∷ ί ∷ β ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "Mark.5.31" ∷ word (σ ∷ ε ∷ []) "Mark.5.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.31" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.31" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.5.31" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.31" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.32" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ο ∷ []) "Mark.5.32" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.32" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.32" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.5.32" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.32" ∷ word (ἡ ∷ []) "Mark.5.33" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.33" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.5.33" ∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.5.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33" ∷ word (τ ∷ ρ ∷ έ ∷ μ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.5.33" ∷ word (ε ∷ ἰ ∷ δ ∷ υ ∷ ῖ ∷ α ∷ []) "Mark.5.33" ∷ word (ὃ ∷ []) "Mark.5.33" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.33" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.33" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.33" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.33" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.33" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.33" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.33" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Mark.5.33" ∷ word (ὁ ∷ []) "Mark.5.34" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.34" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.34" ∷ word (Θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ η ∷ ρ ∷ []) "Mark.5.34" ∷ word (ἡ ∷ []) "Mark.5.34" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Mark.5.34" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.34" ∷ word (σ ∷ έ ∷ σ ∷ ω ∷ κ ∷ έ ∷ ν ∷ []) "Mark.5.34" ∷ word (σ ∷ ε ∷ []) "Mark.5.34" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.5.34" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.34" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Mark.5.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.34" ∷ word (ἴ ∷ σ ∷ θ ∷ ι ∷ []) "Mark.5.34" ∷ word (ὑ ∷ γ ∷ ι ∷ ὴ ∷ ς ∷ []) "Mark.5.34" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.34" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.34" ∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ ό ∷ ς ∷ []) "Mark.5.34" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.34" ∷ word (Ἔ ∷ τ ∷ ι ∷ []) "Mark.5.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.35" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.35" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.35" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.35" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.35" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ο ∷ υ ∷ []) "Mark.5.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.35" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.35" ∷ word (Ἡ ∷ []) "Mark.5.35" ∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ η ∷ ρ ∷ []) "Mark.5.35" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.35" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.35" ∷ word (τ ∷ ί ∷ []) "Mark.5.35" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.5.35" ∷ word (σ ∷ κ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.35" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.35" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.35" ∷ word (ὁ ∷ []) "Mark.5.36" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.36" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.36" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.5.36" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.36" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.36" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.36" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.36" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ῳ ∷ []) "Mark.5.36" ∷ word (Μ ∷ ὴ ∷ []) "Mark.5.36" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Mark.5.36" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.36" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ ε ∷ []) "Mark.5.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.37" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.37" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.5.37" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.37" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.37" ∷ word (ε ∷ ἰ ∷ []) "Mark.5.37" ∷ word (μ ∷ ὴ ∷ []) "Mark.5.37" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.37" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.5.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.5.37" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.37" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.5.37" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.5.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.38" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.38" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.5.38" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.38" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ο ∷ υ ∷ []) "Mark.5.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.5.38" ∷ word (θ ∷ ό ∷ ρ ∷ υ ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38" ∷ word (ἀ ∷ ∙λ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.38" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.5.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.39" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.5.39" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.39" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.39" ∷ word (Τ ∷ ί ∷ []) "Mark.5.39" ∷ word (θ ∷ ο ∷ ρ ∷ υ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.5.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.39" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.5.39" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.39" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.5.39" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.39" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.39" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.39" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ []) "Mark.5.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.5.40" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.40" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.40" ∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.5.40" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.40" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.5.40" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.40" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.5.40" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.40" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.40" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.40" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.40" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.5.40" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.40" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.40" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.41" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.5.41" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.41" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.41" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.41" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.41" ∷ word (Τ ∷ α ∷ ∙λ ∷ ι ∷ θ ∷ α ∷ []) "Mark.5.41" ∷ word (κ ∷ ο ∷ υ ∷ μ ∷ []) "Mark.5.41" ∷ word (ὅ ∷ []) "Mark.5.41" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.5.41" ∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.41" ∷ word (Τ ∷ ὸ ∷ []) "Mark.5.41" ∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.5.41" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.5.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.5.41" ∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.5.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.42" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.5.42" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.42" ∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.5.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ π ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Mark.5.42" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.42" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.42" ∷ word (ἐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.5.42" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.5.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42" ∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.42" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.42" ∷ word (ἐ ∷ κ ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.42" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.43" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.43" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.43" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.43" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.43" ∷ word (γ ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.5.43" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.5.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.43" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.43" ∷ word (δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.5.43" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.43" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.43" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.1" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.1" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.1" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ δ ∷ α ∷ []) "Mark.6.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.1" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.1" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.2" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.6.2" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.2" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.2" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.2" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῇ ∷ []) "Mark.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.6.2" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.2" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.2" ∷ word (Π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.2" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.6.2" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.6.2" ∷ word (ἡ ∷ []) "Mark.6.2" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Mark.6.2" ∷ word (ἡ ∷ []) "Mark.6.2" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.6.2" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2" ∷ word (α ∷ ἱ ∷ []) "Mark.6.2" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.2" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.2" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.6.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.2" ∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.2" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.6.3" ∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.6.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.3" ∷ word (ὁ ∷ []) "Mark.6.3" ∷ word (τ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.3" ∷ word (ὁ ∷ []) "Mark.6.3" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.6.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.3" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.6.3" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.3" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.6.3" ∷ word (α ∷ ἱ ∷ []) "Mark.6.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.3" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.6.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.3" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (ἐ ∷ σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.4" ∷ word (ὁ ∷ []) "Mark.6.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.6.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.4" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.6.4" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.4" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.6.4" ∷ word (ἄ ∷ τ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.4" ∷ word (ε ∷ ἰ ∷ []) "Mark.6.4" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.4" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.4" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ δ ∷ ι ∷ []) "Mark.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.4" ∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ε ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.4" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.4" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.5" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.5" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.5" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.6.5" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.5" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.6.5" ∷ word (ε ∷ ἰ ∷ []) "Mark.6.5" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.5" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.5" ∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.5" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.6.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.6.5" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.5" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.6" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.6.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.6" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.6" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ῆ ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.6.6" ∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.6" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.6.6" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.7" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.7" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.7" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.7" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.7" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.7" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.7" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.8" ∷ word (π ∷ α ∷ ρ ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.8" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.6.8" ∷ word (α ∷ ἴ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.8" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.6.8" ∷ word (ε ∷ ἰ ∷ []) "Mark.6.8" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.8" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.8" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.6.8" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.8" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.6.8" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.8" ∷ word (π ∷ ή ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.8" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.8" ∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.8" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.6.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.9" ∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.9" ∷ word (σ ∷ α ∷ ν ∷ δ ∷ ά ∷ ∙λ ∷ ι ∷ α ∷ []) "Mark.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.9" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.9" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.9" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.9" ∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Mark.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.10" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.10" ∷ word (Ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.10" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.6.10" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.6.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.10" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.10" ∷ word (μ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.10" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.10" ∷ word (ἂ ∷ ν ∷ []) "Mark.6.10" ∷ word (ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.6.10" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.11" ∷ word (ὃ ∷ ς ∷ []) "Mark.6.11" ∷ word (ἂ ∷ ν ∷ []) "Mark.6.11" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.11" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.11" ∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.6.11" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.6.11" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.6.11" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.6.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.11" ∷ word (ἐ ∷ κ ∷ τ ∷ ι ∷ ν ∷ ά ∷ ξ ∷ α ∷ τ ∷ ε ∷ []) "Mark.6.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.11" ∷ word (χ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.6.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.11" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.6.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.11" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Mark.6.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.6.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.11" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.12" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.12" ∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.12" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.6.13" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.13" ∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13" ∷ word (ἤ ∷ ∙λ ∷ ε ∷ ι ∷ φ ∷ ο ∷ ν ∷ []) "Mark.6.13" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ί ∷ ῳ ∷ []) "Mark.6.13" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.13" ∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ ο ∷ ν ∷ []) "Mark.6.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.14" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.14" ∷ word (ὁ ∷ []) "Mark.6.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.14" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.14" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.6.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.14" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.6.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.14" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.6.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.14" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.14" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.14" ∷ word (ὁ ∷ []) "Mark.6.14" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.6.14" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.14" ∷ word (ἐ ∷ κ ∷ []) "Mark.6.14" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.14" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.6.14" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.14" ∷ word (α ∷ ἱ ∷ []) "Mark.6.14" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.14" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.14" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.15" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.15" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.15" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.15" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.15" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.15" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.15" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.6.15" ∷ word (ὡ ∷ ς ∷ []) "Mark.6.15" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.6.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.15" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.15" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.6.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.16" ∷ word (ὁ ∷ []) "Mark.6.16" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.16" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.16" ∷ word (Ὃ ∷ ν ∷ []) "Mark.6.16" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.6.16" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ α ∷ []) "Mark.6.16" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.16" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.16" ∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.6.16" ∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.17" ∷ word (ὁ ∷ []) "Mark.6.17" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.17" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.6.17" ∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.17" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.17" ∷ word (ἔ ∷ δ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.17" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῇ ∷ []) "Mark.6.17" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.17" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ά ∷ δ ∷ α ∷ []) "Mark.6.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.17" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.6.17" ∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.17" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "Mark.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.17" ∷ word (ἐ ∷ γ ∷ ά ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.18" ∷ word (ὁ ∷ []) "Mark.6.18" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.18" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.18" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ῃ ∷ []) "Mark.6.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.18" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.6.18" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.18" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.18" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.18" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.6.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.18" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "Mark.6.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.6.18" ∷ word (ἡ ∷ []) "Mark.6.19" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.19" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ὰ ∷ ς ∷ []) "Mark.6.19" ∷ word (ἐ ∷ ν ∷ ε ∷ ῖ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.6.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.19" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.19" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.19" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.19" ∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.19" ∷ word (ὁ ∷ []) "Mark.6.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.20" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.20" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Mark.6.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.20" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.20" ∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Mark.6.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.20" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.6.20" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.6.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.6.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.6.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.20" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.20" ∷ word (ἠ ∷ π ∷ ό ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.6.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20" ∷ word (ἡ ∷ δ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.6.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.20" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ε ∷ ν ∷ []) "Mark.6.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.21" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.21" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.21" ∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.6.21" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.6.21" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.21" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Mark.6.21" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21" ∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ ρ ∷ χ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.21" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22" ∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ά ∷ δ ∷ ο ∷ ς ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (ὀ ∷ ρ ∷ χ ∷ η ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (ἀ ∷ ρ ∷ ε ∷ σ ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.22" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.22" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ῃ ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.22" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.22" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.22" ∷ word (ὁ ∷ []) "Mark.6.22" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.22" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.22" ∷ word (κ ∷ ο ∷ ρ ∷ α ∷ σ ∷ ί ∷ ῳ ∷ []) "Mark.6.22" ∷ word (Α ∷ ἴ ∷ τ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.6.22" ∷ word (μ ∷ ε ∷ []) "Mark.6.22" ∷ word (ὃ ∷ []) "Mark.6.22" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.6.22" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Mark.6.22" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.23" ∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.6.23" ∷ word (Ὅ ∷ []) "Mark.6.23" ∷ word (τ ∷ ι ∷ []) "Mark.6.23" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.6.23" ∷ word (μ ∷ ε ∷ []) "Mark.6.23" ∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.6.23" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Mark.6.23" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.23" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.23" ∷ word (ἡ ∷ μ ∷ ί ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.23" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.23" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.6.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.24" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.6.24" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.24" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.24" ∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.6.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.24" ∷ word (Τ ∷ ί ∷ []) "Mark.6.24" ∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.6.24" ∷ word (ἡ ∷ []) "Mark.6.24" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.24" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.24" ∷ word (Τ ∷ ὴ ∷ ν ∷ []) "Mark.6.24" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.24" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.24" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.25" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.6.25" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.25" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.6.25" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ῆ ∷ ς ∷ []) "Mark.6.25" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.25" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.25" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.6.25" ∷ word (ᾐ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.6.25" ∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.6.25" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.25" ∷ word (ἐ ∷ ξ ∷ α ∷ υ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.25" ∷ word (δ ∷ ῷ ∷ ς ∷ []) "Mark.6.25" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.6.25" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.25" ∷ word (π ∷ ί ∷ ν ∷ α ∷ κ ∷ ι ∷ []) "Mark.6.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.25" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.25" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.25" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.26" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ ∙λ ∷ υ ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.26" ∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.26" ∷ word (ὁ ∷ []) "Mark.6.26" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.26" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.26" ∷ word (ὅ ∷ ρ ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.26" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.26" ∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.26" ∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.6.26" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.6.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.27" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.27" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.6.27" ∷ word (ὁ ∷ []) "Mark.6.27" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.27" ∷ word (σ ∷ π ∷ ε ∷ κ ∷ ο ∷ υ ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.6.27" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.6.27" ∷ word (ἐ ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ι ∷ []) "Mark.6.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.27" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.27" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.6.27" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.27" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.27" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.27" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.27" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῇ ∷ []) "Mark.6.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28" ∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.28" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.28" ∷ word (π ∷ ί ∷ ν ∷ α ∷ κ ∷ ι ∷ []) "Mark.6.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.28" ∷ word (κ ∷ ο ∷ ρ ∷ α ∷ σ ∷ ί ∷ ῳ ∷ []) "Mark.6.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.28" ∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.28" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.28" ∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.6.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.29" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.29" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.29" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29" ∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.29" ∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.6.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.6.29" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.6.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.29" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ῳ ∷ []) "Mark.6.29" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.30" ∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.30" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.30" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.30" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.30" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.30" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.6.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.30" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.6.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.30" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.6.30" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.30" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.6.30" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.31" ∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.6.31" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.6.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.6.31" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.31" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.31" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.31" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.31" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.31" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.31" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.31" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.31" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.6.31" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.31" ∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.32" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.32" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.32" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.32" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.6.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.32" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.32" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.6.32" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.6.32" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.33" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33" ∷ word (ἐ ∷ π ∷ έ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.33" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.6.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33" ∷ word (π ∷ ε ∷ ζ ∷ ῇ ∷ []) "Mark.6.33" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.6.33" ∷ word (π ∷ α ∷ σ ∷ ῶ ∷ ν ∷ []) "Mark.6.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.33" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ν ∷ []) "Mark.6.33" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.33" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33" ∷ word (π ∷ ρ ∷ ο ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.6.34" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.6.34" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ν ∷ []) "Mark.6.34" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34" ∷ word (ἐ ∷ σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.6.34" ∷ word (ἐ ∷ π ∷ []) "Mark.6.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.34" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.34" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.34" ∷ word (ὡ ∷ ς ∷ []) "Mark.6.34" ∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Mark.6.34" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.34" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.34" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.6.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.34" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.34" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.6.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.35" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.6.35" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.35" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.6.35" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.35" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.35" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.35" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.35" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.35" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.35" ∷ word (Ἔ ∷ ρ ∷ η ∷ μ ∷ ό ∷ ς ∷ []) "Mark.6.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.35" ∷ word (ὁ ∷ []) "Mark.6.35" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.35" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.6.35" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.6.35" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ []) "Mark.6.35" ∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ υ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.6.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.36" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.36" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.36" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.36" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.36" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.6.36" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.36" ∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.36" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.36" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.36" ∷ word (τ ∷ ί ∷ []) "Mark.6.36" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.36" ∷ word (ὁ ∷ []) "Mark.6.37" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.37" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.6.37" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37" ∷ word (Δ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.6.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.6.37" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.37" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.37" ∷ word (Ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.37" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.6.37" ∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.6.37" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.6.37" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.37" ∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.6.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.37" ∷ word (ὁ ∷ []) "Mark.6.38" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.38" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.38" ∷ word (Π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.38" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.38" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38" ∷ word (ἴ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.38" ∷ word (γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.38" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.38" ∷ word (Π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.6.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.38" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.38" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.39" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.6.39" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.39" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ∙λ ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.39" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.39" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ό ∷ σ ∷ ι ∷ α ∷ []) "Mark.6.39" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ό ∷ σ ∷ ι ∷ α ∷ []) "Mark.6.39" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.39" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.39" ∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ῷ ∷ []) "Mark.6.39" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.6.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.40" ∷ word (ἀ ∷ ν ∷ έ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.40" ∷ word (π ∷ ρ ∷ α ∷ σ ∷ ι ∷ α ∷ ὶ ∷ []) "Mark.6.40" ∷ word (π ∷ ρ ∷ α ∷ σ ∷ ι ∷ α ∷ ὶ ∷ []) "Mark.6.40" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.6.40" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.40" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.6.40" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.6.41" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.41" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.41" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.6.41" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.41" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.41" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.6.41" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.41" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.41" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.41" ∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.41" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.41" ∷ word (ἐ ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.42" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.42" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.42" ∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.43" ∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.43" ∷ word (κ ∷ ∙λ ∷ ά ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.6.43" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.6.43" ∷ word (κ ∷ ο ∷ φ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.6.43" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.6.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.43" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.6.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.43" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ ω ∷ ν ∷ []) "Mark.6.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.44" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.44" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.44" ∷ word (φ ∷ α ∷ γ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.44" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.44" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.44" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.6.44" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ ε ∷ ς ∷ []) "Mark.6.44" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.45" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.45" ∷ word (ἠ ∷ ν ∷ ά ∷ γ ∷ κ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.45" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.45" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.6.45" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.45" ∷ word (ἐ ∷ μ ∷ β ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.45" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.45" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.45" ∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.45" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.45" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.45" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.45" ∷ word (Β ∷ η ∷ θ ∷ σ ∷ α ∷ ϊ ∷ δ ∷ ά ∷ ν ∷ []) "Mark.6.45" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.45" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.45" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ ε ∷ ι ∷ []) "Mark.6.45" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.45" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.46" ∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ α ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.46" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.46" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.46" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.46" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.46" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.6.46" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.6.46" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.47" ∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.47" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.47" ∷ word (ἦ ∷ ν ∷ []) "Mark.6.47" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.47" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.47" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.47" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Mark.6.47" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.47" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.47" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.47" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.47" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.47" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.47" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.6.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.48" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.6.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.48" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.48" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.48" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.48" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ύ ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.48" ∷ word (ἦ ∷ ν ∷ []) "Mark.6.48" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.48" ∷ word (ὁ ∷ []) "Mark.6.48" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.48" ∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.6.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.48" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.6.48" ∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ η ∷ ν ∷ []) "Mark.6.48" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ ν ∷ []) "Mark.6.48" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.48" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.48" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.48" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.48" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.48" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.48" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.48" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.48" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.48" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.48" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.49" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.49" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.49" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.49" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.49" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.49" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.49" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.49" ∷ word (ἔ ∷ δ ∷ ο ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.49" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.49" ∷ word (φ ∷ ά ∷ ν ∷ τ ∷ α ∷ σ ∷ μ ∷ ά ∷ []) "Mark.6.49" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.49" ∷ word (ἀ ∷ ν ∷ έ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.49" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.50" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.50" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.50" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.50" ∷ word (ἐ ∷ τ ∷ α ∷ ρ ∷ ά ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.50" ∷ word (ὁ ∷ []) "Mark.6.50" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.50" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.50" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.50" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.6.50" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.50" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.50" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.50" ∷ word (Θ ∷ α ∷ ρ ∷ σ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.6.50" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.6.50" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.6.50" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.50" ∷ word (φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Mark.6.51" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.51" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.51" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.51" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.51" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.51" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51" ∷ word (ἐ ∷ κ ∷ ό ∷ π ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.51" ∷ word (ὁ ∷ []) "Mark.6.51" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.51" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.51" ∷ word (ἐ ∷ κ ∷ []) "Mark.6.51" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.6.51" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.51" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.51" ∷ word (ἐ ∷ ξ ∷ ί ∷ σ ∷ τ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.51" ∷ word (ο ∷ ὐ ∷ []) "Mark.6.52" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.52" ∷ word (σ ∷ υ ∷ ν ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.6.52" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.52" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.52" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.52" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.6.52" ∷ word (ἦ ∷ ν ∷ []) "Mark.6.52" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.52" ∷ word (ἡ ∷ []) "Mark.6.52" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Mark.6.52" ∷ word (π ∷ ε ∷ π ∷ ω ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.6.52" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.53" ∷ word (δ ∷ ι ∷ α ∷ π ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.53" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.53" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.53" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.6.53" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.53" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.53" ∷ word (Γ ∷ ε ∷ ν ∷ ν ∷ η ∷ σ ∷ α ∷ ρ ∷ ὲ ∷ τ ∷ []) "Mark.6.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.53" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ω ∷ ρ ∷ μ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.54" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.54" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.54" ∷ word (ἐ ∷ κ ∷ []) "Mark.6.54" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.54" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ο ∷ υ ∷ []) "Mark.6.54" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.54" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.54" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.54" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.55" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.6.55" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.55" ∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.55" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.55" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.55" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.55" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.55" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.55" ∷ word (κ ∷ ρ ∷ α ∷ β ∷ ά ∷ τ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.55" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.55" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.6.55" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.55" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.55" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.55" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ο ∷ ν ∷ []) "Mark.6.55" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.55" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.55" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.56" ∷ word (ἂ ∷ ν ∷ []) "Mark.6.56" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.6.56" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56" ∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.56" ∷ word (ἢ ∷ []) "Mark.6.56" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.56" ∷ word (ἢ ∷ []) "Mark.6.56" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.56" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἐ ∷ τ ∷ ί ∷ θ ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.56" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.56" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.6.56" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.56" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.56" ∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.6.56" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56" ∷ word (κ ∷ ρ ∷ α ∷ σ ∷ π ∷ έ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.56" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.6.56" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56" ∷ word (ἅ ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.56" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Mark.6.56" ∷ word (ἂ ∷ ν ∷ []) "Mark.6.56" ∷ word (ἥ ∷ ψ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.56" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56" ∷ word (ἐ ∷ σ ∷ ῴ ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.56" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.1" ∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.1" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.1" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.7.1" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.7.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.1" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.7.1" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.1" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.1" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.7.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.2" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.2" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ ς ∷ []) "Mark.7.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.2" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.2" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.7.2" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.7.2" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Mark.7.2" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.2" ∷ word (ἀ ∷ ν ∷ ί ∷ π ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.7.2" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.2" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.2" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.3" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.3" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.3" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.3" ∷ word (μ ∷ ὴ ∷ []) "Mark.7.3" ∷ word (π ∷ υ ∷ γ ∷ μ ∷ ῇ ∷ []) "Mark.7.3" ∷ word (ν ∷ ί ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.7.3" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.7.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.3" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.3" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.3" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.3" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.7.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (ἀ ∷ π ∷ []) "Mark.7.4" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Mark.7.4" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.4" ∷ word (μ ∷ ὴ ∷ []) "Mark.7.4" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.4" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.7.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.7.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.4" ∷ word (ἃ ∷ []) "Mark.7.4" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.4" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.4" ∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (ξ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (κ ∷ ∙λ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.5" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.5" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.5" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.5" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.7.5" ∷ word (τ ∷ ί ∷ []) "Mark.7.5" ∷ word (ο ∷ ὐ ∷ []) "Mark.7.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.5" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "Mark.7.5" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.7.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.5" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.5" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.7.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.5" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.7.5" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.7.5" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.5" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.5" ∷ word (ὁ ∷ []) "Mark.7.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.6" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.6" ∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.6" ∷ word (ἐ ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.7.6" ∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "Mark.7.6" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.7.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6" ∷ word (ὡ ∷ ς ∷ []) "Mark.7.6" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.6" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.7.6" ∷ word (ὁ ∷ []) "Mark.7.6" ∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "Mark.7.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.6" ∷ word (χ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "Mark.7.6" ∷ word (μ ∷ ε ∷ []) "Mark.7.6" ∷ word (τ ∷ ι ∷ μ ∷ ᾷ ∷ []) "Mark.7.6" ∷ word (ἡ ∷ []) "Mark.7.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.6" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Mark.7.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6" ∷ word (π ∷ ό ∷ ρ ∷ ρ ∷ ω ∷ []) "Mark.7.6" ∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.7.6" ∷ word (ἀ ∷ π ∷ []) "Mark.7.6" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.7.6" ∷ word (μ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Mark.7.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.7" ∷ word (σ ∷ έ ∷ β ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.7.7" ∷ word (μ ∷ ε ∷ []) "Mark.7.7" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.7" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.7" ∷ word (ἐ ∷ ν ∷ τ ∷ ά ∷ ∙λ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.7.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.7" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.8" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.7.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.8" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.8" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.8" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.9" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.9" ∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.9" ∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.9" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.7.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.9" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.9" ∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.7.9" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.7.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.10" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.10" ∷ word (Τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.7.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.10" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.10" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.10" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.7.10" ∷ word (Ὁ ∷ []) "Mark.7.10" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ῶ ∷ ν ∷ []) "Mark.7.10" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10" ∷ word (ἢ ∷ []) "Mark.7.10" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.7.10" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.7.10" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.11" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.11" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.7.11" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.7.11" ∷ word (τ ∷ ῷ ∷ []) "Mark.7.11" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.7.11" ∷ word (ἢ ∷ []) "Mark.7.11" ∷ word (τ ∷ ῇ ∷ []) "Mark.7.11" ∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ []) "Mark.7.11" ∷ word (Κ ∷ ο ∷ ρ ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.7.11" ∷ word (ὅ ∷ []) "Mark.7.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.11" ∷ word (Δ ∷ ῶ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.7.11" ∷ word (ὃ ∷ []) "Mark.7.11" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.11" ∷ word (ἐ ∷ ξ ∷ []) "Mark.7.11" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.7.11" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ η ∷ θ ∷ ῇ ∷ ς ∷ []) "Mark.7.11" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.7.12" ∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.12" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.7.12" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.12" ∷ word (τ ∷ ῷ ∷ []) "Mark.7.12" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.7.12" ∷ word (ἢ ∷ []) "Mark.7.12" ∷ word (τ ∷ ῇ ∷ []) "Mark.7.12" ∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ []) "Mark.7.12" ∷ word (ἀ ∷ κ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.7.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.13" ∷ word (τ ∷ ῇ ∷ []) "Mark.7.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ό ∷ σ ∷ ε ∷ ι ∷ []) "Mark.7.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.13" ∷ word (ᾗ ∷ []) "Mark.7.13" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "Mark.7.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.13" ∷ word (π ∷ α ∷ ρ ∷ ό ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Mark.7.13" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.7.13" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.13" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.14" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.7.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.14" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.14" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.14" ∷ word (Ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ έ ∷ []) "Mark.7.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.7.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.14" ∷ word (σ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.14" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.7.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.15" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.15" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.15" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.15" ∷ word (ὃ ∷ []) "Mark.7.15" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.15" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.7.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.15" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.15" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.15" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.15" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ά ∷ []) "Mark.7.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.15" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.15" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.15" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.15" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.17" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.7.17" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.17" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.7.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.17" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.7.17" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.17" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.17" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.7.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.18" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.7.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.18" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.18" ∷ word (ἀ ∷ σ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ο ∷ ί ∷ []) "Mark.7.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.7.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.7.18" ∷ word (ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.18" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Mark.7.18" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.18" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.18" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.18" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.7.18" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.18" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.19" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.19" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.7.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.19" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.19" ∷ word (ἀ ∷ φ ∷ ε ∷ δ ∷ ρ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.7.19" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.19" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.7.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.19" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.19" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.7.19" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.20" ∷ word (Τ ∷ ὸ ∷ []) "Mark.7.20" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.20" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.20" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.20" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ []) "Mark.7.20" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.7.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.20" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.20" ∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.21" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.21" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.21" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.21" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.7.21" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.21" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ὶ ∷ []) "Mark.7.21" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.21" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "Mark.7.21" ∷ word (κ ∷ ∙λ ∷ ο ∷ π ∷ α ∷ ί ∷ []) "Mark.7.21" ∷ word (φ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "Mark.7.21" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "Mark.7.22" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ α ∷ ι ∷ []) "Mark.7.22" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ί ∷ α ∷ ι ∷ []) "Mark.7.22" ∷ word (δ ∷ ό ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.7.22" ∷ word (ἀ ∷ σ ∷ έ ∷ ∙λ ∷ γ ∷ ε ∷ ι ∷ α ∷ []) "Mark.7.22" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "Mark.7.22" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.7.22" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ []) "Mark.7.22" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ η ∷ φ ∷ α ∷ ν ∷ ί ∷ α ∷ []) "Mark.7.22" ∷ word (ἀ ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Mark.7.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.23" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.7.23" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.23" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὰ ∷ []) "Mark.7.23" ∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.23" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.23" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.7.23" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.23" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.23" ∷ word (Ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.24" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.24" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.7.24" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.24" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.24" ∷ word (ὅ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.7.24" ∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.7.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.24" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.7.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.24" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.24" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.7.24" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.7.24" ∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.7.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.24" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.24" ∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.7.24" ∷ word (∙λ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.7.25" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.7.25" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.7.25" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.7.25" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.7.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.25" ∷ word (ἧ ∷ ς ∷ []) "Mark.7.25" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.7.25" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.25" ∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.25" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.7.25" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.25" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.7.25" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.7.25" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.25" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.7.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.25" ∷ word (ἡ ∷ []) "Mark.7.26" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.26" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.7.26" ∷ word (ἦ ∷ ν ∷ []) "Mark.7.26" ∷ word (Ἑ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ί ∷ ς ∷ []) "Mark.7.26" ∷ word (Σ ∷ υ ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ι ∷ ν ∷ ί ∷ κ ∷ ι ∷ σ ∷ σ ∷ α ∷ []) "Mark.7.26" ∷ word (τ ∷ ῷ ∷ []) "Mark.7.26" ∷ word (γ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "Mark.7.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.26" ∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.7.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.26" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.26" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.26" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.7.26" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.26" ∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.27" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.7.27" ∷ word (Ἄ ∷ φ ∷ ε ∷ ς ∷ []) "Mark.7.27" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.27" ∷ word (χ ∷ ο ∷ ρ ∷ τ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.7.27" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.27" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.7.27" ∷ word (ο ∷ ὐ ∷ []) "Mark.7.27" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.7.27" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.7.27" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.27" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.27" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.27" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ω ∷ ν ∷ []) "Mark.7.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.27" ∷ word (κ ∷ υ ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.7.27" ∷ word (β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.27" ∷ word (ἡ ∷ []) "Mark.7.28" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.28" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.28" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.28" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Mark.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.28" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.28" ∷ word (κ ∷ υ ∷ ν ∷ ά ∷ ρ ∷ ι ∷ α ∷ []) "Mark.7.28" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.7.28" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.28" ∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ η ∷ ς ∷ []) "Mark.7.28" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.28" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.28" ∷ word (ψ ∷ ι ∷ χ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.28" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.29" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.7.29" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.7.29" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.29" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.29" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.7.29" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.7.29" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.29" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.29" ∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.7.29" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.29" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.30" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.7.30" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.30" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.30" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.7.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.30" ∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.7.30" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.30" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.7.30" ∷ word (β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.30" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.7.30" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.30" ∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.7.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.30" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.30" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.30" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ ό ∷ ς ∷ []) "Mark.7.30" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.31" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.7.31" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.7.31" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.31" ∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.31" ∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.7.31" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.31" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.7.31" ∷ word (Σ ∷ ι ∷ δ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.31" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.31" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.7.31" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.31" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.31" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Mark.7.31" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.31" ∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.31" ∷ word (Δ ∷ ε ∷ κ ∷ α ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.7.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.32" ∷ word (κ ∷ ω ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.7.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32" ∷ word (μ ∷ ο ∷ γ ∷ ι ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.32" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.32" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.7.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.32" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.32" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.7.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.33" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.33" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.33" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.33" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.7.33" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.7.33" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.33" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.7.33" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.33" ∷ word (δ ∷ α ∷ κ ∷ τ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.33" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.33" ∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.7.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.33" ∷ word (π ∷ τ ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.7.33" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.7.33" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.33" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.7.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.34" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.7.34" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.34" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.34" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.7.34" ∷ word (ἐ ∷ σ ∷ τ ∷ έ ∷ ν ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.34" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.34" ∷ word (Ε ∷ φ ∷ φ ∷ α ∷ θ ∷ α ∷ []) "Mark.7.34" ∷ word (ὅ ∷ []) "Mark.7.34" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.34" ∷ word (Δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.7.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.35" ∷ word (α ∷ ἱ ∷ []) "Mark.7.35" ∷ word (ἀ ∷ κ ∷ ο ∷ α ∷ ί ∷ []) "Mark.7.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35" ∷ word (ἐ ∷ ∙λ ∷ ύ ∷ θ ∷ η ∷ []) "Mark.7.35" ∷ word (ὁ ∷ []) "Mark.7.35" ∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Mark.7.35" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.35" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.7.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.7.35" ∷ word (ὀ ∷ ρ ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.7.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.36" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.7.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.36" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.36" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.7.36" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.36" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.36" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.36" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.7.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Mark.7.36" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.36" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.7.36" ∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.7.37" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.7.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.37" ∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.37" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.37" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.7.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.37" ∷ word (κ ∷ ω ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.37" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Mark.7.37" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.7.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37" ∷ word (ἀ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.37" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.37" ∷ word (Ἐ ∷ ν ∷ []) "Mark.8.1" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.8.1" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.1" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.8.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.1" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Mark.8.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.8.1" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.8.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.1" ∷ word (μ ∷ ὴ ∷ []) "Mark.8.1" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.1" ∷ word (τ ∷ ί ∷ []) "Mark.8.1" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.1" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.1" ∷ word (Σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.8.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.2" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.2" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.8.2" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.8.2" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.8.2" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.8.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.2" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.2" ∷ word (τ ∷ ί ∷ []) "Mark.8.2" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.3" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.3" ∷ word (ν ∷ ή ∷ σ ∷ τ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.3" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.3" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.3" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.3" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.8.3" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.8.3" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.3" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.3" ∷ word (ἥ ∷ κ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.4" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.4" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.4" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.8.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.4" ∷ word (Π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.4" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ί ∷ []) "Mark.8.4" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.8.4" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.8.4" ∷ word (χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.4" ∷ word (ἄ ∷ ρ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.4" ∷ word (ἐ ∷ π ∷ []) "Mark.8.4" ∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Mark.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.5" ∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.5" ∷ word (Π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.5" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.5" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.5" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.8.5" ∷ word (Ἑ ∷ π ∷ τ ∷ ά ∷ []) "Mark.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.6" ∷ word (τ ∷ ῷ ∷ []) "Mark.8.6" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.8.6" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ε ∷ σ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.6" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.8.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.6" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.6" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.6" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.8.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.6" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.8.6" ∷ word (τ ∷ ῷ ∷ []) "Mark.8.6" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.8.7" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ δ ∷ ι ∷ α ∷ []) "Mark.8.7" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Mark.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.8.7" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.8.7" ∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8" ∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8" ∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.8.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.8" ∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.8" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.8" ∷ word (σ ∷ π ∷ υ ∷ ρ ∷ ί ∷ δ ∷ α ∷ ς ∷ []) "Mark.8.8" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.9" ∷ word (ὡ ∷ ς ∷ []) "Mark.8.9" ∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.8.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.9" ∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.10" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.8.10" ∷ word (ἐ ∷ μ ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.8.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.10" ∷ word (τ ∷ ὸ ∷ []) "Mark.8.10" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.10" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.10" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.10" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.10" ∷ word (τ ∷ ὰ ∷ []) "Mark.8.10" ∷ word (μ ∷ έ ∷ ρ ∷ η ∷ []) "Mark.8.10" ∷ word (Δ ∷ α ∷ ∙λ ∷ μ ∷ α ∷ ν ∷ ο ∷ υ ∷ θ ∷ ά ∷ []) "Mark.8.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.11" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.8.11" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.11" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.11" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.11" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.11" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.11" ∷ word (π ∷ α ∷ ρ ∷ []) "Mark.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.11" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.11" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.8.11" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.12" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ε ∷ ν ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.8.12" ∷ word (τ ∷ ῷ ∷ []) "Mark.8.12" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.12" ∷ word (Τ ∷ ί ∷ []) "Mark.8.12" ∷ word (ἡ ∷ []) "Mark.8.12" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.8.12" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.8.12" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ []) "Mark.8.12" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.12" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.8.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.8.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.8.12" ∷ word (ε ∷ ἰ ∷ []) "Mark.8.12" ∷ word (δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.12" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.12" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾷ ∷ []) "Mark.8.12" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.8.12" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.13" ∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.13" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.13" ∷ word (ἐ ∷ μ ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.8.13" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.13" ∷ word (τ ∷ ὸ ∷ []) "Mark.8.13" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.8.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.14" ∷ word (ἐ ∷ π ∷ ε ∷ ∙λ ∷ ά ∷ θ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.14" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.14" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.14" ∷ word (ε ∷ ἰ ∷ []) "Mark.8.14" ∷ word (μ ∷ ὴ ∷ []) "Mark.8.14" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.8.14" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.8.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.14" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.8.14" ∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.8.14" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.14" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.14" ∷ word (τ ∷ ῷ ∷ []) "Mark.8.14" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.8.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.15" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.8.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.15" ∷ word (Ὁ ∷ ρ ∷ ᾶ ∷ τ ∷ ε ∷ []) "Mark.8.15" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.15" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.15" ∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.15" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.8.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.15" ∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.15" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.8.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.16" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.16" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.16" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.17" ∷ word (γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.17" ∷ word (Τ ∷ ί ∷ []) "Mark.8.17" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.8.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.17" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.17" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.8.17" ∷ word (ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.8.17" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.8.17" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17" ∷ word (π ∷ ε ∷ π ∷ ω ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.8.17" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.17" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.8.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.8.17" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.18" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.8.18" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.18" ∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.8.18" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.18" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.8.18" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.8.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.19" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.8.19" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ α ∷ []) "Mark.8.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.19" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ι ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19" ∷ word (π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19" ∷ word (κ ∷ ο ∷ φ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19" ∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.19" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.19" ∷ word (ἤ ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "Mark.8.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.19" ∷ word (Δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.8.19" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.8.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.20" ∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ι ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.20" ∷ word (π ∷ ό ∷ σ ∷ ω ∷ ν ∷ []) "Mark.8.20" ∷ word (σ ∷ π ∷ υ ∷ ρ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Mark.8.20" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.20" ∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.20" ∷ word (ἤ ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "Mark.8.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.20" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.20" ∷ word (Ἑ ∷ π ∷ τ ∷ ά ∷ []) "Mark.8.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.21" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.8.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.21" ∷ word (Ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.8.21" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.22" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.22" ∷ word (Β ∷ η ∷ θ ∷ σ ∷ α ∷ ϊ ∷ δ ∷ ά ∷ ν ∷ []) "Mark.8.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.22" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.22" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.8.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.22" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.22" ∷ word (ἅ ∷ ψ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.23" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.23" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.23" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Mark.8.23" ∷ word (ἐ ∷ ξ ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.23" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.8.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.23" ∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.23" ∷ word (π ∷ τ ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.23" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.23" ∷ word (τ ∷ ὰ ∷ []) "Mark.8.23" ∷ word (ὄ ∷ μ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.23" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.23" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.23" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.23" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.8.23" ∷ word (Ε ∷ ἴ ∷ []) "Mark.8.23" ∷ word (τ ∷ ι ∷ []) "Mark.8.23" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.24" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.8.24" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.8.24" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ []) "Mark.8.24" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.24" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.24" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.24" ∷ word (ὡ ∷ ς ∷ []) "Mark.8.24" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.8.24" ∷ word (ὁ ∷ ρ ∷ ῶ ∷ []) "Mark.8.24" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.8.24" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.8.25" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.25" ∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.25" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.25" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.25" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.25" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25" ∷ word (δ ∷ ι ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.8.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ τ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.8.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25" ∷ word (ἐ ∷ ν ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.25" ∷ word (τ ∷ η ∷ ∙λ ∷ α ∷ υ ∷ γ ∷ ῶ ∷ ς ∷ []) "Mark.8.25" ∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Mark.8.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.26" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.8.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.26" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.8.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.26" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.26" ∷ word (Μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.8.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.26" ∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Mark.8.26" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ ς ∷ []) "Mark.8.26" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.27" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.27" ∷ word (ὁ ∷ []) "Mark.8.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.8.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.27" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.8.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.27" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.27" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.27" ∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.8.27" ∷ word (Κ ∷ α ∷ ι ∷ σ ∷ α ∷ ρ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.8.27" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.27" ∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.27" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.27" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.27" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.8.27" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.27" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.27" ∷ word (Τ ∷ ί ∷ ν ∷ α ∷ []) "Mark.8.27" ∷ word (μ ∷ ε ∷ []) "Mark.8.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.27" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Mark.8.27" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.28" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.28" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.8.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.28" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.28" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.8.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.28" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.28" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.8.28" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.8.28" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.8.28" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.28" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.8.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.28" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.29" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.8.29" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.29" ∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.29" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.29" ∷ word (τ ∷ ί ∷ ν ∷ α ∷ []) "Mark.8.29" ∷ word (μ ∷ ε ∷ []) "Mark.8.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.29" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.29" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.29" ∷ word (ὁ ∷ []) "Mark.8.29" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.8.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.29" ∷ word (Σ ∷ ὺ ∷ []) "Mark.8.29" ∷ word (ε ∷ ἶ ∷ []) "Mark.8.29" ∷ word (ὁ ∷ []) "Mark.8.29" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.8.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.30" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.30" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.30" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.8.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.30" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.8.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.30" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.8.31" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.8.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.31" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.31" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.8.31" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.31" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.8.31" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.31" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.31" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.8.31" ∷ word (π ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.8.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.31" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.31" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.31" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.32" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.8.32" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.32" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.8.32" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.32" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.32" ∷ word (ὁ ∷ []) "Mark.8.32" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.8.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.32" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.8.32" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ι ∷ μ ∷ ᾶ ∷ ν ∷ []) "Mark.8.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.32" ∷ word (ὁ ∷ []) "Mark.8.33" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.33" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ α ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.33" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.8.33" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.33" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.33" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.33" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.8.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.33" ∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.8.33" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.8.33" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.8.33" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Mark.8.33" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.33" ∷ word (ο ∷ ὐ ∷ []) "Mark.8.33" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.33" ∷ word (τ ∷ ὰ ∷ []) "Mark.8.33" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.33" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.8.33" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.8.33" ∷ word (τ ∷ ὰ ∷ []) "Mark.8.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.33" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.8.33" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.34" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.34" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.34" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.8.34" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.34" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.34" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.34" ∷ word (Ε ∷ ἴ ∷ []) "Mark.8.34" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.8.34" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.34" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.8.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.8.34" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.34" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ η ∷ σ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "Mark.8.34" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.34" ∷ word (ἀ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.8.34" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.8.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.34" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Mark.8.34" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.8.34" ∷ word (ὃ ∷ ς ∷ []) "Mark.8.35" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.35" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.8.35" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.35" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35" ∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.35" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.35" ∷ word (ὃ ∷ ς ∷ []) "Mark.8.35" ∷ word (δ ∷ []) "Mark.8.35" ∷ word (ἂ ∷ ν ∷ []) "Mark.8.35" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.35" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.35" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.8.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.35" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.8.35" ∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.35" ∷ word (τ ∷ ί ∷ []) "Mark.8.36" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.36" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.8.36" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.8.36" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.36" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.36" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.8.36" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.36" ∷ word (ζ ∷ η ∷ μ ∷ ι ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.36" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.36" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.36" ∷ word (τ ∷ ί ∷ []) "Mark.8.37" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.37" ∷ word (δ ∷ ο ∷ ῖ ∷ []) "Mark.8.37" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.8.37" ∷ word (ἀ ∷ ν ∷ τ ∷ ά ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Mark.8.37" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.37" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.8.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.37" ∷ word (ὃ ∷ ς ∷ []) "Mark.8.38" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.38" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.38" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ῇ ∷ []) "Mark.8.38" ∷ word (μ ∷ ε ∷ []) "Mark.8.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.38" ∷ word (ἐ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.38" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.38" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾷ ∷ []) "Mark.8.38" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.8.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.38" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ α ∷ ∙λ ∷ ί ∷ δ ∷ ι ∷ []) "Mark.8.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῷ ∷ []) "Mark.8.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38" ∷ word (ὁ ∷ []) "Mark.8.38" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.8.38" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.38" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.38" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.38" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.8.38" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.8.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.38" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Mark.8.38" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.38" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.8.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.38" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.8.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.1" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.1" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.9.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.1" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.9.1" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.9.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.1" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.9.1" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.1" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.9.1" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.1" ∷ word (μ ∷ ὴ ∷ []) "Mark.9.1" ∷ word (γ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.1" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.9.1" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.1" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.1" ∷ word (ἴ ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.1" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.9.1" ∷ word (ἐ ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ υ ∷ ῖ ∷ α ∷ ν ∷ []) "Mark.9.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.1" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Mark.9.1" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.9.2" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.2" ∷ word (ἓ ∷ ξ ∷ []) "Mark.9.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.9.2" ∷ word (ὁ ∷ []) "Mark.9.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.2" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.2" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (ἀ ∷ ν ∷ α ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.9.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.2" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.9.2" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.9.2" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.2" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ μ ∷ ο ∷ ρ ∷ φ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.9.2" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.3" ∷ word (τ ∷ ὰ ∷ []) "Mark.9.3" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.9.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.3" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.3" ∷ word (σ ∷ τ ∷ ί ∷ ∙λ ∷ β ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.3" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ []) "Mark.9.3" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.3" ∷ word (ο ∷ ἷ ∷ α ∷ []) "Mark.9.3" ∷ word (γ ∷ ν ∷ α ∷ φ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.9.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.9.3" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.3" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.3" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.9.3" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ᾶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.4" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Mark.9.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.4" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.4" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.9.4" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "Mark.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.4" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.4" ∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.4" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.5" ∷ word (ὁ ∷ []) "Mark.9.5" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.9.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.5" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.9.5" ∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.9.5" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.5" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.9.5" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.5" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.5" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ά ∷ ς ∷ []) "Mark.9.5" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.9.5" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "Mark.9.5" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Mark.9.5" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.6" ∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ []) "Mark.9.6" ∷ word (τ ∷ ί ∷ []) "Mark.9.6" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.9.6" ∷ word (ἔ ∷ κ ∷ φ ∷ ο ∷ β ∷ ο ∷ ι ∷ []) "Mark.9.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.6" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.7" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.7" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.9.7" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ι ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.7" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.7" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.9.7" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.7" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.9.7" ∷ word (Ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.9.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.7" ∷ word (ὁ ∷ []) "Mark.9.7" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.9.7" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.7" ∷ word (ὁ ∷ []) "Mark.9.7" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.9.7" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.8" ∷ word (ἐ ∷ ξ ∷ ά ∷ π ∷ ι ∷ ν ∷ α ∷ []) "Mark.9.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.9.8" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.9.8" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.9.8" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.9.8" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.9.8" ∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.9.8" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.9" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ι ∷ ν ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.9" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.9" ∷ word (ὄ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.9" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.9.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.9" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.9.9" ∷ word (ἃ ∷ []) "Mark.9.9" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.9" ∷ word (δ ∷ ι ∷ η ∷ γ ∷ ή ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.9" ∷ word (ε ∷ ἰ ∷ []) "Mark.9.9" ∷ word (μ ∷ ὴ ∷ []) "Mark.9.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.9.9" ∷ word (ὁ ∷ []) "Mark.9.9" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.9.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.9" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.9" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.9" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.9" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῇ ∷ []) "Mark.9.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.10" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.9.10" ∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.10" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.10" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.10" ∷ word (τ ∷ ί ∷ []) "Mark.9.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.10" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.10" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.10" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.10" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.11" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.11" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.9.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.11" ∷ word (ο ∷ ἱ ∷ []) "Mark.9.11" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.11" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.11" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.9.11" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.11" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.11" ∷ word (ὁ ∷ []) "Mark.9.12" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.12" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.9.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.12" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.12" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.9.12" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.9.12" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.12" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ θ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.9.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.12" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.9.12" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.12" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.9.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.12" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.12" ∷ word (π ∷ ά ∷ θ ∷ ῃ ∷ []) "Mark.9.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ δ ∷ ε ∷ ν ∷ η ∷ θ ∷ ῇ ∷ []) "Mark.9.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.13" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.13" ∷ word (ἐ ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.13" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.13" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.9.13" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.13" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.9.13" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.13" ∷ word (ἐ ∷ π ∷ []) "Mark.9.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.14" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.14" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.9.14" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.14" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.14" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ν ∷ []) "Mark.9.14" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.9.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.14" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.14" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.9.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.15" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.15" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.9.15" ∷ word (ὁ ∷ []) "Mark.9.15" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.15" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.15" ∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.15" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.15" ∷ word (ἠ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.15" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.16" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.16" ∷ word (Τ ∷ ί ∷ []) "Mark.9.16" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.9.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.16" ∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.17" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.9.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.17" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.9.17" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.17" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.9.17" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.17" ∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ []) "Mark.9.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.17" ∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Mark.9.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.17" ∷ word (σ ∷ έ ∷ []) "Mark.9.17" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.17" ∷ word (ἄ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.18" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.9.18" ∷ word (ῥ ∷ ή ∷ σ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.9.18" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ἀ ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (τ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.9.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.18" ∷ word (ὀ ∷ δ ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ξ ∷ η ∷ ρ ∷ α ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ []) "Mark.9.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.9.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.18" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.18" ∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.18" ∷ word (ὁ ∷ []) "Mark.9.19" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.19" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.19" ∷ word (Ὦ ∷ []) "Mark.9.19" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.9.19" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.19" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.19" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.9.19" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.19" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.9.19" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.19" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.9.19" ∷ word (ἀ ∷ ν ∷ έ ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.9.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.19" ∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.19" ∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.9.19" ∷ word (μ ∷ ε ∷ []) "Mark.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20" ∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.20" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.20" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.20" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.20" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.20" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ π ∷ ά ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20" ∷ word (π ∷ ε ∷ σ ∷ ὼ ∷ ν ∷ []) "Mark.9.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.20" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.9.20" ∷ word (ἐ ∷ κ ∷ υ ∷ ∙λ ∷ ί ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.20" ∷ word (ἀ ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.21" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.21" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.21" ∷ word (Π ∷ ό ∷ σ ∷ ο ∷ ς ∷ []) "Mark.9.21" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.21" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.9.21" ∷ word (ὡ ∷ ς ∷ []) "Mark.9.21" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.9.21" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.21" ∷ word (ὁ ∷ []) "Mark.9.21" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.21" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.21" ∷ word (Ἐ ∷ κ ∷ []) "Mark.9.21" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ι ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Mark.9.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.22" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.22" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.9.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.22" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ α ∷ []) "Mark.9.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.22" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "Mark.9.22" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.9.22" ∷ word (ε ∷ ἴ ∷ []) "Mark.9.22" ∷ word (τ ∷ ι ∷ []) "Mark.9.22" ∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Mark.9.22" ∷ word (β ∷ ο ∷ ή ∷ θ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Mark.9.22" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.22" ∷ word (σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.22" ∷ word (ἐ ∷ φ ∷ []) "Mark.9.22" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.22" ∷ word (ὁ ∷ []) "Mark.9.23" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.23" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.23" ∷ word (Τ ∷ ὸ ∷ []) "Mark.9.23" ∷ word (Ε ∷ ἰ ∷ []) "Mark.9.23" ∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Mark.9.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.23" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.9.23" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.23" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.9.23" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.24" ∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.24" ∷ word (ὁ ∷ []) "Mark.9.24" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.9.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.24" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.9.24" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.24" ∷ word (Π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ []) "Mark.9.24" ∷ word (β ∷ ο ∷ ή ∷ θ ∷ ε ∷ ι ∷ []) "Mark.9.24" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.24" ∷ word (τ ∷ ῇ ∷ []) "Mark.9.24" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Mark.9.24" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.9.25" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.25" ∷ word (ὁ ∷ []) "Mark.9.25" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.25" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.25" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.9.25" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.25" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.25" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.25" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.9.25" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.25" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.9.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.9.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.25" ∷ word (Τ ∷ ὸ ∷ []) "Mark.9.25" ∷ word (ἄ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.25" ∷ word (κ ∷ ω ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.9.25" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.25" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.9.25" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ά ∷ σ ∷ σ ∷ ω ∷ []) "Mark.9.25" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.9.25" ∷ word (ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.9.25" ∷ word (ἐ ∷ ξ ∷ []) "Mark.9.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.25" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.9.25" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ ς ∷ []) "Mark.9.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.25" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26" ∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.26" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.26" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.26" ∷ word (ὡ ∷ σ ∷ ε ∷ ὶ ∷ []) "Mark.9.26" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.26" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.9.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.26" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.9.26" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.26" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.9.26" ∷ word (ὁ ∷ []) "Mark.9.27" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.27" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.9.27" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.27" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.27" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.9.27" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.27" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.9.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.28" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.28" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.9.28" ∷ word (ο ∷ ἱ ∷ []) "Mark.9.28" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.9.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.28" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.9.28" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.28" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.28" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.28" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.9.28" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.28" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.28" ∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.28" ∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.28" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.9.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.29" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.29" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.9.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.29" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.29" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.9.29" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.29" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.29" ∷ word (ε ∷ ἰ ∷ []) "Mark.9.29" ∷ word (μ ∷ ὴ ∷ []) "Mark.9.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.29" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῇ ∷ []) "Mark.9.29" ∷ word (Κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.30" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.30" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.30" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.9.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.30" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.30" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.30" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.9.30" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.30" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.9.30" ∷ word (γ ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.9.30" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.9.31" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.31" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.31" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.9.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.31" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.31" ∷ word (Ὁ ∷ []) "Mark.9.31" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.9.31" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.31" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.31" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.31" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.31" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.9.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.31" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.31" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.9.31" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.31" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.31" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.9.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.32" ∷ word (ἠ ∷ γ ∷ ν ∷ ό ∷ ο ∷ υ ∷ ν ∷ []) "Mark.9.32" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.32" ∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Mark.9.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.32" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.32" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.9.32" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.33" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.9.33" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.33" ∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ύ ∷ μ ∷ []) "Mark.9.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.33" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.33" ∷ word (τ ∷ ῇ ∷ []) "Mark.9.33" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.9.33" ∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.33" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.9.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.33" ∷ word (Τ ∷ ί ∷ []) "Mark.9.33" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.33" ∷ word (τ ∷ ῇ ∷ []) "Mark.9.33" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.9.33" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.9.33" ∷ word (ο ∷ ἱ ∷ []) "Mark.9.34" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.34" ∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.9.34" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.34" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.34" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.34" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ έ ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.34" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.34" ∷ word (τ ∷ ῇ ∷ []) "Mark.9.34" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.9.34" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.9.34" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.9.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.9.35" ∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.35" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.35" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.9.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.35" ∷ word (Ε ∷ ἴ ∷ []) "Mark.9.35" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.9.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.9.35" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.35" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.35" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.35" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.35" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.35" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.36" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.9.36" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.9.36" ∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.36" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.36" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Mark.9.36" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.36" ∷ word (ἐ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.36" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.36" ∷ word (Ὃ ∷ ς ∷ []) "Mark.9.37" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.37" ∷ word (ἓ ∷ ν ∷ []) "Mark.9.37" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.37" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.37" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.9.37" ∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.37" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.37" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.37" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.37" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37" ∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.37" ∷ word (ὃ ∷ ς ∷ []) "Mark.9.37" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.37" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37" ∷ word (δ ∷ έ ∷ χ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.37" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37" ∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.37" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.37" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ά ∷ []) "Mark.9.37" ∷ word (μ ∷ ε ∷ []) "Mark.9.37" ∷ word (Ἔ ∷ φ ∷ η ∷ []) "Mark.9.38" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.38" ∷ word (ὁ ∷ []) "Mark.9.38" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.9.38" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.38" ∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ μ ∷ έ ∷ ν ∷ []) "Mark.9.38" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "Mark.9.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.38" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.38" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.38" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.38" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.38" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.9.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.38" ∷ word (ἐ ∷ κ ∷ ω ∷ ∙λ ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.38" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.38" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.38" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.38" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.9.38" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.38" ∷ word (ὁ ∷ []) "Mark.9.39" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.39" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.39" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.39" ∷ word (Μ ∷ ὴ ∷ []) "Mark.9.39" ∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.39" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.39" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.39" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.9.39" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.39" ∷ word (ὃ ∷ ς ∷ []) "Mark.9.39" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.9.39" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.9.39" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.39" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.39" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.39" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.39" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.39" ∷ word (τ ∷ α ∷ χ ∷ ὺ ∷ []) "Mark.9.39" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ῆ ∷ σ ∷ α ∷ ί ∷ []) "Mark.9.39" ∷ word (μ ∷ ε ∷ []) "Mark.9.39" ∷ word (ὃ ∷ ς ∷ []) "Mark.9.40" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.40" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.40" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.40" ∷ word (κ ∷ α ∷ θ ∷ []) "Mark.9.40" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.40" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Mark.9.40" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.40" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.40" ∷ word (Ὃ ∷ ς ∷ []) "Mark.9.41" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.41" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.41" ∷ word (π ∷ ο ∷ τ ∷ ί ∷ σ ∷ ῃ ∷ []) "Mark.9.41" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.41" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.9.41" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.41" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.41" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.9.41" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.41" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.41" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.9.41" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.9.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.41" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.41" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.41" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.41" ∷ word (μ ∷ ὴ ∷ []) "Mark.9.41" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "Mark.9.41" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.41" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "Mark.9.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.41" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.42" ∷ word (ὃ ∷ ς ∷ []) "Mark.9.42" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.42" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ σ ∷ ῃ ∷ []) "Mark.9.42" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.9.42" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.42" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.42" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.42" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.42" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.42" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.42" ∷ word (ἐ ∷ μ ∷ έ ∷ []) "Mark.9.42" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.42" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.42" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.42" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.42" ∷ word (ε ∷ ἰ ∷ []) "Mark.9.42" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.42" ∷ word (μ ∷ ύ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.42" ∷ word (ὀ ∷ ν ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Mark.9.42" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.9.42" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.42" ∷ word (τ ∷ ρ ∷ ά ∷ χ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.42" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.42" ∷ word (β ∷ έ ∷ β ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.42" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.42" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.42" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.42" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.43" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.43" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.43" ∷ word (σ ∷ ε ∷ []) "Mark.9.43" ∷ word (ἡ ∷ []) "Mark.9.43" ∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ []) "Mark.9.43" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.43" ∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ο ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.9.43" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.9.43" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.43" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.9.43" ∷ word (σ ∷ ε ∷ []) "Mark.9.43" ∷ word (κ ∷ υ ∷ ∙λ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.43" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.43" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.43" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.9.43" ∷ word (ἢ ∷ []) "Mark.9.43" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.9.43" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.43" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.43" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.43" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.43" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.43" ∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.43" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.43" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.43" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.43" ∷ word (ἄ ∷ σ ∷ β ∷ ε ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.45" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.45" ∷ word (ὁ ∷ []) "Mark.9.45" ∷ word (π ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.45" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.45" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.45" ∷ word (σ ∷ ε ∷ []) "Mark.9.45" ∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ο ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.9.45" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.45" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.45" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.9.45" ∷ word (σ ∷ ε ∷ []) "Mark.9.45" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.45" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.45" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.9.45" ∷ word (χ ∷ ω ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.45" ∷ word (ἢ ∷ []) "Mark.9.45" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.45" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.45" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.9.45" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.45" ∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.45" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.45" ∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.47" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.47" ∷ word (ὁ ∷ []) "Mark.9.47" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ό ∷ ς ∷ []) "Mark.9.47" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.47" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.47" ∷ word (σ ∷ ε ∷ []) "Mark.9.47" ∷ word (ἔ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.47" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.47" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.47" ∷ word (σ ∷ έ ∷ []) "Mark.9.47" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.47" ∷ word (μ ∷ ο ∷ ν ∷ ό ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.9.47" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.47" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.47" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.47" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.47" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.47" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.9.47" ∷ word (ἢ ∷ []) "Mark.9.47" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.47" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.47" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.47" ∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.47" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.47" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.47" ∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.47" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.48" ∷ word (ὁ ∷ []) "Mark.9.48" ∷ word (σ ∷ κ ∷ ώ ∷ ∙λ ∷ η ∷ ξ ∷ []) "Mark.9.48" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.48" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.48" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ᾷ ∷ []) "Mark.9.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.48" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.48" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.48" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.48" ∷ word (σ ∷ β ∷ έ ∷ ν ∷ ν ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.48" ∷ word (Π ∷ ᾶ ∷ ς ∷ []) "Mark.9.49" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.49" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Mark.9.49" ∷ word (ἁ ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.49" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.50" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.50" ∷ word (ἅ ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.9.50" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.50" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.50" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.50" ∷ word (ἅ ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.9.50" ∷ word (ἄ ∷ ν ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.50" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.50" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.50" ∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "Mark.9.50" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.50" ∷ word (ἀ ∷ ρ ∷ τ ∷ ύ ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.50" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.50" ∷ word (ἅ ∷ ∙λ ∷ α ∷ []) "Mark.9.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.50" ∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.50" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.9.50" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.1" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.1" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.10.1" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.1" ∷ word (τ ∷ ὰ ∷ []) "Mark.10.1" ∷ word (ὅ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.10.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.1" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.10.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.1" ∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.10.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1" ∷ word (ὡ ∷ ς ∷ []) "Mark.10.1" ∷ word (ε ∷ ἰ ∷ ώ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.1" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.1" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.2" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.2" ∷ word (ε ∷ ἰ ∷ []) "Mark.10.2" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.2" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Mark.10.2" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.2" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.2" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.2" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.2" ∷ word (ὁ ∷ []) "Mark.10.3" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.3" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.3" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.3" ∷ word (Τ ∷ ί ∷ []) "Mark.10.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.3" ∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.3" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.10.3" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.4" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.4" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.4" ∷ word (Ἐ ∷ π ∷ έ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.4" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.10.4" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.10.4" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.4" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ ι ∷ []) "Mark.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.4" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.4" ∷ word (ὁ ∷ []) "Mark.10.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.5" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.5" ∷ word (Π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.5" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.5" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.5" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.10.5" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.10.5" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.10.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.6" ∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.10.6" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.10.6" ∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.6" ∷ word (θ ∷ ῆ ∷ ∙λ ∷ υ ∷ []) "Mark.10.6" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.6" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.7" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.10.7" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Mark.10.7" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.10.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.7" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.7" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.7" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.8" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.8" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.8" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.10.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.8" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Mark.10.8" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.8" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.10.8" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.10.8" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.10.8" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.10.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.10.8" ∷ word (μ ∷ ί ∷ α ∷ []) "Mark.10.8" ∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "Mark.10.8" ∷ word (ὃ ∷ []) "Mark.10.9" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.10.9" ∷ word (ὁ ∷ []) "Mark.10.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.10.9" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ζ ∷ ε ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.10.9" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.10.9" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.9" ∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ ζ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.10.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.10" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.10" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.10" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.10.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.10.10" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.10" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.11" ∷ word (Ὃ ∷ ς ∷ []) "Mark.10.11" ∷ word (ἂ ∷ ν ∷ []) "Mark.10.11" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ῃ ∷ []) "Mark.10.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.11" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.11" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.11" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.10.11" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.11" ∷ word (ἐ ∷ π ∷ []) "Mark.10.11" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.12" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Mark.10.12" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.10.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.12" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.10.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.10.12" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.12" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.12" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ φ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.10.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.13" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Mark.10.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.13" ∷ word (ἅ ∷ ψ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.13" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.13" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.13" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.13" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.10.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.13" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.10.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.14" ∷ word (ὁ ∷ []) "Mark.10.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.14" ∷ word (ἠ ∷ γ ∷ α ∷ ν ∷ ά ∷ κ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.14" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.14" ∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.14" ∷ word (τ ∷ ὰ ∷ []) "Mark.10.14" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Mark.10.14" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.10.14" ∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.10.14" ∷ word (μ ∷ ε ∷ []) "Mark.10.14" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.14" ∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.14" ∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Mark.10.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.14" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.10.14" ∷ word (ἡ ∷ []) "Mark.10.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.10.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.14" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.10.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.10.15" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.15" ∷ word (ὃ ∷ ς ∷ []) "Mark.10.15" ∷ word (ἂ ∷ ν ∷ []) "Mark.10.15" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.15" ∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.15" ∷ word (ὡ ∷ ς ∷ []) "Mark.10.15" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.10.15" ∷ word (ο ∷ ὐ ∷ []) "Mark.10.15" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.15" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.10.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.15" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.10.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.16" ∷ word (ἐ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.10.16" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ υ ∷ ∙λ ∷ ό ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.16" ∷ word (τ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.16" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.10.16" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.16" ∷ word (ἐ ∷ π ∷ []) "Mark.10.16" ∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Mark.10.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.17" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.17" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.10.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ὼ ∷ ν ∷ []) "Mark.10.17" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.17" ∷ word (γ ∷ ο ∷ ν ∷ υ ∷ π ∷ ε ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.17" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.10.17" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.17" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.17" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ έ ∷ []) "Mark.10.17" ∷ word (τ ∷ ί ∷ []) "Mark.10.17" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.17" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.10.17" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.17" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.17" ∷ word (ὁ ∷ []) "Mark.10.18" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.18" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.18" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.18" ∷ word (Τ ∷ ί ∷ []) "Mark.10.18" ∷ word (μ ∷ ε ∷ []) "Mark.10.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.18" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Mark.10.18" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.18" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ς ∷ []) "Mark.10.18" ∷ word (ε ∷ ἰ ∷ []) "Mark.10.18" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.18" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.18" ∷ word (ὁ ∷ []) "Mark.10.18" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.10.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.10.19" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.10.19" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (κ ∷ ∙λ ∷ έ ∷ ψ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.10.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.19" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.19" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.19" ∷ word (ὁ ∷ []) "Mark.10.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.20" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.10.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.20" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.20" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.10.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.20" ∷ word (ἐ ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ ξ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "Mark.10.20" ∷ word (ἐ ∷ κ ∷ []) "Mark.10.20" ∷ word (ν ∷ ε ∷ ό ∷ τ ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.10.20" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.10.20" ∷ word (ὁ ∷ []) "Mark.10.21" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.21" ∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.10.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.21" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.21" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.21" ∷ word (Ἕ ∷ ν ∷ []) "Mark.10.21" ∷ word (σ ∷ ε ∷ []) "Mark.10.21" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.10.21" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.10.21" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.10.21" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.21" ∷ word (π ∷ ώ ∷ ∙λ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Mark.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21" ∷ word (δ ∷ ὸ ∷ ς ∷ []) "Mark.10.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.21" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21" ∷ word (ἕ ∷ ξ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.21" ∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.10.21" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.21" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Mark.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21" ∷ word (δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Mark.10.21" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.21" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.10.21" ∷ word (ὁ ∷ []) "Mark.10.22" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.22" ∷ word (σ ∷ τ ∷ υ ∷ γ ∷ ν ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.22" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.10.22" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.22" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Mark.10.22" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.22" ∷ word (∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.22" ∷ word (ἦ ∷ ν ∷ []) "Mark.10.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.22" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.10.22" ∷ word (κ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.10.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.10.22" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.23" ∷ word (ὁ ∷ []) "Mark.10.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.23" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.23" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.23" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.10.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.23" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.10.23" ∷ word (δ ∷ υ ∷ σ ∷ κ ∷ ό ∷ ∙λ ∷ ω ∷ ς ∷ []) "Mark.10.23" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.23" ∷ word (τ ∷ ὰ ∷ []) "Mark.10.23" ∷ word (χ ∷ ρ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.10.23" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.23" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.23" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.23" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.23" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.24" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.24" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.24" ∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.24" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.10.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.24" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.10.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.24" ∷ word (ὁ ∷ []) "Mark.10.24" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.24" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.24" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.24" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.24" ∷ word (Τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.24" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.10.24" ∷ word (δ ∷ ύ ∷ σ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.10.24" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.24" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.24" ∷ word (ε ∷ ὐ ∷ κ ∷ ο ∷ π ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.10.25" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.25" ∷ word (κ ∷ ά ∷ μ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.25" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.10.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.25" ∷ word (τ ∷ ρ ∷ υ ∷ μ ∷ α ∷ ∙λ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Mark.10.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.25" ∷ word (ῥ ∷ α ∷ φ ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Mark.10.25" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.25" ∷ word (ἢ ∷ []) "Mark.10.25" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.25" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.25" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.25" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.26" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.26" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.10.26" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.26" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.26" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.26" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.26" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.26" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.10.26" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.26" ∷ word (σ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.26" ∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.10.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.27" ∷ word (ὁ ∷ []) "Mark.10.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.27" ∷ word (Π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Mark.10.27" ∷ word (ἀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.10.27" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.27" ∷ word (ο ∷ ὐ ∷ []) "Mark.10.27" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.10.27" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.27" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.27" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.10.27" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.27" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.10.27" ∷ word (Ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.28" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.28" ∷ word (ὁ ∷ []) "Mark.10.28" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.10.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.28" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.10.28" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.10.28" ∷ word (ἀ ∷ φ ∷ ή ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.28" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ κ ∷ α ∷ μ ∷ έ ∷ ν ∷ []) "Mark.10.28" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.10.28" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.10.29" ∷ word (ὁ ∷ []) "Mark.10.29" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.29" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.10.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.10.29" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.29" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ί ∷ ς ∷ []) "Mark.10.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.29" ∷ word (ὃ ∷ ς ∷ []) "Mark.10.29" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.29" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.10.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.29" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.29" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.29" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.30" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.30" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.10.30" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ο ∷ ν ∷ τ ∷ α ∷ π ∷ ∙λ ∷ α ∷ σ ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Mark.10.30" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.10.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.30" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Mark.10.30" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.10.30" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.30" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.10.30" ∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.30" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.30" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "Mark.10.30" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.30" ∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Mark.10.30" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.10.30" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.30" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.10.31" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.31" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.31" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.31" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31" ∷ word (Ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.10.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.32" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.32" ∷ word (τ ∷ ῇ ∷ []) "Mark.10.32" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.10.32" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.32" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32" ∷ word (ἦ ∷ ν ∷ []) "Mark.10.32" ∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.10.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.32" ∷ word (ὁ ∷ []) "Mark.10.32" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32" ∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.32" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.32" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.32" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.10.32" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.32" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.32" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.10.32" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.32" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.32" ∷ word (τ ∷ ὰ ∷ []) "Mark.10.32" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.32" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.32" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.33" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.10.33" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.33" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.33" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33" ∷ word (ὁ ∷ []) "Mark.10.33" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.33" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.33" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.10.33" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.33" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.33" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.33" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ί ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (ἐ ∷ μ ∷ π ∷ τ ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (μ ∷ α ∷ σ ∷ τ ∷ ι ∷ γ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.10.34" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.10.34" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.34" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.35" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.35" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ς ∷ []) "Mark.10.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.35" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.10.35" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.35" ∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.10.35" ∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.35" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.35" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.35" ∷ word (ὃ ∷ []) "Mark.10.35" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.35" ∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ []) "Mark.10.35" ∷ word (σ ∷ ε ∷ []) "Mark.10.35" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.35" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.35" ∷ word (ὁ ∷ []) "Mark.10.36" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.36" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.36" ∷ word (Τ ∷ ί ∷ []) "Mark.10.36" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.36" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.36" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.36" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.37" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.37" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.37" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.37" ∷ word (Δ ∷ ὸ ∷ ς ∷ []) "Mark.10.37" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.37" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.37" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.37" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.37" ∷ word (ἐ ∷ κ ∷ []) "Mark.10.37" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.10.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.37" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.37" ∷ word (ἐ ∷ ξ ∷ []) "Mark.10.37" ∷ word (ἀ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.10.37" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.37" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.37" ∷ word (τ ∷ ῇ ∷ []) "Mark.10.37" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Mark.10.37" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.37" ∷ word (ὁ ∷ []) "Mark.10.38" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.38" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.38" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.38" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.10.38" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.38" ∷ word (τ ∷ ί ∷ []) "Mark.10.38" ∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.38" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.38" ∷ word (π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.38" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.38" ∷ word (ὃ ∷ []) "Mark.10.38" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.38" ∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.10.38" ∷ word (ἢ ∷ []) "Mark.10.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.38" ∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.10.38" ∷ word (ὃ ∷ []) "Mark.10.38" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.38" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.10.38" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.38" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.39" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.39" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.39" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.39" ∷ word (Δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Mark.10.39" ∷ word (ὁ ∷ []) "Mark.10.39" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.39" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.39" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.39" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.39" ∷ word (Τ ∷ ὸ ∷ []) "Mark.10.39" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.39" ∷ word (ὃ ∷ []) "Mark.10.39" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.39" ∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.10.39" ∷ word (π ∷ ί ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.39" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.39" ∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.10.39" ∷ word (ὃ ∷ []) "Mark.10.39" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.39" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.10.39" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.39" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.40" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.40" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.40" ∷ word (ἐ ∷ κ ∷ []) "Mark.10.40" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.10.40" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.10.40" ∷ word (ἢ ∷ []) "Mark.10.40" ∷ word (ἐ ∷ ξ ∷ []) "Mark.10.40" ∷ word (ε ∷ ὐ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.10.40" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.10.40" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.40" ∷ word (ἐ ∷ μ ∷ ὸ ∷ ν ∷ []) "Mark.10.40" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.40" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.40" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Mark.10.40" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.40" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.41" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.41" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.41" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Mark.10.41" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.41" ∷ word (ἀ ∷ γ ∷ α ∷ ν ∷ α ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.41" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.10.41" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.10.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.41" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.42" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.42" ∷ word (ὁ ∷ []) "Mark.10.42" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.42" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.42" ∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.42" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.42" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.42" ∷ word (δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.42" ∷ word (ἄ ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.42" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.42" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.42" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.10.43" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.10.43" ∷ word (δ ∷ έ ∷ []) "Mark.10.43" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.43" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.43" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.43" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.43" ∷ word (ὃ ∷ ς ∷ []) "Mark.10.43" ∷ word (ἂ ∷ ν ∷ []) "Mark.10.43" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.10.43" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Mark.10.43" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.10.43" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.43" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.43" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.43" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.43" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.44" ∷ word (ὃ ∷ ς ∷ []) "Mark.10.44" ∷ word (ἂ ∷ ν ∷ []) "Mark.10.44" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.10.44" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.44" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.44" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.44" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.10.44" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.44" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.44" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.10.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.45" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.45" ∷ word (ὁ ∷ []) "Mark.10.45" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.45" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.45" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.10.45" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.10.45" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.45" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.45" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.10.45" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.45" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.45" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.45" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.10.45" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.45" ∷ word (∙λ ∷ ύ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.10.45" ∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "Mark.10.45" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.10.45" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.46" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.46" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.46" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ι ∷ χ ∷ ώ ∷ []) "Mark.10.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.46" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.46" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.10.46" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ι ∷ χ ∷ ὼ ∷ []) "Mark.10.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.46" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.46" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.10.46" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.10.46" ∷ word (ὁ ∷ []) "Mark.10.46" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.46" ∷ word (Τ ∷ ι ∷ μ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.46" ∷ word (Β ∷ α ∷ ρ ∷ τ ∷ ι ∷ μ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Mark.10.46" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.10.46" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Mark.10.46" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ η ∷ τ ∷ ο ∷ []) "Mark.10.46" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.46" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.46" ∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.10.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.47" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.47" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.47" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.47" ∷ word (ὁ ∷ []) "Mark.10.47" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ό ∷ ς ∷ []) "Mark.10.47" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.47" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.47" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.47" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.47" ∷ word (Υ ∷ ἱ ∷ ὲ ∷ []) "Mark.10.47" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.10.47" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.10.47" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.10.47" ∷ word (μ ∷ ε ∷ []) "Mark.10.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.48" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.10.48" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.48" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.10.48" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.48" ∷ word (σ ∷ ι ∷ ω ∷ π ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.48" ∷ word (ὁ ∷ []) "Mark.10.48" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.48" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Mark.10.48" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.48" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.10.48" ∷ word (Υ ∷ ἱ ∷ ὲ ∷ []) "Mark.10.48" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.10.48" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.10.48" ∷ word (μ ∷ ε ∷ []) "Mark.10.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.49" ∷ word (σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.10.49" ∷ word (ὁ ∷ []) "Mark.10.49" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.49" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.49" ∷ word (Φ ∷ ω ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.49" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.49" ∷ word (φ ∷ ω ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Mark.10.49" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.49" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.10.49" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.49" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.49" ∷ word (Θ ∷ ά ∷ ρ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.10.49" ∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.10.49" ∷ word (φ ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ []) "Mark.10.49" ∷ word (σ ∷ ε ∷ []) "Mark.10.49" ∷ word (ὁ ∷ []) "Mark.10.50" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.50" ∷ word (ἀ ∷ π ∷ ο ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.10.50" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.50" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.50" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.50" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ η ∷ δ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.50" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.50" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.50" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.50" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.10.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.51" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.51" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.51" ∷ word (ὁ ∷ []) "Mark.10.51" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.51" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.51" ∷ word (Τ ∷ ί ∷ []) "Mark.10.51" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.10.51" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.51" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.51" ∷ word (ὁ ∷ []) "Mark.10.51" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.51" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.10.51" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.51" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.51" ∷ word (Ρ ∷ α ∷ β ∷ β ∷ ο ∷ υ ∷ ν ∷ ι ∷ []) "Mark.10.51" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.51" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ ω ∷ []) "Mark.10.51" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52" ∷ word (ὁ ∷ []) "Mark.10.52" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.52" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.52" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.52" ∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.10.52" ∷ word (ἡ ∷ []) "Mark.10.52" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Mark.10.52" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.52" ∷ word (σ ∷ έ ∷ σ ∷ ω ∷ κ ∷ έ ∷ ν ∷ []) "Mark.10.52" ∷ word (σ ∷ ε ∷ []) "Mark.10.52" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.10.52" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.52" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.52" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.52" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.52" ∷ word (τ ∷ ῇ ∷ []) "Mark.10.52" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.10.52" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.1" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.11.1" ∷ word (ἐ ∷ γ ∷ γ ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.1" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.1" ∷ word (Β ∷ η ∷ θ ∷ φ ∷ α ∷ γ ∷ ὴ ∷ []) "Mark.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.1" ∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.1" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.1" ∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.11.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1" ∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.11.1" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.11.1" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.11.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.2" ∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2" ∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Mark.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.11.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.11.2" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2" ∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2" ∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.2" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.11.2" ∷ word (ἐ ∷ φ ∷ []) "Mark.11.2" ∷ word (ὃ ∷ ν ∷ []) "Mark.11.2" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.2" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.11.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.2" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.2" ∷ word (∙λ ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2" ∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.3" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.11.3" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.11.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.3" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.11.3" ∷ word (Τ ∷ ί ∷ []) "Mark.11.3" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.11.3" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.11.3" ∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.3" ∷ word (Ὁ ∷ []) "Mark.11.3" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.11.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.3" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.3" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.11.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.3" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.11.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.3" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.11.3" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.11.3" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.11.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.11.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4" ∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.11.4" ∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.4" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.11.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.4" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.11.4" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.11.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.11.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.4" ∷ word (ἀ ∷ μ ∷ φ ∷ ό ∷ δ ∷ ο ∷ υ ∷ []) "Mark.11.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4" ∷ word (∙λ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.4" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.4" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.11.5" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.11.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.5" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.11.5" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.5" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.5" ∷ word (Τ ∷ ί ∷ []) "Mark.11.5" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.11.5" ∷ word (∙λ ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.5" ∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.11.6" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.11.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.6" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.11.6" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.6" ∷ word (ὁ ∷ []) "Mark.11.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.6" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.11.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.7" ∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.7" ∷ word (τ ∷ ὰ ∷ []) "Mark.11.7" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.7" ∷ word (ἐ ∷ π ∷ []) "Mark.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.8" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.11.8" ∷ word (τ ∷ ὰ ∷ []) "Mark.11.8" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.11.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.8" ∷ word (ἔ ∷ σ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.8" ∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.11.8" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.11.8" ∷ word (δ ∷ ὲ ∷ []) "Mark.11.8" ∷ word (σ ∷ τ ∷ ι ∷ β ∷ ά ∷ δ ∷ α ∷ ς ∷ []) "Mark.11.8" ∷ word (κ ∷ ό ∷ ψ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.8" ∷ word (ἐ ∷ κ ∷ []) "Mark.11.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.8" ∷ word (ἀ ∷ γ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.9" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.9" ∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.9" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.9" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.9" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.11.9" ∷ word (Ὡ ∷ σ ∷ α ∷ ν ∷ ν ∷ ά ∷ []) "Mark.11.9" ∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.9" ∷ word (ὁ ∷ []) "Mark.11.9" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.9" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.9" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.11.9" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.11.9" ∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.11.10" ∷ word (ἡ ∷ []) "Mark.11.10" ∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.11.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.11.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.10" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.10" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.11.10" ∷ word (Ὡ ∷ σ ∷ α ∷ ν ∷ ν ∷ ὰ ∷ []) "Mark.11.10" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.10" ∷ word (ὑ ∷ ψ ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.11.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.11" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.11" ∷ word (ἱ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.11" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.11.11" ∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.11.11" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.11.11" ∷ word (ο ∷ ὔ ∷ σ ∷ η ∷ ς ∷ []) "Mark.11.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.11.11" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.11.11" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11" ∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.11" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.11.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.11" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.11.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.12" ∷ word (τ ∷ ῇ ∷ []) "Mark.11.12" ∷ word (ἐ ∷ π ∷ α ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.11.12" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.12" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.11.12" ∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.11.12" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.13" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.11.13" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ν ∷ []) "Mark.11.13" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.11.13" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.13" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.13" ∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.11.13" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.13" ∷ word (ε ∷ ἰ ∷ []) "Mark.11.13" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Mark.11.13" ∷ word (τ ∷ ι ∷ []) "Mark.11.13" ∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.11.13" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.13" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.11.13" ∷ word (ἐ ∷ π ∷ []) "Mark.11.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.11.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.11.13" ∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.11.13" ∷ word (ε ∷ ἰ ∷ []) "Mark.11.13" ∷ word (μ ∷ ὴ ∷ []) "Mark.11.13" ∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.11.13" ∷ word (ὁ ∷ []) "Mark.11.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.13" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.13" ∷ word (ἦ ∷ ν ∷ []) "Mark.11.13" ∷ word (σ ∷ ύ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.14" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.14" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.11.14" ∷ word (Μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.11.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.14" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.11.14" ∷ word (ἐ ∷ κ ∷ []) "Mark.11.14" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Mark.11.14" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.14" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.11.14" ∷ word (φ ∷ ά ∷ γ ∷ ο ∷ ι ∷ []) "Mark.11.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.14" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ο ∷ ν ∷ []) "Mark.11.14" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.14" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.15" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.11.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.15" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.15" ∷ word (ἱ ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.11.15" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.11.15" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.11.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.15" ∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.15" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.11.15" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.15" ∷ word (τ ∷ ῷ ∷ []) "Mark.11.15" ∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15" ∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ α ∷ ς ∷ []) "Mark.11.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15" ∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ β ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ θ ∷ έ ∷ δ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.11.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15" ∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ὰ ∷ ς ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.16" ∷ word (ἤ ∷ φ ∷ ι ∷ ε ∷ ν ∷ []) "Mark.11.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.16" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.11.16" ∷ word (δ ∷ ι ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ ῃ ∷ []) "Mark.11.16" ∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Mark.11.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.11.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.16" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.11.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.17" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.17" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.11.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.17" ∷ word (Ο ∷ ὐ ∷ []) "Mark.11.17" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.17" ∷ word (Ὁ ∷ []) "Mark.11.17" ∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ς ∷ []) "Mark.11.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.11.17" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ς ∷ []) "Mark.11.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.11.17" ∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.17" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.17" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.17" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.17" ∷ word (δ ∷ ὲ ∷ []) "Mark.11.17" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ ή ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.17" ∷ word (σ ∷ π ∷ ή ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.11.17" ∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.18" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.18" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.11.18" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.11.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.18" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.18" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.18" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.18" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.11.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.18" ∷ word (ὁ ∷ []) "Mark.11.18" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.11.18" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.11.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.11.18" ∷ word (τ ∷ ῇ ∷ []) "Mark.11.18" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.11.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.18" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.19" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.11.19" ∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.11.19" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.11.19" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.19" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.11.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.11.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.11.19" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.20" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.20" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.11.20" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.11.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.20" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ν ∷ []) "Mark.11.20" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.11.20" ∷ word (ἐ ∷ κ ∷ []) "Mark.11.20" ∷ word (ῥ ∷ ι ∷ ζ ∷ ῶ ∷ ν ∷ []) "Mark.11.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.21" ∷ word (ἀ ∷ ν ∷ α ∷ μ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.21" ∷ word (ὁ ∷ []) "Mark.11.21" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.11.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.21" ∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.11.21" ∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.11.21" ∷ word (ἡ ∷ []) "Mark.11.21" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ []) "Mark.11.21" ∷ word (ἣ ∷ ν ∷ []) "Mark.11.21" ∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ ά ∷ σ ∷ ω ∷ []) "Mark.11.21" ∷ word (ἐ ∷ ξ ∷ ή ∷ ρ ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.22" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.22" ∷ word (ὁ ∷ []) "Mark.11.22" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.22" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.22" ∷ word (Ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.22" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.11.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.11.22" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.11.23" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.23" ∷ word (ὃ ∷ ς ∷ []) "Mark.11.23" ∷ word (ἂ ∷ ν ∷ []) "Mark.11.23" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.11.23" ∷ word (τ ∷ ῷ ∷ []) "Mark.11.23" ∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.11.23" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.11.23" ∷ word (Ἄ ∷ ρ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.11.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.23" ∷ word (β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.11.23" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.23" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.23" ∷ word (μ ∷ ὴ ∷ []) "Mark.11.23" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.11.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.23" ∷ word (τ ∷ ῇ ∷ []) "Mark.11.23" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Mark.11.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.11.23" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ῃ ∷ []) "Mark.11.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.23" ∷ word (ὃ ∷ []) "Mark.11.23" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.11.23" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.23" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.23" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.11.24" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.11.24" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.24" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.11.24" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.11.24" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.11.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.24" ∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.11.24" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.24" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.24" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.24" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.24" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.25" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.11.25" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.25" ∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25" ∷ word (ε ∷ ἴ ∷ []) "Mark.11.25" ∷ word (τ ∷ ι ∷ []) "Mark.11.25" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ []) "Mark.11.25" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.25" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.25" ∷ word (ὁ ∷ []) "Mark.11.25" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.11.25" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.25" ∷ word (ὁ ∷ []) "Mark.11.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.25" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.25" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.25" ∷ word (ἀ ∷ φ ∷ ῇ ∷ []) "Mark.11.25" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.25" ∷ word (τ ∷ ὰ ∷ []) "Mark.11.25" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.11.25" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.25" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.27" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.27" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.11.27" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.27" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.27" ∷ word (τ ∷ ῷ ∷ []) "Mark.11.27" ∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.11.27" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.11.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.27" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.27" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.27" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.27" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.27" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.27" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Mark.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.28" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.28" ∷ word (Ἐ ∷ ν ∷ []) "Mark.11.28" ∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.28" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.28" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.28" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.28" ∷ word (ἢ ∷ []) "Mark.11.28" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.11.28" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.11.28" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.11.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.28" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.28" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.11.28" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.28" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.28" ∷ word (π ∷ ο ∷ ι ∷ ῇ ∷ ς ∷ []) "Mark.11.28" ∷ word (ὁ ∷ []) "Mark.11.29" ∷ word (δ ∷ ὲ ∷ []) "Mark.11.29" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.29" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.29" ∷ word (Ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.11.29" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.11.29" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.11.29" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.29" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ τ ∷ έ ∷ []) "Mark.11.29" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.29" ∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "Mark.11.29" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.29" ∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.29" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.29" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.29" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Mark.11.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.30" ∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.11.30" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.30" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.11.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.11.30" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.11.30" ∷ word (ἦ ∷ ν ∷ []) "Mark.11.30" ∷ word (ἢ ∷ []) "Mark.11.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.11.30" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.30" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ τ ∷ έ ∷ []) "Mark.11.30" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.11.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.31" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.31" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.31" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.31" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.31" ∷ word (Τ ∷ ί ∷ []) "Mark.11.31" ∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.31" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.11.31" ∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.31" ∷ word (Ἐ ∷ ξ ∷ []) "Mark.11.31" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.11.31" ∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.11.31" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.11.31" ∷ word (τ ∷ ί ∷ []) "Mark.11.31" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.11.31" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.31" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.31" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.31" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.11.32" ∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.32" ∷ word (Ἐ ∷ ξ ∷ []) "Mark.11.32" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.32" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.32" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.32" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.32" ∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.32" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.32" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.11.32" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.32" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.11.32" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "Mark.11.32" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.32" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.11.32" ∷ word (ἦ ∷ ν ∷ []) "Mark.11.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.33" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.33" ∷ word (τ ∷ ῷ ∷ []) "Mark.11.33" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.11.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.33" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.11.33" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.33" ∷ word (ὁ ∷ []) "Mark.11.33" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.33" ∷ word (Ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.11.33" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.11.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.33" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.33" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.33" ∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.33" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.33" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.33" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Mark.11.33" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.12.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.1" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.12.1" ∷ word (Ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.12.1" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.12.1" ∷ word (ἐ ∷ φ ∷ ύ ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (φ ∷ ρ ∷ α ∷ γ ∷ μ ∷ ὸ ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ὤ ∷ ρ ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (ὑ ∷ π ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ᾠ ∷ κ ∷ ο ∷ δ ∷ ό ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (π ∷ ύ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ἐ ∷ ξ ∷ έ ∷ δ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.12.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.1" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ή ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.2" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.2" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.2" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.2" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Mark.12.2" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.2" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.12.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.2" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ῶ ∷ ν ∷ []) "Mark.12.2" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.12.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.2" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ῶ ∷ ν ∷ []) "Mark.12.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.2" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.3" ∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.3" ∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Mark.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.3" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.12.3" ∷ word (κ ∷ ε ∷ ν ∷ ό ∷ ν ∷ []) "Mark.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.4" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.12.4" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.4" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.4" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.4" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.4" ∷ word (ἐ ∷ κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ί ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.4" ∷ word (ἠ ∷ τ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.5" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.5" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.5" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.5" ∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.5" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.12.5" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.12.5" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.12.5" ∷ word (δ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.5" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.12.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.5" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ έ ∷ ν ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.5" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.12.6" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.12.6" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.12.6" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.12.6" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.6" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.6" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.12.6" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.12.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.6" ∷ word (Ἐ ∷ ν ∷ τ ∷ ρ ∷ α ∷ π ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.6" ∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Mark.12.6" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.12.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.7" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.7" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ὶ ∷ []) "Mark.12.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.7" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.12.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.7" ∷ word (Ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.12.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.7" ∷ word (ὁ ∷ []) "Mark.12.7" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Mark.12.7" ∷ word (δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.12.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.7" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.7" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.7" ∷ word (ἡ ∷ []) "Mark.12.7" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ []) "Mark.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.8" ∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.8" ∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.12.8" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.8" ∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.8" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.12.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.8" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.8" ∷ word (τ ∷ ί ∷ []) "Mark.12.9" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9" ∷ word (ὁ ∷ []) "Mark.12.9" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.9" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.9" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.9" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.9" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.9" ∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.9" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.12.9" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.12.9" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.12.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.10" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ ν ∷ []) "Mark.12.10" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.12.10" ∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.12.10" ∷ word (Λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.12.10" ∷ word (ὃ ∷ ν ∷ []) "Mark.12.10" ∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ο ∷ κ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.10" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.10" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.12.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.10" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.10" ∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.10" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.12.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.12.11" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.12.11" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.11" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.11" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ὴ ∷ []) "Mark.12.11" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.11" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.12" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.12.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.12" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.12" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.12" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.12" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.12.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.13" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.13" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "Mark.12.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.13" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.12.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.13" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.12.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.13" ∷ word (ἀ ∷ γ ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Mark.12.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.14" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.14" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.14" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.14" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ὴ ∷ ς ∷ []) "Mark.12.14" ∷ word (ε ∷ ἶ ∷ []) "Mark.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.14" ∷ word (ο ∷ ὐ ∷ []) "Mark.12.14" ∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.12.14" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.12.14" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.12.14" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ό ∷ ς ∷ []) "Mark.12.14" ∷ word (ο ∷ ὐ ∷ []) "Mark.12.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.14" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.14" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.12.14" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.12.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.12.14" ∷ word (ἐ ∷ π ∷ []) "Mark.12.14" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.14" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.12.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.14" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.14" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.14" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.12.14" ∷ word (κ ∷ ῆ ∷ ν ∷ σ ∷ ο ∷ ν ∷ []) "Mark.12.14" ∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ι ∷ []) "Mark.12.14" ∷ word (ἢ ∷ []) "Mark.12.14" ∷ word (ο ∷ ὔ ∷ []) "Mark.12.14" ∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14" ∷ word (ἢ ∷ []) "Mark.12.14" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.14" ∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14" ∷ word (ὁ ∷ []) "Mark.12.15" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.15" ∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Mark.12.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.15" ∷ word (ὑ ∷ π ∷ ό ∷ κ ∷ ρ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.15" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.15" ∷ word (Τ ∷ ί ∷ []) "Mark.12.15" ∷ word (μ ∷ ε ∷ []) "Mark.12.15" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.12.15" ∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ έ ∷ []) "Mark.12.15" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.12.15" ∷ word (δ ∷ η ∷ ν ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.15" ∷ word (ἴ ∷ δ ∷ ω ∷ []) "Mark.12.15" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.16" ∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.12.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.16" ∷ word (Τ ∷ ί ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.16" ∷ word (ἡ ∷ []) "Mark.12.16" ∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "Mark.12.16" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.16" ∷ word (ἡ ∷ []) "Mark.12.16" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ α ∷ φ ∷ ή ∷ []) "Mark.12.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.16" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.12.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.16" ∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.16" ∷ word (ὁ ∷ []) "Mark.12.17" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.17" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.17" ∷ word (Τ ∷ ὰ ∷ []) "Mark.12.17" ∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.17" ∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.12.17" ∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ι ∷ []) "Mark.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.17" ∷ word (τ ∷ ὰ ∷ []) "Mark.12.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.17" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.17" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.17" ∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.12.17" ∷ word (ἐ ∷ π ∷ []) "Mark.12.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.18" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.18" ∷ word (Σ ∷ α ∷ δ ∷ δ ∷ ο ∷ υ ∷ κ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.12.18" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.18" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.18" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.12.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.18" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.18" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.18" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.12.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.18" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.18" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.19" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.12.19" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.12.19" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.12.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.19" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.12.19" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.19" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.12.19" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ά ∷ ν ∷ ῃ ∷ []) "Mark.12.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ί ∷ π ∷ ῃ ∷ []) "Mark.12.19" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.19" ∷ word (ἀ ∷ φ ∷ ῇ ∷ []) "Mark.12.19" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.19" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.12.19" ∷ word (ὁ ∷ []) "Mark.12.19" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.12.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.19" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19" ∷ word (ἐ ∷ ξ ∷ α ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.12.19" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.19" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.19" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῷ ∷ []) "Mark.12.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.19" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.20" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Mark.12.20" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.20" ∷ word (ὁ ∷ []) "Mark.12.20" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.20" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.12.20" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.20" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.12.20" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.20" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.12.20" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21" ∷ word (ὁ ∷ []) "Mark.12.21" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.21" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.12.21" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.12.21" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.21" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ι ∷ π ∷ ὼ ∷ ν ∷ []) "Mark.12.21" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21" ∷ word (ὁ ∷ []) "Mark.12.21" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.21" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.22" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.22" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.22" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.12.22" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.22" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.12.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.22" ∷ word (ἡ ∷ []) "Mark.12.22" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.12.22" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.12.22" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.23" ∷ word (τ ∷ ῇ ∷ []) "Mark.12.23" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.23" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.12.23" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.23" ∷ word (τ ∷ ί ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.23" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.23" ∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "Mark.12.23" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.23" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.23" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.23" ∷ word (ἔ ∷ σ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.12.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.12.23" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.23" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.12.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.24" ∷ word (ὁ ∷ []) "Mark.12.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.24" ∷ word (Ο ∷ ὐ ∷ []) "Mark.12.24" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.12.24" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.12.24" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.12.24" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.24" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.24" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.12.24" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.12.24" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.12.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.24" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.12.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.24" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.12.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.25" ∷ word (ἐ ∷ κ ∷ []) "Mark.12.25" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.25" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.25" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.12.25" ∷ word (γ ∷ α ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.25" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.12.25" ∷ word (γ ∷ α ∷ μ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.25" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.12.25" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.12.25" ∷ word (ὡ ∷ ς ∷ []) "Mark.12.25" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.12.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.25" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.25" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.25" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.12.26" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.26" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.26" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.26" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.26" ∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.12.26" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.26" ∷ word (τ ∷ ῇ ∷ []) "Mark.12.26" ∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ῳ ∷ []) "Mark.12.26" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.12.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.12.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.26" ∷ word (β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.12.26" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.12.26" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.26" ∷ word (ὁ ∷ []) "Mark.12.26" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.12.26" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Mark.12.26" ∷ word (ὁ ∷ []) "Mark.12.26" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Mark.12.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.26" ∷ word (ὁ ∷ []) "Mark.12.26" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26" ∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Mark.12.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.26" ∷ word (ὁ ∷ []) "Mark.12.26" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ []) "Mark.12.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.27" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.27" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.27" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.27" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.12.27" ∷ word (ζ ∷ ώ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.27" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Mark.12.27" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.12.27" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.28" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.12.28" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.28" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.12.28" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.12.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.28" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.28" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.12.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.28" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.12.28" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.28" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.28" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.28" ∷ word (Π ∷ ο ∷ ί ∷ α ∷ []) "Mark.12.28" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.12.28" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Mark.12.28" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Mark.12.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.28" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.29" ∷ word (ὁ ∷ []) "Mark.12.29" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.29" ∷ word (Π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Mark.12.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.12.29" ∷ word (Ἄ ∷ κ ∷ ο ∷ υ ∷ ε ∷ []) "Mark.12.29" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Mark.12.29" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.29" ∷ word (ὁ ∷ []) "Mark.12.29" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.29" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.29" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.29" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.30" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.30" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.30" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.12.31" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.31" ∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.31" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.31" ∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.31" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.31" ∷ word (ὡ ∷ ς ∷ []) "Mark.12.31" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.31" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.12.31" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.31" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "Mark.12.31" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Mark.12.31" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.31" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.32" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.32" ∷ word (ὁ ∷ []) "Mark.12.32" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ς ∷ []) "Mark.12.32" ∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.12.32" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.32" ∷ word (ἐ ∷ π ∷ []) "Mark.12.32" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.32" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ς ∷ []) "Mark.12.32" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.32" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.32" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.32" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.32" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.32" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.32" ∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (τ ∷ ὸ ∷ []) "Mark.12.33" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Mark.12.33" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (τ ∷ ὸ ∷ []) "Mark.12.33" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Mark.12.33" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33" ∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.33" ∷ word (ὡ ∷ ς ∷ []) "Mark.12.33" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.12.33" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.33" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.33" ∷ word (ὁ ∷ ∙λ ∷ ο ∷ κ ∷ α ∷ υ ∷ τ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.34" ∷ word (ὁ ∷ []) "Mark.12.34" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.34" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.12.34" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.34" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.34" ∷ word (ν ∷ ο ∷ υ ∷ ν ∷ ε ∷ χ ∷ ῶ ∷ ς ∷ []) "Mark.12.34" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.34" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.34" ∷ word (Ο ∷ ὐ ∷ []) "Mark.12.34" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Mark.12.34" ∷ word (ε ∷ ἶ ∷ []) "Mark.12.34" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.34" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.34" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.34" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.34" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.34" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.12.34" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.12.34" ∷ word (ἐ ∷ τ ∷ ό ∷ ∙λ ∷ μ ∷ α ∷ []) "Mark.12.34" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.34" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.12.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.35" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.12.35" ∷ word (ὁ ∷ []) "Mark.12.35" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.35" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.12.35" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.12.35" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.35" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.35" ∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.12.35" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.12.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.35" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.35" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.12.35" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.35" ∷ word (ὁ ∷ []) "Mark.12.35" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.35" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.12.35" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.12.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.35" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.36" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.12.36" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.36" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.36" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.12.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.36" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Mark.12.36" ∷ word (Ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.36" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.36" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Mark.12.36" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (Κ ∷ ά ∷ θ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (ἐ ∷ κ ∷ []) "Mark.12.36" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.12.36" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.12.36" ∷ word (ἂ ∷ ν ∷ []) "Mark.12.36" ∷ word (θ ∷ ῶ ∷ []) "Mark.12.36" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.36" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.12.36" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.12.36" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.36" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Mark.12.36" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.37" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.12.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.12.37" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.37" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.37" ∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.12.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.37" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.37" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.12.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.37" ∷ word (ὁ ∷ []) "Mark.12.37" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ς ∷ []) "Mark.12.37" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.37" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ε ∷ ν ∷ []) "Mark.12.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.37" ∷ word (ἡ ∷ δ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.12.37" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.12.38" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.12.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.38" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.12.38" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.12.38" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.38" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.12.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.38" ∷ word (θ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.38" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.12.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.38" ∷ word (ἀ ∷ σ ∷ π ∷ α ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.38" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.39" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ κ ∷ α ∷ θ ∷ ε ∷ δ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.39" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.39" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.39" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.39" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ κ ∷ ∙λ ∷ ι ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.39" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.39" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.39" ∷ word (δ ∷ ε ∷ ί ∷ π ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.12.39" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.40" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ θ ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.40" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.12.40" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.40" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.40" ∷ word (χ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.40" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.40" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ []) "Mark.12.40" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.12.40" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.12.40" ∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.40" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.12.40" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Mark.12.40" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.41" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.12.41" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.12.41" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.41" ∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.12.41" ∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.12.41" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.12.41" ∷ word (ὁ ∷ []) "Mark.12.41" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.41" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.12.41" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ὸ ∷ ν ∷ []) "Mark.12.41" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.41" ∷ word (τ ∷ ὸ ∷ []) "Mark.12.41" ∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.41" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.12.41" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.12.41" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.41" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.12.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.42" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.12.42" ∷ word (μ ∷ ί ∷ α ∷ []) "Mark.12.42" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Mark.12.42" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὴ ∷ []) "Mark.12.42" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.42" ∷ word (∙λ ∷ ε ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.42" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.12.42" ∷ word (ὅ ∷ []) "Mark.12.42" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.42" ∷ word (κ ∷ ο ∷ δ ∷ ρ ∷ ά ∷ ν ∷ τ ∷ η ∷ ς ∷ []) "Mark.12.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.43" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.43" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.43" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.12.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.43" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.43" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.12.43" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.12.43" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.12.43" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.43" ∷ word (ἡ ∷ []) "Mark.12.43" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Mark.12.43" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.43" ∷ word (ἡ ∷ []) "Mark.12.43" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὴ ∷ []) "Mark.12.43" ∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.12.43" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.43" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.43" ∷ word (β ∷ α ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.43" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.43" ∷ word (τ ∷ ὸ ∷ []) "Mark.12.43" ∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.43" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.44" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.44" ∷ word (ἐ ∷ κ ∷ []) "Mark.12.44" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.44" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.44" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.44" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.44" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.44" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.44" ∷ word (ἐ ∷ κ ∷ []) "Mark.12.44" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.12.44" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.12.44" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.12.44" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.12.44" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.44" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.44" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.44" ∷ word (β ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.44" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.13.1" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1" ∷ word (ἐ ∷ κ ∷ []) "Mark.13.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.13.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.13.1" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.13.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.1" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.13.1" ∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.13.1" ∷ word (π ∷ ο ∷ τ ∷ α ∷ π ∷ ο ∷ ὶ ∷ []) "Mark.13.1" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ []) "Mark.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.1" ∷ word (π ∷ ο ∷ τ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Mark.13.1" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Mark.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.2" ∷ word (ὁ ∷ []) "Mark.13.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.13.2" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.13.2" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.13.2" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Mark.13.2" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.13.2" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ά ∷ ς ∷ []) "Mark.13.2" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.2" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.2" ∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.13.2" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.13.2" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "Mark.13.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.2" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.13.2" ∷ word (ὃ ∷ ς ∷ []) "Mark.13.2" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.2" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.2" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ υ ∷ θ ∷ ῇ ∷ []) "Mark.13.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.3" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.3" ∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.3" ∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.13.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.3" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.13.3" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.13.3" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.3" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ς ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3" ∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ς ∷ []) "Mark.13.3" ∷ word (Ε ∷ ἰ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.13.4" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.4" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.4" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.4" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.4" ∷ word (τ ∷ ί ∷ []) "Mark.13.4" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.4" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.13.4" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.4" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Mark.13.4" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.4" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.13.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.4" ∷ word (ὁ ∷ []) "Mark.13.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.13.5" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.13.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.5" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.5" ∷ word (μ ∷ ή ∷ []) "Mark.13.5" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.13.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.5" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.13.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.13.6" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.6" ∷ word (τ ∷ ῷ ∷ []) "Mark.13.6" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.13.6" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.6" ∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Mark.13.6" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.13.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.6" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.6" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.6" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.7" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.7" ∷ word (π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.7" ∷ word (ἀ ∷ κ ∷ ο ∷ ὰ ∷ ς ∷ []) "Mark.13.7" ∷ word (π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.13.7" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.7" ∷ word (θ ∷ ρ ∷ ο ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.7" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.7" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.13.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.13.7" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.13.7" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.7" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.13.7" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.8" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.8" ∷ word (ἐ ∷ π ∷ []) "Mark.13.8" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.8" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.13.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.8" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.8" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.13.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.13.8" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.8" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8" ∷ word (∙λ ∷ ι ∷ μ ∷ ο ∷ ί ∷ []) "Mark.13.8" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Mark.13.8" ∷ word (ὠ ∷ δ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.13.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.8" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.9" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.9" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.9" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὰ ∷ ς ∷ []) "Mark.13.9" ∷ word (δ ∷ α ∷ ρ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.9" ∷ word (ἡ ∷ γ ∷ ε ∷ μ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Mark.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.13.9" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.9" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.13.9" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.13.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.10" ∷ word (τ ∷ ὰ ∷ []) "Mark.13.10" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Mark.13.10" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.13.10" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.10" ∷ word (κ ∷ η ∷ ρ ∷ υ ∷ χ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.13.10" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.10" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.11" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.11" ∷ word (ἄ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.11" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.11" ∷ word (π ∷ ρ ∷ ο ∷ μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾶ ∷ τ ∷ ε ∷ []) "Mark.13.11" ∷ word (τ ∷ ί ∷ []) "Mark.13.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.13.11" ∷ word (ὃ ∷ []) "Mark.13.11" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.13.11" ∷ word (δ ∷ ο ∷ θ ∷ ῇ ∷ []) "Mark.13.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.11" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.13.11" ∷ word (τ ∷ ῇ ∷ []) "Mark.13.11" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Mark.13.11" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.13.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.11" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.11" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.13.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.13.11" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.11" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.11" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.13.11" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.11" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.13.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.13.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.13.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.12" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.13.12" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12" ∷ word (ἐ ∷ π ∷ α ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.12" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.13.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.12" ∷ word (γ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12" ∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.13" ∷ word (ἔ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.13" ∷ word (μ ∷ ι ∷ σ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.13.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.13.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.13.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.13.13" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.13" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.13.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.13" ∷ word (ὁ ∷ []) "Mark.13.13" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.13" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Mark.13.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.13" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.13.13" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.13.13" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.13" ∷ word (Ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.14" ∷ word (ἴ ∷ δ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.14" ∷ word (β ∷ δ ∷ έ ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Mark.13.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.14" ∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.14" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Mark.13.14" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.13.14" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.14" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.14" ∷ word (ὁ ∷ []) "Mark.13.14" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.13.14" ∷ word (ν ∷ ο ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Mark.13.14" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.14" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.14" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.14" ∷ word (τ ∷ ῇ ∷ []) "Mark.13.14" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ᾳ ∷ []) "Mark.13.14" ∷ word (φ ∷ ε ∷ υ ∷ γ ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.13.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.14" ∷ word (τ ∷ ὰ ∷ []) "Mark.13.14" ∷ word (ὄ ∷ ρ ∷ η ∷ []) "Mark.13.14" ∷ word (ὁ ∷ []) "Mark.13.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.15" ∷ word (δ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.13.15" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.15" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.15" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.13.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.15" ∷ word (τ ∷ ι ∷ []) "Mark.13.15" ∷ word (ἆ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.15" ∷ word (ἐ ∷ κ ∷ []) "Mark.13.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.15" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.16" ∷ word (ὁ ∷ []) "Mark.13.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.13.16" ∷ word (ἀ ∷ γ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.13.16" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.16" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.16" ∷ word (τ ∷ ὰ ∷ []) "Mark.13.16" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.13.16" ∷ word (ἆ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.16" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.16" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.16" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Mark.13.17" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.17" ∷ word (γ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.13.17" ∷ word (ἐ ∷ χ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17" ∷ word (θ ∷ η ∷ ∙λ ∷ α ∷ ζ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.17" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.18" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.13.18" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.18" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.18" ∷ word (χ ∷ ε ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.18" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.19" ∷ word (α ∷ ἱ ∷ []) "Mark.13.19" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.19" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.13.19" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ς ∷ []) "Mark.13.19" ∷ word (ο ∷ ἵ ∷ α ∷ []) "Mark.13.19" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.19" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.13.19" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ []) "Mark.13.19" ∷ word (ἀ ∷ π ∷ []) "Mark.13.19" ∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.13.19" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.19" ∷ word (ἣ ∷ ν ∷ []) "Mark.13.19" ∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.19" ∷ word (ὁ ∷ []) "Mark.13.19" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.13.19" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.13.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.19" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.13.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.19" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.19" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.19" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.20" ∷ word (ε ∷ ἰ ∷ []) "Mark.13.20" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.20" ∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ β ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.20" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.20" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.20" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.20" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.20" ∷ word (ἂ ∷ ν ∷ []) "Mark.13.20" ∷ word (ἐ ∷ σ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.13.20" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Mark.13.20" ∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "Mark.13.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.20" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.13.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.20" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.20" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.13.20" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.20" ∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ β ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.20" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.20" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.21" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.21" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.13.21" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.13.21" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.21" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.13.21" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.13.21" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.13.21" ∷ word (ὁ ∷ []) "Mark.13.21" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.13.21" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.13.21" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.13.21" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.21" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.21" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.22" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ό ∷ χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.13.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22" ∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.22" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Mark.13.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22" ∷ word (τ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Mark.13.22" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.13.22" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.22" ∷ word (ἀ ∷ π ∷ ο ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ ν ∷ []) "Mark.13.22" ∷ word (ε ∷ ἰ ∷ []) "Mark.13.22" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.13.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.22" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.22" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.23" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.23" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.23" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ί ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "Mark.13.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.23" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.24" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.24" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.24" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.24" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.24" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.13.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.24" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Mark.13.24" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.13.24" ∷ word (ὁ ∷ []) "Mark.13.24" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.24" ∷ word (σ ∷ κ ∷ ο ∷ τ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.24" ∷ word (ἡ ∷ []) "Mark.13.24" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Mark.13.24" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.24" ∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.13.24" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.24" ∷ word (φ ∷ έ ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Mark.13.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.13.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.25" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.25" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Mark.13.25" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.25" ∷ word (ἐ ∷ κ ∷ []) "Mark.13.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.25" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.13.25" ∷ word (π ∷ ί ∷ π ∷ τ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.25" ∷ word (α ∷ ἱ ∷ []) "Mark.13.25" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.13.25" ∷ word (α ∷ ἱ ∷ []) "Mark.13.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.25" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.25" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.25" ∷ word (σ ∷ α ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.26" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.26" ∷ word (ὄ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.13.26" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.13.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.26" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.13.26" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.13.26" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.26" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.26" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.13.26" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.13.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.26" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Mark.13.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.27" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.27" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.13.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.27" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ ά ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.13.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27" ∷ word (ἐ ∷ κ ∷ []) "Mark.13.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.27" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.13.27" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.13.27" ∷ word (ἀ ∷ π ∷ []) "Mark.13.27" ∷ word (ἄ ∷ κ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.13.27" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.13.27" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.13.27" ∷ word (ἄ ∷ κ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.13.27" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.13.27" ∷ word (Ἀ ∷ π ∷ ὸ ∷ []) "Mark.13.28" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.28" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.28" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ς ∷ []) "Mark.13.28" ∷ word (μ ∷ ά ∷ θ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.28" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.13.28" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.28" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.13.28" ∷ word (ὁ ∷ []) "Mark.13.28" ∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ ς ∷ []) "Mark.13.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.13.28" ∷ word (ἁ ∷ π ∷ α ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.13.28" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.28" ∷ word (ἐ ∷ κ ∷ φ ∷ ύ ∷ ῃ ∷ []) "Mark.13.28" ∷ word (τ ∷ ὰ ∷ []) "Mark.13.28" ∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.13.28" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.28" ∷ word (ἐ ∷ γ ∷ γ ∷ ὺ ∷ ς ∷ []) "Mark.13.28" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.28" ∷ word (θ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.28" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.13.28" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.13.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.29" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.29" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.29" ∷ word (ἴ ∷ δ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.29" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.29" ∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Mark.13.29" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.29" ∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Mark.13.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.13.29" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.29" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.29" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.13.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.30" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.30" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.30" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.30" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.30" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.13.30" ∷ word (ἡ ∷ []) "Mark.13.30" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.13.30" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.13.30" ∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ ς ∷ []) "Mark.13.30" ∷ word (ο ∷ ὗ ∷ []) "Mark.13.30" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.30" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.30" ∷ word (ὁ ∷ []) "Mark.13.31" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.13.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.31" ∷ word (ἡ ∷ []) "Mark.13.31" ∷ word (γ ∷ ῆ ∷ []) "Mark.13.31" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.31" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.31" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Mark.13.31" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.31" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.31" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.31" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.31" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.13.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.32" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.32" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.32" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.32" ∷ word (ἢ ∷ []) "Mark.13.32" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.32" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.32" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.13.32" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.13.32" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.13.32" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.32" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.13.32" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.32" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Mark.13.32" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.13.32" ∷ word (ὁ ∷ []) "Mark.13.32" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.13.32" ∷ word (ε ∷ ἰ ∷ []) "Mark.13.32" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.32" ∷ word (ὁ ∷ []) "Mark.13.32" ∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Mark.13.32" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.33" ∷ word (ἀ ∷ γ ∷ ρ ∷ υ ∷ π ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.33" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.33" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.13.33" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.33" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.33" ∷ word (ὁ ∷ []) "Mark.13.33" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.13.33" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.13.33" ∷ word (ὡ ∷ ς ∷ []) "Mark.13.34" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.13.34" ∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ η ∷ μ ∷ ο ∷ ς ∷ []) "Mark.13.34" ∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.13.34" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.34" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.34" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.34" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.34" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.13.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.34" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.34" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Mark.13.34" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.34" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.13.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.34" ∷ word (τ ∷ ῷ ∷ []) "Mark.13.34" ∷ word (θ ∷ υ ∷ ρ ∷ ω ∷ ρ ∷ ῷ ∷ []) "Mark.13.34" ∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.34" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.13.34" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῇ ∷ []) "Mark.13.34" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.35" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.13.35" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.35" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.13.35" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.35" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.35" ∷ word (ὁ ∷ []) "Mark.13.35" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.35" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.35" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.35" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.35" ∷ word (ἢ ∷ []) "Mark.13.35" ∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.13.35" ∷ word (ἢ ∷ []) "Mark.13.35" ∷ word (μ ∷ ε ∷ σ ∷ ο ∷ ν ∷ ύ ∷ κ ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.35" ∷ word (ἢ ∷ []) "Mark.13.35" ∷ word (ἀ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ρ ∷ ο ∷ φ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.35" ∷ word (ἢ ∷ []) "Mark.13.35" ∷ word (π ∷ ρ ∷ ω ∷ ΐ ∷ []) "Mark.13.35" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.36" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.13.36" ∷ word (ἐ ∷ ξ ∷ α ∷ ί ∷ φ ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.36" ∷ word (ε ∷ ὕ ∷ ρ ∷ ῃ ∷ []) "Mark.13.36" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.36" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.13.36" ∷ word (ὃ ∷ []) "Mark.13.37" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.37" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.37" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.37" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.37" ∷ word (Ἦ ∷ ν ∷ []) "Mark.14.1" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.1" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.1" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1" ∷ word (τ ∷ ὰ ∷ []) "Mark.14.1" ∷ word (ἄ ∷ ζ ∷ υ ∷ μ ∷ α ∷ []) "Mark.14.1" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.1" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.14.1" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.1" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.1" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.1" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.1" ∷ word (δ ∷ ό ∷ ∙λ ∷ ῳ ∷ []) "Mark.14.1" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.1" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.1" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.2" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.14.2" ∷ word (Μ ∷ ὴ ∷ []) "Mark.14.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.2" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.2" ∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ῇ ∷ []) "Mark.14.2" ∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.2" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.2" ∷ word (θ ∷ ό ∷ ρ ∷ υ ∷ β ∷ ο ∷ ς ∷ []) "Mark.14.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.2" ∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Mark.14.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.3" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.3" ∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ ᾳ ∷ []) "Mark.14.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.3" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.3" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.14.3" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (∙λ ∷ ε ∷ π ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.14.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.3" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.14.3" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.14.3" ∷ word (ἀ ∷ ∙λ ∷ ά ∷ β ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.3" ∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.3" ∷ word (ν ∷ ά ∷ ρ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.14.3" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ι ∷ κ ∷ ῆ ∷ ς ∷ []) "Mark.14.3" ∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ε ∷ ∙λ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.3" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ί ∷ ψ ∷ α ∷ σ ∷ α ∷ []) "Mark.14.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.3" ∷ word (ἀ ∷ ∙λ ∷ ά ∷ β ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.3" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Mark.14.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.14.3" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.4" ∷ word (δ ∷ έ ∷ []) "Mark.14.4" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.4" ∷ word (ἀ ∷ γ ∷ α ∷ ν ∷ α ∷ κ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.14.4" ∷ word (Ε ∷ ἰ ∷ ς ∷ []) "Mark.14.4" ∷ word (τ ∷ ί ∷ []) "Mark.14.4" ∷ word (ἡ ∷ []) "Mark.14.4" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ []) "Mark.14.4" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.14.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.4" ∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.4" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.14.4" ∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.14.5" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.5" ∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.5" ∷ word (π ∷ ρ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.5" ∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Mark.14.5" ∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.5" ∷ word (τ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.5" ∷ word (δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.5" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.5" ∷ word (ἐ ∷ ν ∷ ε ∷ β ∷ ρ ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.14.5" ∷ word (ὁ ∷ []) "Mark.14.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.6" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.6" ∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.6" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.14.6" ∷ word (τ ∷ ί ∷ []) "Mark.14.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.14.6" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.14.6" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.6" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.14.6" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.6" ∷ word (ἠ ∷ ρ ∷ γ ∷ ά ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.6" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.6" ∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "Mark.14.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.7" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.7" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.14.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.7" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.14.7" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.7" ∷ word (ε ∷ ὖ ∷ []) "Mark.14.7" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.7" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.14.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.7" ∷ word (ο ∷ ὐ ∷ []) "Mark.14.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (ὃ ∷ []) "Mark.14.8" ∷ word (ἔ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.14.8" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.8" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.14.8" ∷ word (μ ∷ υ ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.8" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.8" ∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "Mark.14.8" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.8" ∷ word (ἐ ∷ ν ∷ τ ∷ α ∷ φ ∷ ι ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Mark.14.8" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.9" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.9" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.9" ∷ word (κ ∷ η ∷ ρ ∷ υ ∷ χ ∷ θ ∷ ῇ ∷ []) "Mark.14.9" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.9" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.9" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.9" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.9" ∷ word (ὃ ∷ []) "Mark.14.9" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.9" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.14.9" ∷ word (∙λ ∷ α ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.9" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ σ ∷ υ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.14.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.10" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Mark.14.10" ∷ word (Ἰ ∷ σ ∷ κ ∷ α ∷ ρ ∷ ι ∷ ὼ ∷ θ ∷ []) "Mark.14.10" ∷ word (ὁ ∷ []) "Mark.14.10" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.10" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.10" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.14.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.11" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.11" ∷ word (ἐ ∷ χ ∷ ά ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.11" ∷ word (ἐ ∷ π ∷ η ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.11" ∷ word (ἀ ∷ ρ ∷ γ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.11" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.11" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ε ∷ ι ∷ []) "Mark.14.11" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.11" ∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ω ∷ ς ∷ []) "Mark.14.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.14.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.12" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.12" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Mark.14.12" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.14.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.12" ∷ word (ἀ ∷ ζ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.14.12" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.14.12" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.12" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.12" ∷ word (ἔ ∷ θ ∷ υ ∷ ο ∷ ν ∷ []) "Mark.14.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.12" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.12" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.14.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.12" ∷ word (Π ∷ ο ∷ ῦ ∷ []) "Mark.14.12" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.12" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.12" ∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.12" ∷ word (φ ∷ ά ∷ γ ∷ ῃ ∷ ς ∷ []) "Mark.14.12" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.12" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.14.13" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.14.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.13" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.13" ∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.13" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13" ∷ word (ἀ ∷ π ∷ α ∷ ν ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.14.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.13" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.14.13" ∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.13" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.13" ∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.14.13" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.14" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.14" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.14" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.14.14" ∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.14" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.14" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ ῃ ∷ []) "Mark.14.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.14" ∷ word (Ὁ ∷ []) "Mark.14.14" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.14.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.14" ∷ word (Π ∷ ο ∷ ῦ ∷ []) "Mark.14.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.14" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ ∙λ ∷ υ ∷ μ ∷ ά ∷ []) "Mark.14.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.14" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.14" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.14" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.14" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.14" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ []) "Mark.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.14.15" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.15" ∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.14.15" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.15" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Mark.14.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.15" ∷ word (ἕ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.15" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.14.15" ∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.15" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.16" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.16" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.16" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.14.16" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.16" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.16" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.17" ∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.14.17" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.14.17" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.17" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.17" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.18" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Mark.14.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.18" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.18" ∷ word (ὁ ∷ []) "Mark.14.18" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.18" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.18" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.18" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.18" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.18" ∷ word (ἐ ∷ ξ ∷ []) "Mark.14.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.14.18" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.14.18" ∷ word (μ ∷ ε ∷ []) "Mark.14.18" ∷ word (ὁ ∷ []) "Mark.14.18" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.18" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.18" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.18" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.19" ∷ word (∙λ ∷ υ ∷ π ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.19" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.19" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.14.19" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.19" ∷ word (Μ ∷ ή ∷ τ ∷ ι ∷ []) "Mark.14.19" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.19" ∷ word (ὁ ∷ []) "Mark.14.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.20" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.20" ∷ word (Ε ∷ ἷ ∷ ς ∷ []) "Mark.14.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.20" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.20" ∷ word (ὁ ∷ []) "Mark.14.20" ∷ word (ἐ ∷ μ ∷ β ∷ α ∷ π ∷ τ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.20" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.20" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.20" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.20" ∷ word (τ ∷ ρ ∷ ύ ∷ β ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.21" ∷ word (ὁ ∷ []) "Mark.14.21" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.14.21" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.21" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.21" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.14.21" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.21" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.14.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Mark.14.21" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.21" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.14.21" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῳ ∷ []) "Mark.14.21" ∷ word (δ ∷ ι ∷ []) "Mark.14.21" ∷ word (ο ∷ ὗ ∷ []) "Mark.14.21" ∷ word (ὁ ∷ []) "Mark.14.21" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.21" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.21" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.14.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.21" ∷ word (ε ∷ ἰ ∷ []) "Mark.14.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.21" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.14.21" ∷ word (ὁ ∷ []) "Mark.14.21" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.14.21" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.22" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.22" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.14.22" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.22" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.22" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.22" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.22" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.22" ∷ word (Λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.22" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Mark.14.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.22" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.22" ∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "Mark.14.22" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.23" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.14.23" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.23" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.23" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.23" ∷ word (ἔ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.23" ∷ word (ἐ ∷ ξ ∷ []) "Mark.14.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.24" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.24" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Mark.14.24" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.24" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.24" ∷ word (α ∷ ἷ ∷ μ ∷ ά ∷ []) "Mark.14.24" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.24" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Mark.14.24" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.24" ∷ word (ἐ ∷ κ ∷ χ ∷ υ ∷ ν ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.24" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Mark.14.24" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.24" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.25" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.25" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.25" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.14.25" ∷ word (ο ∷ ὐ ∷ []) "Mark.14.25" ∷ word (μ ∷ ὴ ∷ []) "Mark.14.25" ∷ word (π ∷ ί ∷ ω ∷ []) "Mark.14.25" ∷ word (ἐ ∷ κ ∷ []) "Mark.14.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.25" ∷ word (γ ∷ ε ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.25" ∷ word (ἀ ∷ μ ∷ π ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.14.25" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.25" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.25" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Mark.14.25" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.14.25" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.14.25" ∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.14.25" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.14.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.25" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.25" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Mark.14.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.14.25" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.26" ∷ word (ὑ ∷ μ ∷ ν ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.26" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.26" ∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.26" ∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.26" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.27" ∷ word (ὁ ∷ []) "Mark.14.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.27" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.27" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.27" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.27" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.27" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.27" ∷ word (Π ∷ α ∷ τ ∷ ά ∷ ξ ∷ ω ∷ []) "Mark.14.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.27" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.14.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.27" ∷ word (τ ∷ ὰ ∷ []) "Mark.14.27" ∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Mark.14.27" ∷ word (δ ∷ ι ∷ α ∷ σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.27" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.14.28" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.28" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.28" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ί ∷ []) "Mark.14.28" ∷ word (μ ∷ ε ∷ []) "Mark.14.28" ∷ word (π ∷ ρ ∷ ο ∷ ά ∷ ξ ∷ ω ∷ []) "Mark.14.28" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.14.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.28" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.28" ∷ word (ὁ ∷ []) "Mark.14.29" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.29" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.29" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.14.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.29" ∷ word (Ε ∷ ἰ ∷ []) "Mark.14.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.29" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.29" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.29" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.29" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.30" ∷ word (ὁ ∷ []) "Mark.14.30" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.30" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.30" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.30" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.30" ∷ word (σ ∷ ὺ ∷ []) "Mark.14.30" ∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.30" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.14.30" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.30" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὶ ∷ []) "Mark.14.30" ∷ word (π ∷ ρ ∷ ὶ ∷ ν ∷ []) "Mark.14.30" ∷ word (ἢ ∷ []) "Mark.14.30" ∷ word (δ ∷ ὶ ∷ ς ∷ []) "Mark.14.30" ∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.14.30" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.30" ∷ word (τ ∷ ρ ∷ ί ∷ ς ∷ []) "Mark.14.30" ∷ word (μ ∷ ε ∷ []) "Mark.14.30" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.14.30" ∷ word (ὁ ∷ []) "Mark.14.31" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.31" ∷ word (ἐ ∷ κ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.14.31" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.14.31" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.31" ∷ word (δ ∷ έ ∷ ῃ ∷ []) "Mark.14.31" ∷ word (μ ∷ ε ∷ []) "Mark.14.31" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.31" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.31" ∷ word (ο ∷ ὐ ∷ []) "Mark.14.31" ∷ word (μ ∷ ή ∷ []) "Mark.14.31" ∷ word (σ ∷ ε ∷ []) "Mark.14.31" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.31" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.14.31" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.31" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.31" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.32" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.32" ∷ word (χ ∷ ω ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.14.32" ∷ word (ο ∷ ὗ ∷ []) "Mark.14.32" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.32" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.14.32" ∷ word (Γ ∷ ε ∷ θ ∷ σ ∷ η ∷ μ ∷ α ∷ ν ∷ ί ∷ []) "Mark.14.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.32" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.32" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.32" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.14.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.32" ∷ word (Κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.32" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.14.32" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.32" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.14.33" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.33" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.14.33" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.33" ∷ word (ἐ ∷ κ ∷ θ ∷ α ∷ μ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (ἀ ∷ δ ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.34" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.34" ∷ word (Π ∷ ε ∷ ρ ∷ ί ∷ ∙λ ∷ υ ∷ π ∷ ό ∷ ς ∷ []) "Mark.14.34" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.34" ∷ word (ἡ ∷ []) "Mark.14.34" ∷ word (ψ ∷ υ ∷ χ ∷ ή ∷ []) "Mark.14.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.34" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.34" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.14.34" ∷ word (μ ∷ ε ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.34" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.14.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.34" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.14.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.35" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.35" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.14.35" ∷ word (ἔ ∷ π ∷ ι ∷ π ∷ τ ∷ ε ∷ ν ∷ []) "Mark.14.35" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.35" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.35" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.14.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.35" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.14.35" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.35" ∷ word (ε ∷ ἰ ∷ []) "Mark.14.35" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.35" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.14.35" ∷ word (ἀ ∷ π ∷ []) "Mark.14.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.35" ∷ word (ἡ ∷ []) "Mark.14.35" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.14.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.36" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.14.36" ∷ word (Α ∷ β ∷ β ∷ α ∷ []) "Mark.14.36" ∷ word (ὁ ∷ []) "Mark.14.36" ∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Mark.14.36" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.14.36" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ά ∷ []) "Mark.14.36" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.36" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ []) "Mark.14.36" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.36" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.36" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.14.36" ∷ word (ἀ ∷ π ∷ []) "Mark.14.36" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.36" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.36" ∷ word (ο ∷ ὐ ∷ []) "Mark.14.36" ∷ word (τ ∷ ί ∷ []) "Mark.14.36" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.14.36" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.14.36" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.14.36" ∷ word (τ ∷ ί ∷ []) "Mark.14.36" ∷ word (σ ∷ ύ ∷ []) "Mark.14.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37" ∷ word (ε ∷ ὑ ∷ ρ ∷ ί ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Mark.14.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.37" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.14.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.37" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.37" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.14.37" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.14.37" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.37" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.37" ∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.37" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.37" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.37" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.37" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.14.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.38" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.38" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.38" ∷ word (μ ∷ ὴ ∷ []) "Mark.14.38" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.14.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.38" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Mark.14.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.38" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.14.38" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.14.38" ∷ word (π ∷ ρ ∷ ό ∷ θ ∷ υ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.38" ∷ word (ἡ ∷ []) "Mark.14.38" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.38" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "Mark.14.38" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ή ∷ ς ∷ []) "Mark.14.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.39" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.39" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.39" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.39" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.39" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.39" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.39" ∷ word (ε ∷ ἰ ∷ π ∷ ώ ∷ ν ∷ []) "Mark.14.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.40" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.40" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.40" ∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.14.40" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.40" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.14.40" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.40" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.40" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.40" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.40" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.14.40" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ρ ∷ υ ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.14.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.40" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.40" ∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.40" ∷ word (τ ∷ ί ∷ []) "Mark.14.40" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.40" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.41" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.41" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.41" ∷ word (Κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.41" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.41" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.14.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.41" ∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.14.41" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.41" ∷ word (ἡ ∷ []) "Mark.14.41" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.14.41" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.14.41" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.41" ∷ word (ὁ ∷ []) "Mark.14.41" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.41" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.41" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.41" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.41" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.14.41" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.41" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.41" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.41" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.42" ∷ word (ἄ ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.42" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.14.42" ∷ word (ὁ ∷ []) "Mark.14.42" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.14.42" ∷ word (μ ∷ ε ∷ []) "Mark.14.42" ∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.42" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.43" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.14.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.43" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.43" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.43" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Mark.14.43" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.43" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.14.43" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.43" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.14.43" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.14.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.14.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.14.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.14.43" ∷ word (δ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ ε ∷ ι ∷ []) "Mark.14.44" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.44" ∷ word (ὁ ∷ []) "Mark.14.44" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.44" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.44" ∷ word (σ ∷ ύ ∷ σ ∷ σ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.44" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.44" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.44" ∷ word (Ὃ ∷ ν ∷ []) "Mark.14.44" ∷ word (ἂ ∷ ν ∷ []) "Mark.14.44" ∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.14.44" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.14.44" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.44" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.44" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.44" ∷ word (ἀ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.44" ∷ word (ἀ ∷ σ ∷ φ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.14.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.45" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.45" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.45" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.45" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.45" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.45" ∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.14.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.45" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ φ ∷ ί ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.45" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.45" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.46" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.46" ∷ word (ἐ ∷ π ∷ έ ∷ β ∷ α ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.14.46" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.14.46" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.46" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.46" ∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.46" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.46" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.47" ∷ word (δ ∷ έ ∷ []) "Mark.14.47" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.14.47" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.47" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.47" ∷ word (σ ∷ π ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.47" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.47" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.47" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.47" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.47" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.47" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.47" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.47" ∷ word (ἀ ∷ φ ∷ ε ∷ ῖ ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.14.47" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.47" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.47" ∷ word (ὠ ∷ τ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.48" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.14.48" ∷ word (ὁ ∷ []) "Mark.14.48" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.48" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.48" ∷ word (Ὡ ∷ ς ∷ []) "Mark.14.48" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.48" ∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.14.48" ∷ word (ἐ ∷ ξ ∷ ή ∷ ∙λ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.48" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.48" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.48" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.14.48" ∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.48" ∷ word (μ ∷ ε ∷ []) "Mark.14.48" ∷ word (κ ∷ α ∷ θ ∷ []) "Mark.14.49" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.49" ∷ word (ἤ ∷ μ ∷ η ∷ ν ∷ []) "Mark.14.49" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.49" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.14.49" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.49" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.49" ∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.14.49" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.14.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.49" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.49" ∷ word (ἐ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ έ ∷ []) "Mark.14.49" ∷ word (μ ∷ ε ∷ []) "Mark.14.49" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.49" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.49" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.49" ∷ word (α ∷ ἱ ∷ []) "Mark.14.49" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ α ∷ ί ∷ []) "Mark.14.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.50" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.50" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.50" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.50" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.50" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.51" ∷ word (ν ∷ ε ∷ α ∷ ν ∷ ί ∷ σ ∷ κ ∷ ο ∷ ς ∷ []) "Mark.14.51" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.14.51" ∷ word (σ ∷ υ ∷ ν ∷ η ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.14.51" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.51" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.51" ∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.14.51" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.51" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.51" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.51" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.51" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.51" ∷ word (ὁ ∷ []) "Mark.14.52" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.52" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ι ∷ π ∷ ὼ ∷ ν ∷ []) "Mark.14.52" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.52" ∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.14.52" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.14.52" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Mark.14.52" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.53" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.53" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.53" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.14.53" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.53" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.53" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Mark.14.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.53" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.53" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.53" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.53" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Mark.14.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.53" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54" ∷ word (ὁ ∷ []) "Mark.14.54" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.54" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.14.54" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.54" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.54" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.54" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.54" ∷ word (ἔ ∷ σ ∷ ω ∷ []) "Mark.14.54" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.54" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.54" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.14.54" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.54" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.54" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54" ∷ word (ἦ ∷ ν ∷ []) "Mark.14.54" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.54" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.54" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.54" ∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.54" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54" ∷ word (θ ∷ ε ∷ ρ ∷ μ ∷ α ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.54" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.54" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.54" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "Mark.14.54" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.55" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.55" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.55" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.55" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.55" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.55" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.55" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.55" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.14.55" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.55" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.14.55" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.55" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.55" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.55" ∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.55" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.55" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.55" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.14.55" ∷ word (η ∷ ὕ ∷ ρ ∷ ι ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.14.55" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.14.56" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.56" ∷ word (ἐ ∷ ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.56" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.14.56" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.56" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.56" ∷ word (ἴ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.56" ∷ word (α ∷ ἱ ∷ []) "Mark.14.56" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ι ∷ []) "Mark.14.56" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.56" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.56" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.14.57" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.57" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.57" ∷ word (ἐ ∷ ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.57" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.14.57" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.57" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.57" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.58" ∷ word (Ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.58" ∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.58" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.58" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.58" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.58" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Mark.14.58" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.14.58" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.58" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Mark.14.58" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.58" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.58" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.14.58" ∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.58" ∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.58" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.58" ∷ word (ἀ ∷ χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.14.58" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.59" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.14.59" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.14.59" ∷ word (ἴ ∷ σ ∷ η ∷ []) "Mark.14.59" ∷ word (ἦ ∷ ν ∷ []) "Mark.14.59" ∷ word (ἡ ∷ []) "Mark.14.59" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "Mark.14.59" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.59" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.60" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.14.60" ∷ word (ὁ ∷ []) "Mark.14.60" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.60" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.60" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.14.60" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.60" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.60" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.14.60" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.60" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.14.60" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.14.60" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.14.60" ∷ word (τ ∷ ί ∷ []) "Mark.14.60" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.14.60" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.14.60" ∷ word (κ ∷ α ∷ τ ∷ α ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.60" ∷ word (ὁ ∷ []) "Mark.14.61" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.61" ∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ α ∷ []) "Mark.14.61" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.61" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.61" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.61" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.14.61" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.61" ∷ word (ὁ ∷ []) "Mark.14.61" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.61" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.14.61" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.61" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.61" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.61" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.61" ∷ word (Σ ∷ ὺ ∷ []) "Mark.14.61" ∷ word (ε ∷ ἶ ∷ []) "Mark.14.61" ∷ word (ὁ ∷ []) "Mark.14.61" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.14.61" ∷ word (ὁ ∷ []) "Mark.14.61" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.61" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.61" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.61" ∷ word (ὁ ∷ []) "Mark.14.62" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.62" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.62" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.62" ∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.62" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.14.62" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.62" ∷ word (ὄ ∷ ψ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.62" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.62" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.14.62" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.62" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.62" ∷ word (ἐ ∷ κ ∷ []) "Mark.14.62" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.62" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.62" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.62" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.14.62" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.62" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.62" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.62" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.62" ∷ word (ν ∷ ε ∷ φ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.62" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.62" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.62" ∷ word (ὁ ∷ []) "Mark.14.63" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.63" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.63" ∷ word (δ ∷ ι ∷ α ∷ ρ ∷ ρ ∷ ή ∷ ξ ∷ α ∷ ς ∷ []) "Mark.14.63" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.63" ∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Mark.14.63" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.63" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.63" ∷ word (Τ ∷ ί ∷ []) "Mark.14.63" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.14.63" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.63" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.63" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.14.63" ∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.64" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.64" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Mark.14.64" ∷ word (τ ∷ ί ∷ []) "Mark.14.64" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.64" ∷ word (φ ∷ α ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.64" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.64" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.64" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.64" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.14.64" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.64" ∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ο ∷ ν ∷ []) "Mark.14.64" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.64" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.14.64" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ό ∷ []) "Mark.14.65" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.65" ∷ word (ἐ ∷ μ ∷ π ∷ τ ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.65" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.65" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.65" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.14.65" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ φ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.65" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.65" ∷ word (Π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.14.65" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.65" ∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ έ ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.65" ∷ word (ῥ ∷ α ∷ π ∷ ί ∷ σ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.65" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Mark.14.65" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.66" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.66" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.66" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.66" ∷ word (κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.14.66" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.66" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.66" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ῇ ∷ []) "Mark.14.66" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.66" ∷ word (μ ∷ ί ∷ α ∷ []) "Mark.14.66" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.66" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ι ∷ σ ∷ κ ∷ ῶ ∷ ν ∷ []) "Mark.14.66" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.66" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.66" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.67" ∷ word (ἰ ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.14.67" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.67" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.67" ∷ word (θ ∷ ε ∷ ρ ∷ μ ∷ α ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.67" ∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ σ ∷ α ∷ []) "Mark.14.67" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.67" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.67" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.67" ∷ word (σ ∷ ὺ ∷ []) "Mark.14.67" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.67" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.67" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.67" ∷ word (ἦ ∷ σ ∷ θ ∷ α ∷ []) "Mark.14.67" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.67" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.14.67" ∷ word (ὁ ∷ []) "Mark.14.68" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.68" ∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.68" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.68" ∷ word (Ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.14.68" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Mark.14.68" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.14.68" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ α ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.68" ∷ word (σ ∷ ὺ ∷ []) "Mark.14.68" ∷ word (τ ∷ ί ∷ []) "Mark.14.68" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.68" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.68" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.68" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.14.68" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.68" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.68" ∷ word (π ∷ ρ ∷ ο ∷ α ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.68" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.68" ∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ρ ∷ []) "Mark.14.68" ∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.68" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.69" ∷ word (ἡ ∷ []) "Mark.14.69" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ σ ∷ κ ∷ η ∷ []) "Mark.14.69" ∷ word (ἰ ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.14.69" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.69" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.69" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.69" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.69" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.69" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.69" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.69" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.69" ∷ word (ἐ ∷ ξ ∷ []) "Mark.14.69" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.69" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.69" ∷ word (ὁ ∷ []) "Mark.14.70" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.70" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.70" ∷ word (ἠ ∷ ρ ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Mark.14.70" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.70" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.14.70" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.70" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.70" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.70" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.70" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.70" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.14.70" ∷ word (Ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.14.70" ∷ word (ἐ ∷ ξ ∷ []) "Mark.14.70" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.70" ∷ word (ε ∷ ἶ ∷ []) "Mark.14.70" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.70" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Mark.14.70" ∷ word (ε ∷ ἶ ∷ []) "Mark.14.70" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70" ∷ word (ἡ ∷ []) "Mark.14.70" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ι ∷ ά ∷ []) "Mark.14.70" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.14.70" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.14.70" ∷ word (ὁ ∷ []) "Mark.14.71" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.71" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.71" ∷ word (ἀ ∷ ν ∷ α ∷ θ ∷ ε ∷ μ ∷ α ∷ τ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.71" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.71" ∷ word (ὀ ∷ μ ∷ ν ∷ ύ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.71" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.71" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.14.71" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Mark.14.71" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.71" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.14.71" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.71" ∷ word (ὃ ∷ ν ∷ []) "Mark.14.71" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.71" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.72" ∷ word (ἐ ∷ κ ∷ []) "Mark.14.72" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.72" ∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ρ ∷ []) "Mark.14.72" ∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.72" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72" ∷ word (ἀ ∷ ν ∷ ε ∷ μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ []) "Mark.14.72" ∷ word (ὁ ∷ []) "Mark.14.72" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.72" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.72" ∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Mark.14.72" ∷ word (ὡ ∷ ς ∷ []) "Mark.14.72" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.72" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.72" ∷ word (ὁ ∷ []) "Mark.14.72" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.72" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.72" ∷ word (Π ∷ ρ ∷ ὶ ∷ ν ∷ []) "Mark.14.72" ∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.14.72" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.72" ∷ word (δ ∷ ὶ ∷ ς ∷ []) "Mark.14.72" ∷ word (τ ∷ ρ ∷ ί ∷ ς ∷ []) "Mark.14.72" ∷ word (μ ∷ ε ∷ []) "Mark.14.72" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.14.72" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.14.72" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ ι ∷ ε ∷ ν ∷ []) "Mark.14.72" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.1" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.15.1" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.15.1" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.1" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.1" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.1" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.1" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.1" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.1" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.1" ∷ word (δ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.15.1" ∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Mark.15.1" ∷ word (Π ∷ ι ∷ ∙λ ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.2" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.2" ∷ word (ὁ ∷ []) "Mark.15.2" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.2" ∷ word (Σ ∷ ὺ ∷ []) "Mark.15.2" ∷ word (ε ∷ ἶ ∷ []) "Mark.15.2" ∷ word (ὁ ∷ []) "Mark.15.2" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.2" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.2" ∷ word (ὁ ∷ []) "Mark.15.2" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.2" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.15.2" ∷ word (Σ ∷ ὺ ∷ []) "Mark.15.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.3" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ό ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.3" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.3" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.3" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.15.3" ∷ word (ὁ ∷ []) "Mark.15.4" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.4" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.4" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.4" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.15.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.4" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.15.4" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.15.4" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.15.4" ∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.15.4" ∷ word (π ∷ ό ∷ σ ∷ α ∷ []) "Mark.15.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.15.4" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.4" ∷ word (ὁ ∷ []) "Mark.15.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.5" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.15.5" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.15.5" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.15.5" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.15.5" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.15.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.5" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.5" ∷ word (Κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.15.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.6" ∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.15.6" ∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.15.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.6" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.6" ∷ word (δ ∷ έ ∷ σ ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.6" ∷ word (ὃ ∷ ν ∷ []) "Mark.15.6" ∷ word (π ∷ α ∷ ρ ∷ ῃ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.15.6" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.7" ∷ word (ὁ ∷ []) "Mark.15.7" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.7" ∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ς ∷ []) "Mark.15.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.7" ∷ word (σ ∷ τ ∷ α ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.15.7" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.7" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.15.7" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.7" ∷ word (τ ∷ ῇ ∷ []) "Mark.15.7" ∷ word (σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.15.7" ∷ word (φ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.7" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ ή ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.8" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.15.8" ∷ word (ὁ ∷ []) "Mark.15.8" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.15.8" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.8" ∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.15.8" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.15.8" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ ε ∷ ι ∷ []) "Mark.15.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.8" ∷ word (ὁ ∷ []) "Mark.15.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.9" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.9" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.15.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.9" ∷ word (Θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.9" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.15.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.15.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.15.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.9" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.9" ∷ word (ἐ ∷ γ ∷ ί ∷ ν ∷ ω ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.15.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.15.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.15.10" ∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.11" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.11" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.11" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.11" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.11" ∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.15.11" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ῃ ∷ []) "Mark.15.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.11" ∷ word (ὁ ∷ []) "Mark.15.12" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.12" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.12" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.12" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.12" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.15.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.12" ∷ word (Τ ∷ ί ∷ []) "Mark.15.12" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.15.12" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.12" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.15.12" ∷ word (ὃ ∷ ν ∷ []) "Mark.15.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.15.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.12" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.12" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.13" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.13" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.13" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.13" ∷ word (Σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.13" ∷ word (ὁ ∷ []) "Mark.15.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.14" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.14" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.15.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.14" ∷ word (Τ ∷ ί ∷ []) "Mark.15.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.15.14" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.14" ∷ word (κ ∷ α ∷ κ ∷ ό ∷ ν ∷ []) "Mark.15.14" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.14" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.15.14" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.14" ∷ word (Σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.14" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.14" ∷ word (ὁ ∷ []) "Mark.15.15" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.15" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.15" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.15" ∷ word (τ ∷ ῷ ∷ []) "Mark.15.15" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.15.15" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.15" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.15.15" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.15" ∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.15" ∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.15.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.15" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.15.15" ∷ word (φ ∷ ρ ∷ α ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ώ ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.15" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.15.15" ∷ word (Ο ∷ ἱ ∷ []) "Mark.15.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.16" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ι ∷ ῶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.16" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.16" ∷ word (ἔ ∷ σ ∷ ω ∷ []) "Mark.15.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.15.16" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.15.16" ∷ word (ὅ ∷ []) "Mark.15.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.16" ∷ word (π ∷ ρ ∷ α ∷ ι ∷ τ ∷ ώ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.16" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.16" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.16" ∷ word (σ ∷ π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.17" ∷ word (ἐ ∷ ν ∷ δ ∷ ι ∷ δ ∷ ύ ∷ σ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.17" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ι ∷ θ ∷ έ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.17" ∷ word (π ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.17" ∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.17" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.18" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.15.18" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.15.18" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.18" ∷ word (Χ ∷ α ∷ ῖ ∷ ρ ∷ ε ∷ []) "Mark.15.18" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῦ ∷ []) "Mark.15.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.18" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19" ∷ word (ἔ ∷ τ ∷ υ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.19" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.15.19" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Mark.15.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19" ∷ word (ἐ ∷ ν ∷ έ ∷ π ∷ τ ∷ υ ∷ ο ∷ ν ∷ []) "Mark.15.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19" ∷ word (τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.19" ∷ word (τ ∷ ὰ ∷ []) "Mark.15.19" ∷ word (γ ∷ ό ∷ ν ∷ α ∷ τ ∷ α ∷ []) "Mark.15.19" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.15.20" ∷ word (ἐ ∷ ν ∷ έ ∷ π ∷ α ∷ ι ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.20" ∷ word (ἐ ∷ ξ ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.20" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20" ∷ word (ἐ ∷ ν ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20" ∷ word (τ ∷ ὰ ∷ []) "Mark.15.20" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.15.20" ∷ word (τ ∷ ὰ ∷ []) "Mark.15.20" ∷ word (ἴ ∷ δ ∷ ι ∷ α ∷ []) "Mark.15.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20" ∷ word (ἐ ∷ ξ ∷ ά ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.20" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.21" ∷ word (ἀ ∷ γ ∷ γ ∷ α ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.21" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "Mark.15.21" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "Mark.15.21" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.15.21" ∷ word (Κ ∷ υ ∷ ρ ∷ η ∷ ν ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.15.21" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.21" ∷ word (ἀ ∷ π ∷ []) "Mark.15.21" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.21" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.15.21" ∷ word (Ἀ ∷ ∙λ ∷ ε ∷ ξ ∷ ά ∷ ν ∷ δ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.15.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.21" ∷ word (Ῥ ∷ ο ∷ ύ ∷ φ ∷ ο ∷ υ ∷ []) "Mark.15.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.21" ∷ word (ἄ ∷ ρ ∷ ῃ ∷ []) "Mark.15.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.21" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.15.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.22" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.22" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.15.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.22" ∷ word (Γ ∷ ο ∷ ∙λ ∷ γ ∷ ο ∷ θ ∷ ᾶ ∷ ν ∷ []) "Mark.15.22" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.15.22" ∷ word (ὅ ∷ []) "Mark.15.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.22" ∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.22" ∷ word (Κ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.15.22" ∷ word (Τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.15.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.23" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.23" ∷ word (ἐ ∷ σ ∷ μ ∷ υ ∷ ρ ∷ ν ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.23" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.23" ∷ word (ὃ ∷ ς ∷ []) "Mark.15.23" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.23" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.15.23" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.15.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.24" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.24" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.24" ∷ word (δ ∷ ι ∷ α ∷ μ ∷ ε ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.24" ∷ word (τ ∷ ὰ ∷ []) "Mark.15.24" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.15.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.24" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.24" ∷ word (κ ∷ ∙λ ∷ ῆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.15.24" ∷ word (ἐ ∷ π ∷ []) "Mark.15.24" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.15.24" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.15.24" ∷ word (τ ∷ ί ∷ []) "Mark.15.24" ∷ word (ἄ ∷ ρ ∷ ῃ ∷ []) "Mark.15.24" ∷ word (Ἦ ∷ ν ∷ []) "Mark.15.25" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.25" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.15.25" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ []) "Mark.15.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.25" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.25" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.26" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.26" ∷ word (ἡ ∷ []) "Mark.15.26" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ []) "Mark.15.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.15.26" ∷ word (α ∷ ἰ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.26" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.15.26" ∷ word (Ὁ ∷ []) "Mark.15.26" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.26" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.27" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.27" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.27" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.15.27" ∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ά ∷ ς ∷ []) "Mark.15.27" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.27" ∷ word (ἐ ∷ κ ∷ []) "Mark.15.27" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.15.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.27" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.27" ∷ word (ἐ ∷ ξ ∷ []) "Mark.15.27" ∷ word (ε ∷ ὐ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.27" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.29" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.29" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.15.29" ∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.29" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.29" ∷ word (κ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.29" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.15.29" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.15.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.15.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.29" ∷ word (Ο ∷ ὐ ∷ ὰ ∷ []) "Mark.15.29" ∷ word (ὁ ∷ []) "Mark.15.29" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ύ ∷ ω ∷ ν ∷ []) "Mark.15.29" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.29" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Mark.15.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.29" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.15.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.29" ∷ word (τ ∷ ρ ∷ ι ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.15.29" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.15.29" ∷ word (σ ∷ ῶ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.30" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.30" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.15.30" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.30" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.30" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.30" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Mark.15.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.31" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.31" ∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.31" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.15.31" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.31" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.31" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.15.31" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.31" ∷ word (Ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.31" ∷ word (ἔ ∷ σ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.31" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.31" ∷ word (ο ∷ ὐ ∷ []) "Mark.15.31" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.31" ∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.31" ∷ word (ὁ ∷ []) "Mark.15.32" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.15.32" ∷ word (ὁ ∷ []) "Mark.15.32" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.32" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Mark.15.32" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ τ ∷ ω ∷ []) "Mark.15.32" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.15.32" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.32" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.32" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.32" ∷ word (ἴ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.32" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.32" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.32" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.15.32" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.15.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.32" ∷ word (ὠ ∷ ν ∷ ε ∷ ί ∷ δ ∷ ι ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.15.32" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.32" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.33" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.15.33" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.33" ∷ word (ἕ ∷ κ ∷ τ ∷ η ∷ ς ∷ []) "Mark.15.33" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.33" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.15.33" ∷ word (ἐ ∷ φ ∷ []) "Mark.15.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.33" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.33" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.15.33" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.15.33" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.33" ∷ word (ἐ ∷ ν ∷ ά ∷ τ ∷ η ∷ ς ∷ []) "Mark.15.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.34" ∷ word (τ ∷ ῇ ∷ []) "Mark.15.34" ∷ word (ἐ ∷ ν ∷ ά ∷ τ ∷ ῃ ∷ []) "Mark.15.34" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Mark.15.34" ∷ word (ἐ ∷ β ∷ ό ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.34" ∷ word (ὁ ∷ []) "Mark.15.34" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.34" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.15.34" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.15.34" ∷ word (Ἐ ∷ ∙λ ∷ ω ∷ ῒ ∷ []) "Mark.15.34" ∷ word (ἐ ∷ ∙λ ∷ ω ∷ ῒ ∷ []) "Mark.15.34" ∷ word (∙λ ∷ ε ∷ μ ∷ ὰ ∷ []) "Mark.15.34" ∷ word (σ ∷ α ∷ β ∷ α ∷ χ ∷ θ ∷ ά ∷ ν ∷ ι ∷ []) "Mark.15.34" ∷ word (ὅ ∷ []) "Mark.15.34" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.34" ∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.34" ∷ word (Ὁ ∷ []) "Mark.15.34" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.15.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.15.34" ∷ word (ὁ ∷ []) "Mark.15.34" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.15.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.15.34" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.34" ∷ word (τ ∷ ί ∷ []) "Mark.15.34" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ έ ∷ ς ∷ []) "Mark.15.34" ∷ word (μ ∷ ε ∷ []) "Mark.15.34" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.15.35" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.15.35" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.35" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.15.35" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.35" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.35" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.15.35" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.15.35" ∷ word (φ ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ []) "Mark.15.35" ∷ word (δ ∷ ρ ∷ α ∷ μ ∷ ὼ ∷ ν ∷ []) "Mark.15.36" ∷ word (δ ∷ έ ∷ []) "Mark.15.36" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.15.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.36" ∷ word (γ ∷ ε ∷ μ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.36" ∷ word (σ ∷ π ∷ ό ∷ γ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.36" ∷ word (ὄ ∷ ξ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.36" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.36" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Mark.15.36" ∷ word (ἐ ∷ π ∷ ό ∷ τ ∷ ι ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.15.36" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.36" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.36" ∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.36" ∷ word (ἴ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.36" ∷ word (ε ∷ ἰ ∷ []) "Mark.15.36" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.36" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.36" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.15.36" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.36" ∷ word (ὁ ∷ []) "Mark.15.37" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.37" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.37" ∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.37" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Mark.15.37" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.37" ∷ word (ἐ ∷ ξ ∷ έ ∷ π ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.38" ∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ έ ∷ τ ∷ α ∷ σ ∷ μ ∷ α ∷ []) "Mark.15.38" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.38" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Mark.15.38" ∷ word (ἐ ∷ σ ∷ χ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.15.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.38" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.15.38" ∷ word (ἀ ∷ π ∷ []) "Mark.15.38" ∷ word (ἄ ∷ ν ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.38" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.15.38" ∷ word (κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.15.38" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.15.39" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.39" ∷ word (ὁ ∷ []) "Mark.15.39" ∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.39" ∷ word (ὁ ∷ []) "Mark.15.39" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ὼ ∷ ς ∷ []) "Mark.15.39" ∷ word (ἐ ∷ ξ ∷ []) "Mark.15.39" ∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.39" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.39" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.15.39" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.15.39" ∷ word (ἐ ∷ ξ ∷ έ ∷ π ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.39" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.15.39" ∷ word (Ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.15.39" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.39" ∷ word (ὁ ∷ []) "Mark.15.39" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.15.39" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.15.39" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.15.39" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.39" ∷ word (Ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.40" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "Mark.15.40" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.40" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.40" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.40" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.40" ∷ word (α ∷ ἷ ∷ ς ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.40" ∷ word (ἡ ∷ []) "Mark.15.40" ∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.40" ∷ word (ἡ ∷ []) "Mark.15.40" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.15.40" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.40" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.40" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (Σ ∷ α ∷ ∙λ ∷ ώ ∷ μ ∷ η ∷ []) "Mark.15.40" ∷ word (α ∷ ἳ ∷ []) "Mark.15.41" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.15.41" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.41" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.41" ∷ word (τ ∷ ῇ ∷ []) "Mark.15.41" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ ᾳ ∷ []) "Mark.15.41" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.41" ∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.41" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ ι ∷ []) "Mark.15.41" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Mark.15.41" ∷ word (α ∷ ἱ ∷ []) "Mark.15.41" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ β ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.41" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.15.41" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.42" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.15.42" ∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.42" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.15.42" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Mark.15.42" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.42" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ή ∷ []) "Mark.15.42" ∷ word (ὅ ∷ []) "Mark.15.42" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.42" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.42" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.15.43" ∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Mark.15.43" ∷ word (ὁ ∷ []) "Mark.15.43" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.43" ∷ word (Ἁ ∷ ρ ∷ ι ∷ μ ∷ α ∷ θ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.43" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ ή ∷ μ ∷ ω ∷ ν ∷ []) "Mark.15.43" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ή ∷ ς ∷ []) "Mark.15.43" ∷ word (ὃ ∷ ς ∷ []) "Mark.15.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.43" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.15.43" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.43" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.43" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.43" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.15.43" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.43" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.15.43" ∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.43" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.43" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.15.43" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.43" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.43" ∷ word (ᾐ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.43" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.43" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.15.43" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.43" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.15.43" ∷ word (ὁ ∷ []) "Mark.15.44" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.44" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.44" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.44" ∷ word (ε ∷ ἰ ∷ []) "Mark.15.44" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.15.44" ∷ word (τ ∷ έ ∷ θ ∷ ν ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.44" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.44" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.44" ∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ α ∷ []) "Mark.15.44" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.44" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.44" ∷ word (ε ∷ ἰ ∷ []) "Mark.15.44" ∷ word (π ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Mark.15.44" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.15.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.45" ∷ word (γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.15.45" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.45" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.45" ∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.45" ∷ word (ἐ ∷ δ ∷ ω ∷ ρ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.45" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.45" ∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.15.45" ∷ word (τ ∷ ῷ ∷ []) "Mark.15.45" ∷ word (Ἰ ∷ ω ∷ σ ∷ ή ∷ φ ∷ []) "Mark.15.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.46" ∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.15.46" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.15.46" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.46" ∷ word (ἐ ∷ ν ∷ ε ∷ ί ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.46" ∷ word (τ ∷ ῇ ∷ []) "Mark.15.46" ∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ ι ∷ []) "Mark.15.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.46" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.46" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.46" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ῳ ∷ []) "Mark.15.46" ∷ word (ὃ ∷ []) "Mark.15.46" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.46" ∷ word (∙λ ∷ ε ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.46" ∷ word (ἐ ∷ κ ∷ []) "Mark.15.46" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.46" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.15.46" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.15.46" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.46" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.46" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.46" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.15.46" ∷ word (ἡ ∷ []) "Mark.15.47" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.47" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.47" ∷ word (ἡ ∷ []) "Mark.15.47" ∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.15.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.47" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.47" ∷ word (ἡ ∷ []) "Mark.15.47" ∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.47" ∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.47" ∷ word (π ∷ ο ∷ ῦ ∷ []) "Mark.15.47" ∷ word (τ ∷ έ ∷ θ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.47" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.16.1" ∷ word (δ ∷ ι ∷ α ∷ γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.1" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.16.1" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.16.1" ∷ word (ἡ ∷ []) "Mark.16.1" ∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.1" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.16.1" ∷ word (ἡ ∷ []) "Mark.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.1" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.1" ∷ word (Σ ∷ α ∷ ∙λ ∷ ώ ∷ μ ∷ η ∷ []) "Mark.16.1" ∷ word (ἠ ∷ γ ∷ ό ∷ ρ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.1" ∷ word (ἀ ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.16.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.16.1" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.1" ∷ word (ἀ ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.1" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.2" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.2" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.16.2" ∷ word (τ ∷ ῇ ∷ []) "Mark.16.2" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Mark.16.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.16.2" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.16.2" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.16.2" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.2" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.16.2" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.2" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.3" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.16.3" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ά ∷ ς ∷ []) "Mark.16.3" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.16.3" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ υ ∷ ∙λ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.3" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.16.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.3" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.16.3" ∷ word (ἐ ∷ κ ∷ []) "Mark.16.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.16.3" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.16.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.3" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.4" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.4" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.4" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ε ∷ κ ∷ ύ ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.4" ∷ word (ὁ ∷ []) "Mark.16.4" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "Mark.16.4" ∷ word (ἦ ∷ ν ∷ []) "Mark.16.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.16.4" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Mark.16.4" ∷ word (σ ∷ φ ∷ ό ∷ δ ∷ ρ ∷ α ∷ []) "Mark.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.5" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.5" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (ν ∷ ε ∷ α ∷ ν ∷ ί ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (ἐ ∷ ν ∷ []) "Mark.16.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.5" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.16.5" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ ν ∷ []) "Mark.16.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.5" ∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.5" ∷ word (ὁ ∷ []) "Mark.16.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.16.6" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.6" ∷ word (Μ ∷ ὴ ∷ []) "Mark.16.6" ∷ word (ἐ ∷ κ ∷ θ ∷ α ∷ μ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.16.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.16.6" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.16.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.6" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.16.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.6" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.6" ∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.16.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.16.6" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.16.6" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.16.6" ∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.16.6" ∷ word (ὁ ∷ []) "Mark.16.6" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.16.6" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.16.6" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.16.6" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.16.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.16.7" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.16.7" ∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.16.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.7" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.16.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.7" ∷ word (τ ∷ ῷ ∷ []) "Mark.16.7" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.16.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.7" ∷ word (Π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Mark.16.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.16.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.16.7" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.7" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.16.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.16.7" ∷ word (ὄ ∷ ψ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.16.7" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.16.7" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.16.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.16.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.8" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.16.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.8" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.8" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.16.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.16.8" ∷ word (τ ∷ ρ ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ἔ ∷ κ ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.16.8" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.16.8" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.16.8" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.16.8" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.16.8" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.8" ∷ word (τ ∷ ὰ ∷ []) "Mark.16.8" ∷ word (π ∷ α ∷ ρ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.16.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.16.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.8" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.16.8" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ό ∷ μ ∷ ω ∷ ς ∷ []) "Mark.16.8" ∷ word (ἐ ∷ ξ ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.16.8" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.8" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.16.8" ∷ word (ὁ ∷ []) "Mark.16.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.16.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.16.8" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Mark.16.8" ∷ word (δ ∷ ύ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.16.8" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.16.8" ∷ word (δ ∷ ι ∷ []) "Mark.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.8" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.8" ∷ word (ἱ ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ἄ ∷ φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.16.8" ∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Mark.16.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.16.8" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.8" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.16.8" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Mark.16.8" ∷ word (Ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.16.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.9" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.16.9" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Mark.16.9" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.16.9" ∷ word (ἐ ∷ φ ∷ ά ∷ ν ∷ η ∷ []) "Mark.16.9" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.16.9" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ ᾳ ∷ []) "Mark.16.9" ∷ word (τ ∷ ῇ ∷ []) "Mark.16.9" ∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ῇ ∷ []) "Mark.16.9" ∷ word (π ∷ α ∷ ρ ∷ []) "Mark.16.9" ∷ word (ἧ ∷ ς ∷ []) "Mark.16.9" ∷ word (ἐ ∷ κ ∷ β ∷ ε ∷ β ∷ ∙λ ∷ ή ∷ κ ∷ ε ∷ ι ∷ []) "Mark.16.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.16.9" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.16.9" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.16.10" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.16.10" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.16.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.10" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.16.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.16.10" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.10" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Mark.16.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.10" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.10" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.11" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.11" ∷ word (ζ ∷ ῇ ∷ []) "Mark.16.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.11" ∷ word (ἐ ∷ θ ∷ ε ∷ ά ∷ θ ∷ η ∷ []) "Mark.16.11" ∷ word (ὑ ∷ π ∷ []) "Mark.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.16.11" ∷ word (ἠ ∷ π ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.11" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.12" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.12" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.12" ∷ word (δ ∷ υ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.16.12" ∷ word (ἐ ∷ ξ ∷ []) "Mark.16.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.12" ∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.16.12" ∷ word (ἐ ∷ ν ∷ []) "Mark.16.12" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.16.12" ∷ word (μ ∷ ο ∷ ρ ∷ φ ∷ ῇ ∷ []) "Mark.16.12" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.12" ∷ word (ἀ ∷ γ ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.16.12" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.13" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.13" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.16.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.16.13" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.13" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.13" ∷ word (Ὕ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.16.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.14" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14" ∷ word (ἕ ∷ ν ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.16.14" ∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.16.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.14" ∷ word (ὠ ∷ ν ∷ ε ∷ ί ∷ δ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.16.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.16.14" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.14" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14" ∷ word (θ ∷ ε ∷ α ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.16.14" ∷ word (ἐ ∷ γ ∷ η ∷ γ ∷ ε ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.16.14" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.15" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.16.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.15" ∷ word (Π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.15" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.16.15" ∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Mark.16.15" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ τ ∷ ε ∷ []) "Mark.16.15" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.15" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.16.15" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Mark.16.15" ∷ word (τ ∷ ῇ ∷ []) "Mark.16.15" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.15" ∷ word (ὁ ∷ []) "Mark.16.16" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.16.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.16" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.16.16" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.16" ∷ word (ὁ ∷ []) "Mark.16.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.16" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.16.16" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.16" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Mark.16.17" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.17" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.16.17" ∷ word (τ ∷ ῷ ∷ []) "Mark.16.17" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.16.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.16.17" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.16.17" ∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.16.17" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.17" ∷ word (ὄ ∷ φ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.16.18" ∷ word (ἀ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18" ∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.16.18" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ σ ∷ ι ∷ μ ∷ ό ∷ ν ∷ []) "Mark.16.18" ∷ word (τ ∷ ι ∷ []) "Mark.16.18" ∷ word (π ∷ ί ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.16.18" ∷ word (μ ∷ ὴ ∷ []) "Mark.16.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.16.18" ∷ word (β ∷ ∙λ ∷ ά ∷ ψ ∷ ῃ ∷ []) "Mark.16.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.16.18" ∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.16.18" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.16.18" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.18" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.16.18" ∷ word (ἕ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18" ∷ word (Ὁ ∷ []) "Mark.16.19" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.16.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.16.19" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.16.19" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.16.19" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.19" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.19" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.19" ∷ word (ἀ ∷ ν ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ φ ∷ θ ∷ η ∷ []) "Mark.16.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.19" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.19" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.16.19" ∷ word (ἐ ∷ κ ∷ []) "Mark.16.19" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.16.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.16.19" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.20" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.20" ∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ α ∷ ν ∷ []) "Mark.16.20" ∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.16.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.20" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.20" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.20" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.20" ∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.20" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.16.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.16.20" ∷ word (ἐ ∷ π ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.16.20" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Mark.16.20" ∷ []
algebraic-stack_agda0000_doc_6770
{-# OPTIONS --without-K #-} module FinNatLemmas where open import Data.Empty using (⊥-elim) open import Data.Product using (_×_; _,_) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _<_; _≤_; _∸_; z≤n; s≤s; module ≤-Reasoning) open import Data.Nat.Properties using (m+n∸n≡m; m≤m+n; +-∸-assoc; cancel-+-left) open import Data.Nat.Properties.Simple using (+-comm; +-assoc; *-comm; distribʳ-*-+; +-right-identity) open import Data.Fin using (Fin; zero; suc; toℕ; raise; fromℕ≤; reduce≥; inject+) open import Data.Fin.Properties using (bounded; toℕ-injective; toℕ-raise; toℕ-fromℕ≤; inject+-lemma) open import Relation.Binary using (module StrictTotalOrder) open import Relation.Binary.Core using (_≢_) open import Relation.Binary.PropositionalEquality using (_≡_; subst; refl; sym; cong; cong₂; trans; module ≡-Reasoning) ------------------------------------------------------------------------------ -- Fin and Nat lemmas toℕ-fin : (m n : ℕ) → (eq : m ≡ n) (fin : Fin m) → toℕ (subst Fin eq fin) ≡ toℕ fin toℕ-fin m .m refl fin = refl ∸≡ : (m n : ℕ) (i j : Fin (m + n)) (i≥ : m ≤ toℕ i) (j≥ : m ≤ toℕ j) → toℕ i ∸ m ≡ toℕ j ∸ m → i ≡ j ∸≡ m n i j i≥ j≥ p = toℕ-injective pr where pr = begin (toℕ i ≡⟨ sym (m+n∸n≡m (toℕ i) m) ⟩ (toℕ i + m) ∸ m ≡⟨ cong (λ x → x ∸ m) (+-comm (toℕ i) m) ⟩ (m + toℕ i) ∸ m ≡⟨ +-∸-assoc m i≥ ⟩ m + (toℕ i ∸ m) ≡⟨ cong (λ x → m + x) p ⟩ m + (toℕ j ∸ m) ≡⟨ sym (+-∸-assoc m j≥) ⟩ (m + toℕ j) ∸ m ≡⟨ cong (λ x → x ∸ m) (+-comm m (toℕ j)) ⟩ (toℕ j + m) ∸ m ≡⟨ m+n∸n≡m (toℕ j) m ⟩ toℕ j ∎) where open ≡-Reasoning cancel-right∸ : (m n k : ℕ) (k≤m : k ≤ m) (k≤n : k ≤ n) → (m ∸ k ≡ n ∸ k) → m ≡ n cancel-right∸ m n k k≤m k≤n mk≡nk = begin (m ≡⟨ sym (m+n∸n≡m m k) ⟩ (m + k) ∸ k ≡⟨ cong (λ x → x ∸ k) (+-comm m k) ⟩ (k + m) ∸ k ≡⟨ +-∸-assoc k k≤m ⟩ k + (m ∸ k) ≡⟨ cong (λ x → k + x) mk≡nk ⟩ k + (n ∸ k) ≡⟨ sym (+-∸-assoc k k≤n) ⟩ (k + n) ∸ k ≡⟨ cong (λ x → x ∸ k) (+-comm k n) ⟩ (n + k) ∸ k ≡⟨ m+n∸n≡m n k ⟩ n ∎) where open ≡-Reasoning raise< : (m n : ℕ) (i : Fin (m + n)) (i< : toℕ i < m) → toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<))) ≡ n + toℕ i raise< m n i i< = begin (toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<))) ≡⟨ toℕ-fin (n + m) (m + n) (+-comm n m) (raise n (fromℕ≤ i<)) ⟩ toℕ (raise n (fromℕ≤ i<)) ≡⟨ toℕ-raise n (fromℕ≤ i<) ⟩ n + toℕ (fromℕ≤ i<) ≡⟨ cong (λ x → n + x) (toℕ-fromℕ≤ i<) ⟩ n + toℕ i ∎) where open ≡-Reasoning toℕ-reduce≥ : (m n : ℕ) (i : Fin (m + n)) (i≥ : m ≤ toℕ i) → toℕ (reduce≥ i i≥) ≡ toℕ i ∸ m toℕ-reduce≥ 0 n i _ = refl toℕ-reduce≥ (suc m) n zero () toℕ-reduce≥ (suc m) n (suc i) (s≤s i≥) = toℕ-reduce≥ m n i i≥ inject≥ : (m n : ℕ) (i : Fin (m + n)) (i≥ : m ≤ toℕ i) → toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i i≥))) ≡ toℕ i ∸ m inject≥ m n i i≥ = begin (toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i i≥))) ≡⟨ toℕ-fin (n + m) (m + n) (+-comm n m) (inject+ m (reduce≥ i i≥)) ⟩ toℕ (inject+ m (reduce≥ i i≥)) ≡⟨ sym (inject+-lemma m (reduce≥ i i≥)) ⟩ toℕ (reduce≥ i i≥) ≡⟨ toℕ-reduce≥ m n i i≥ ⟩ toℕ i ∸ m ∎) where open ≡-Reasoning fromℕ≤-inj : (m n : ℕ) (i j : Fin n) (i< : toℕ i < m) (j< : toℕ j < m) → fromℕ≤ i< ≡ fromℕ≤ j< → i ≡ j fromℕ≤-inj m n i j i< j< fi≡fj = toℕ-injective (trans (sym (toℕ-fromℕ≤ i<)) (trans (cong toℕ fi≡fj) (toℕ-fromℕ≤ j<))) reduce≥-inj : (m n : ℕ) (i j : Fin (m + n)) (i≥ : m ≤ toℕ i) (j≥ : m ≤ toℕ j) → reduce≥ i i≥ ≡ reduce≥ j j≥ → i ≡ j reduce≥-inj m n i j i≥ j≥ ri≡rj = toℕ-injective (cancel-right∸ (toℕ i) (toℕ j) m i≥ j≥ (trans (sym (toℕ-reduce≥ m n i i≥)) (trans (cong toℕ ri≡rj) (toℕ-reduce≥ m n j j≥)))) inj₁-toℕ≡ : {m n : ℕ} (i : Fin (m + n)) (i< : toℕ i < m) → toℕ i ≡ toℕ (inject+ n (fromℕ≤ i<)) inj₁-toℕ≡ {0} _ () inj₁-toℕ≡ {suc m} zero (s≤s z≤n) = refl inj₁-toℕ≡ {suc (suc m)} (suc i) (s≤s (s≤s i<)) = cong suc (inj₁-toℕ≡ i (s≤s i<)) inj₁-≡ : {m n : ℕ} (i : Fin (m + n)) (i< : toℕ i < m) → i ≡ inject+ n (fromℕ≤ i<) inj₁-≡ i i< = toℕ-injective (inj₁-toℕ≡ i i<) inj₂-toℕ≡ : {m n : ℕ} (i : Fin (m + n)) (i≥ : m ≤ toℕ i ) → toℕ i ≡ toℕ (raise m (reduce≥ i i≥)) inj₂-toℕ≡ {Data.Nat.zero} i i≥ = refl inj₂-toℕ≡ {suc m} zero () inj₂-toℕ≡ {suc m} (suc i) (s≤s i≥) = cong suc (inj₂-toℕ≡ i i≥) inj₂-≡ : {m n : ℕ} (i : Fin (m + n)) (i≥ : m ≤ toℕ i ) → i ≡ raise m (reduce≥ i i≥) inj₂-≡ i i≥ = toℕ-injective (inj₂-toℕ≡ i i≥) inject+-injective : {m n : ℕ} (i j : Fin m) → (inject+ n i ≡ inject+ n j) → i ≡ j inject+-injective {m} {n} i j p = toℕ-injective pf where open ≡-Reasoning pf : toℕ i ≡ toℕ j pf = begin ( toℕ i ≡⟨ inject+-lemma n i ⟩ toℕ (inject+ n i) ≡⟨ cong toℕ p ⟩ toℕ (inject+ n j) ≡⟨ sym (inject+-lemma n j) ⟩ toℕ j ∎) raise-injective : {m n : ℕ} (i j : Fin n) → (raise m i ≡ raise m j) → i ≡ j raise-injective {m} {n} i j p = toℕ-injective (cancel-+-left m pf) where open ≡-Reasoning pf : m + toℕ i ≡ m + toℕ j pf = begin ( m + toℕ i ≡⟨ sym (toℕ-raise m i) ⟩ toℕ (raise m i) ≡⟨ cong toℕ p ⟩ toℕ (raise m j) ≡⟨ toℕ-raise m j ⟩ m + toℕ j ∎) toℕ-invariance : ∀ {n n'} → (i : Fin n) → (eq : n ≡ n') → toℕ (subst Fin eq i) ≡ toℕ i toℕ-invariance i refl = refl -- see FinEquiv for the naming inject+0≡uniti+ : ∀ {m} → (n : Fin m) → (eq : m ≡ m + 0) → inject+ 0 n ≡ subst Fin eq n inject+0≡uniti+ {m} n eq = toℕ-injective pf where open ≡-Reasoning pf : toℕ (inject+ 0 n) ≡ toℕ (subst Fin eq n) pf = begin ( toℕ (inject+ 0 n) ≡⟨ sym (inject+-lemma 0 n) ⟩ toℕ n ≡⟨ sym (toℕ-invariance n eq) ⟩ toℕ (subst Fin eq n) ∎) -- Following code taken from -- https://github.com/copumpkin/derpa/blob/master/REPA/Index.agda#L210 -- the next few bits are lemmas to prove uniqueness of euclidean division -- first : for nonzero divisors, a nonzero quotient would require a larger -- dividend than is consistent with a zero quotient, regardless of -- remainders. large : ∀ {d} {r : Fin (suc d)} x (r′ : Fin (suc d)) → toℕ r ≢ suc x * suc d + toℕ r′ large {d} {r} x r′ pf = irrefl pf ( start suc (toℕ r) ≤⟨ bounded r ⟩ suc d ≤⟨ m≤m+n (suc d) (x * suc d) ⟩ suc d + x * suc d -- same as (suc x * suc d) ≤⟨ m≤m+n (suc x * suc d) (toℕ r′) ⟩ suc x * suc d + toℕ r′ -- clearer in two steps; we'd need assoc anyway □) where open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≡⟨_⟩'_) open Relation.Binary.StrictTotalOrder Data.Nat.Properties.strictTotalOrder -- a raw statement of the uniqueness, in the arrangement of terms that's -- easiest to work with computationally addMul-lemma′ : ∀ x x′ d (r r′ : Fin (suc d)) → x * suc d + toℕ r ≡ x′ * suc d + toℕ r′ → r ≡ r′ × x ≡ x′ addMul-lemma′ zero zero d r r′ hyp = (toℕ-injective hyp) , refl addMul-lemma′ zero (suc x′) d r r′ hyp = ⊥-elim (large x′ r′ hyp) addMul-lemma′ (suc x) zero d r r′ hyp = ⊥-elim (large x r (sym hyp)) addMul-lemma′ (suc x) (suc x′) d r r′ hyp rewrite +-assoc (suc d) (x * suc d) (toℕ r) | +-assoc (suc d) (x′ * suc d) (toℕ r′) with addMul-lemma′ x x′ d r r′ (cancel-+-left (suc d) hyp) ... | pf₁ , pf₂ = pf₁ , cong suc pf₂ -- and now rearranged to the order that Data.Nat.DivMod uses addMul-lemma : ∀ x x′ d (r r′ : Fin (suc d)) → toℕ r + x * suc d ≡ toℕ r′ + x′ * suc d → r ≡ r′ × x ≡ x′ addMul-lemma x x′ d r r′ hyp rewrite +-comm (toℕ r) (x * suc d) | +-comm (toℕ r′) (x′ * suc d) = addMul-lemma′ x x′ d r r′ hyp -- purely about Nat, but still not in Data.Nat.Properties.Simple distribˡ-*-+ : ∀ m n o → m * (n + o) ≡ m * n + m * o distribˡ-*-+ m n o = trans (*-comm m (n + o)) ( trans (distribʳ-*-+ m n o) ( (cong₂ _+_ (*-comm n m) (*-comm o m)))) *-right-identity : ∀ n → n * 1 ≡ n *-right-identity n = trans (*-comm n 1) (+-right-identity n) ------------------------------------------------------------------------
algebraic-stack_agda0000_doc_6771
open import Agda.Builtin.Bool open import Agda.Builtin.Equality test : (A : Set) (let X = _) (x : X) (p : A ≡ Bool) → Bool test .Bool true refl = false test .Bool false refl = true
algebraic-stack_agda0000_doc_6772
-- Andreas, 2014-09-23 -- Syntax declaration for overloaded constructor. module _ where module A where syntax c x = ⟦ x ⟧ data D2 (A : Set) : Set where c : A → D2 A data D1 : Set where c : D1 open A test : D2 D1 test = ⟦ c ⟧ -- Should work.
algebraic-stack_agda0000_doc_6773
module Issue1419 where module A where module M where module B where module M where open A open B module N (let open M) where module LotsOfStuff where
algebraic-stack_agda0000_doc_6774
------------------------------------------------------------------------ -- The Agda standard library -- -- A simple example of a program using the foreign function interface ------------------------------------------------------------------------ module README.Foreign.Haskell where -- In order to be considered safe by Agda, the standard library cannot -- add COMPILE pragmas binding the inductive types it defines to concrete -- Haskell types. -- To work around this limitation, we have defined FFI-friendly versions -- of these types together with a zero-cost coercion `coerce`. open import Level using (Level) open import Agda.Builtin.Int open import Agda.Builtin.Nat open import Data.Bool.Base using (Bool; if_then_else_) open import Data.Char as Char open import Data.List.Base as List using (List; _∷_; []; takeWhile; dropWhile) open import Data.Maybe.Base using (Maybe; just; nothing) open import Data.Product open import Function open import Relation.Nullary.Decidable import Foreign.Haskell as FFI open import Foreign.Haskell.Coerce private variable a : Level A : Set a -- Here we use the FFI version of Maybe and Pair. postulate primUncons : List A → FFI.Maybe (FFI.Pair A (List A)) primCatMaybes : List (FFI.Maybe A) → List A primTestChar : Char → Bool primIntEq : Int → Int → Bool {-# COMPILE GHC primUncons = \ _ _ xs -> case xs of { [] -> Nothing ; (x : xs) -> Just (x, xs) } #-} {-# FOREIGN GHC import Data.Maybe #-} {-# COMPILE GHC primCatMaybes = \ _ _ -> catMaybes #-} {-# COMPILE GHC primTestChar = ('-' /=) #-} {-# COMPILE GHC primIntEq = (==) #-} -- We however want to use the notion of Maybe and Pair internal to -- the standard library. For this we use `coerce` to take use back -- to the types we are used to. -- The typeclass mechanism uses the coercion rules for Maybe and Pair, -- as well as the knowledge that natural numbers are represented as -- integers. -- We additionally benefit from the congruence rules for List, Char, -- Bool, and a reflexivity principle for variable A. uncons : List A → Maybe (A × List A) uncons = coerce primUncons catMaybes : List (Maybe A) → List A catMaybes = coerce primCatMaybes testChar : Char → Bool testChar = coerce primTestChar -- note that coerce is useless here but the proof could come from -- either `coerce-fun coerce-refl coerce-refl` or `coerce-refl` alone -- We (and Agda) do not care which proof we got. eqNat : Nat → Nat → Bool eqNat = coerce primIntEq -- We can coerce `Nat` to `Int` but not `Int` to `Nat`. This fundamentally -- relies on the fact that `Coercible` understands that functions are -- contravariant. open import IO open import Codata.Musical.Notation open import Data.String.Base open import Relation.Nullary.Negation -- example program using uncons, catMaybes, and testChar main = run $ ♯ readFiniteFile "README/Foreign/Haskell.agda" {- read this file -} >>= λ f → ♯ let chars = toList f in let cleanup = catMaybes ∘ List.map (λ c → if testChar c then just c else nothing) in let cleaned = dropWhile ('\n' ≟_) $ cleanup chars in case uncons cleaned of λ where nothing → putStrLn "I cannot believe this file is filed with dashes only!" (just (c , cs)) → putStrLn $ unlines $ ("First (non dash) character: " ++ Char.show c) ∷ ("Rest (dash free) of the line: " ++ fromList (takeWhile (¬? ∘ ('\n' ≟_)) cs)) ∷ [] -- You can compile and run this test by writing: -- agda -c Haskell.agda -- ../../Haskell -- You should see the following text (without the indentation on the left): -- First (non dash) character: ' ' -- Rest (dash free) of the line: The Agda standard library
algebraic-stack_agda0000_doc_6775
{-# OPTIONS --sized-types #-} module Sized.Data.List where import Lvl open import Lang.Size open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T A A₁ A₂ B B₁ B₂ Result : Type{ℓ} private variable s s₁ s₂ : Size data List(s : Size){ℓ} (T : Type{ℓ}) : Type{ℓ} where ∅ : List(s)(T) -- An empty list _⊰_ : ∀{sₛ : <ˢⁱᶻᵉ s} → T → List(sₛ)(T) → List(s)(T) -- Cons infixr 1000 _⊰_ tail : List(s)(T) → List(s)(T) tail ∅ = ∅ tail (_ ⊰ l) = l {- -- TODO: Size problems. See notes in Lang.Size. _++_ : List(s)(T) → List(s)(T) → List(s)(T) _++_ ∅ b = b _++_ {s = s} (_⊰_ {sₛ = sₛ} x a) b = _⊰_ {s = s}{sₛ = sₛ} x (_++_ {s = sₛ} a b) infixl 1000 _++_ -}
algebraic-stack_agda0000_doc_6776
{-# OPTIONS --without-K --rewriting #-} open import HoTT {- The cofiber space of [winl : X → X ∨ Y] is equivalent to [Y], - and the cofiber space of [winr : Y → X ∨ Y] is equivalent to [X]. -} module homotopy.WedgeCofiber {i} (X Y : Ptd i) where module CofWinl where module Into = CofiberRec {f = winl} (pt Y) (projr X Y) (λ _ → idp) into = Into.f out : de⊙ Y → Cofiber (winl {X = X} {Y = Y}) out = cfcod ∘ winr abstract out-into : (κ : Cofiber (winl {X = X} {Y = Y})) → out (into κ) == κ out-into = Cofiber-elim (! (cfglue (pt X) ∙ ap cfcod wglue)) (Wedge-elim (λ x → ! (cfglue (pt X) ∙ ap cfcod wglue) ∙ cfglue x) (λ y → idp) (↓-='-from-square $ (lemma (cfglue (pt X)) (ap cfcod wglue) ∙h⊡ (ap-∘ out (projr X Y) wglue ∙ ap (ap out) (Projr.glue-β X Y)) ∙v⊡ bl-square (ap cfcod wglue)))) (λ x → ↓-∘=idf-from-square out into $ ! (∙-unit-r _) ∙h⊡ ap (ap out) (Into.glue-β x) ∙v⊡ hid-square {p = (! (cfglue' winl (pt X) ∙ ap cfcod wglue))} ⊡v connection {q = cfglue x}) where lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → ! (p ∙ q) ∙ p == ! q lemma idp idp = idp eq : Cofiber winl ≃ de⊙ Y eq = equiv into out (λ _ → idp) out-into ⊙eq : ⊙Cofiber ⊙winl ⊙≃ Y ⊙eq = ≃-to-⊙≃ eq idp cfcod-winl-projr-comm-sqr : CommSquare (cfcod' winl) (projr X Y) (idf _) CofWinl.into cfcod-winl-projr-comm-sqr = comm-sqr λ _ → idp module CofWinr where module Into = CofiberRec {f = winr} (pt X) (projl X Y) (λ _ → idp) into = Into.f out : de⊙ X → Cofiber (winr {X = X} {Y = Y}) out = cfcod ∘ winl abstract out-into : ∀ κ → out (into κ) == κ out-into = Cofiber-elim (ap cfcod wglue ∙ ! (cfglue (pt Y))) (Wedge-elim (λ x → idp) (λ y → (ap cfcod wglue ∙ ! (cfglue (pt Y))) ∙ cfglue y) (↓-='-from-square $ (ap-∘ out (projl X Y) wglue ∙ ap (ap out) (Projl.glue-β X Y)) ∙v⊡ connection ⊡h∙ ! (lemma (ap (cfcod' winr) wglue) (cfglue (pt Y))))) (λ y → ↓-∘=idf-from-square out into $ ! (∙-unit-r _) ∙h⊡ ap (ap out) (Into.glue-β y) ∙v⊡ hid-square {p = (ap (cfcod' winr) wglue ∙ ! (cfglue (pt Y)))} ⊡v connection {q = cfglue y}) where lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y) → (p ∙ ! q) ∙ q == p lemma idp idp = idp eq : Cofiber winr ≃ de⊙ X eq = equiv into out (λ _ → idp) out-into ⊙eq : ⊙Cofiber ⊙winr ⊙≃ X ⊙eq = ≃-to-⊙≃ eq idp cfcod-winr-projl-comm-sqr : CommSquare (cfcod' winr) (projl X Y) (idf _) CofWinr.into cfcod-winr-projl-comm-sqr = comm-sqr λ _ → idp
algebraic-stack_agda0000_doc_6777
module Issue1278.A (X : Set1) where data D : Set where d : D
algebraic-stack_agda0000_doc_6778
-- Combinators for logical reasoning {-# OPTIONS --without-K --safe --exact-split #-} module Constructive.Combinators where -- agda-stdlib open import Data.Empty open import Data.Sum as Sum open import Data.Product as Prod open import Function.Base open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) import Relation.Unary as U open import Relation.Binary.PropositionalEquality -- agda-misc open import Constructive.Common --------------------------------------------------------------------------- -- Combinators --------------------------------------------------------------------------- module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where →-distrib-⊎-× : ((A ⊎ B) → C) → (A → C) × (B → C) →-distrib-⊎-× f = f ∘ inj₁ , f ∘ inj₂ →-undistrib-⊎-× : (A → C) × (B → C) → (A ⊎ B) → C →-undistrib-⊎-× (f , g) (inj₁ x) = f x →-undistrib-⊎-× (f , g) (inj₂ y) = g y →-undistrib-⊎-×-flip : (A ⊎ B) → (A → C) × (B → C) → C →-undistrib-⊎-×-flip = flip →-undistrib-⊎-× →-undistrib-×-⊎ : (A → C) ⊎ (B → C) → (A × B) → C →-undistrib-×-⊎ (inj₁ f) (x , y) = f x →-undistrib-×-⊎ (inj₂ g) (x , y) = g y →-undistrib-×-⊎-flip : (A × B) → (A → C) ⊎ (B → C) → C →-undistrib-×-⊎-flip = flip →-undistrib-×-⊎ -- contradiction contradiction : ∀ {a w} {A : Set a} {WhatEver : Set w} → A → ¬ A → WhatEver contradiction x ¬x = ⊥-elim (¬x x) -- sum and product module _ {a b} {A : Set a} {B : Set b} where A⊎B→¬A→B : A ⊎ B → ¬ A → B A⊎B→¬A→B (inj₁ x) ¬A = contradiction x ¬A A⊎B→¬A→B (inj₂ y) ¬A = y A⊎B→¬B→A : A ⊎ B → ¬ B → A A⊎B→¬B→A (inj₁ x) ¬B = x A⊎B→¬B→A (inj₂ y) ¬B = contradiction y ¬B ¬A⊎B→A→B : ¬ A ⊎ B → A → B ¬A⊎B→A→B (inj₁ ¬A) x = contradiction x ¬A ¬A⊎B→A→B (inj₂ y) _ = y [A→B]→¬[A׬B] : (A → B) → ¬ (A × ¬ B) [A→B]→¬[A׬B] f (x , y) = y (f x) A×B→¬[A→¬B] : A × B → ¬ (A → ¬ B) A×B→¬[A→¬B] (x , y) f = f x y -- De Morgan's laws ¬[A⊎B]→¬A׬B : ¬ (A ⊎ B) → ¬ A × ¬ B ¬[A⊎B]→¬A׬B = →-distrib-⊎-× ¬A׬B→¬[A⊎B] : ¬ A × ¬ B → ¬ (A ⊎ B) ¬A׬B→¬[A⊎B] = →-undistrib-⊎-× A⊎B→¬[¬A׬B] : A ⊎ B → ¬ (¬ A × ¬ B) A⊎B→¬[¬A׬B] = →-undistrib-⊎-×-flip ¬A⊎¬B→¬[A×B] : ¬ A ⊎ ¬ B → ¬ (A × B) ¬A⊎¬B→¬[A×B] = →-undistrib-×-⊎ A×B→¬[¬A⊎¬B] : A × B → ¬ (¬ A ⊎ ¬ B) A×B→¬[¬A⊎¬B] = →-undistrib-×-⊎-flip -- Double negated DEM₃ ¬[A×B]→¬¬[¬A⊎¬B] : ¬ (A × B) → ¬ ¬ (¬ A ⊎ ¬ B) ¬[A×B]→¬¬[¬A⊎¬B] ¬[A×B] ¬[¬A⊎¬B] = ¬[¬A⊎¬B] (inj₁ λ x → contradiction (inj₂ (λ y → ¬[A×B] (x , y))) ¬[¬A⊎¬B]) dec⊎⇒¬[A×B]→¬A⊎¬B : Dec⊎ A → Dec⊎ B → ¬ (A × B) → ¬ A ⊎ ¬ B dec⊎⇒¬[A×B]→¬A⊎¬B (inj₁ x) (inj₁ y) ¬[A×B] = contradiction (x , y) ¬[A×B] dec⊎⇒¬[A×B]→¬A⊎¬B (inj₁ x) (inj₂ ¬y) ¬[A×B] = inj₂ ¬y dec⊎⇒¬[A×B]→¬A⊎¬B (inj₂ ¬x) _ ¬[A×B] = inj₁ ¬x join : (A → A → B) → A → B join f x = f x x -- properties of negation module _ {a} {A : Set a} where [A→¬A]→¬A : (A → ¬ A) → ¬ A [A→¬A]→¬A = join [¬A→A]→¬¬A : (¬ A → A) → ¬ ¬ A [¬A→A]→¬¬A ¬A→A ¬A = ¬A (¬A→A ¬A) -- Law of noncontradiction (LNC) ¬[A׬A] : ¬ (A × ¬ A) ¬[A׬A] = uncurry (flip _$_) module _ {a b} {A : Set a} {B : Set b} where ¬[A→B]→¬B : ¬ (A → B) → ¬ B ¬[A→B]→¬B ¬[A→B] y = ¬[A→B] (const y) ¬[A→B]→¬[A→¬¬B] : ¬ (A → B) → ¬ (A → ¬ ¬ B) ¬[A→B]→¬[A→¬¬B] ¬[A→B] A→¬¬B = ¬[A→B] λ x → ⊥-elim $ A→¬¬B x (¬[A→B]→¬B ¬[A→B]) ¬[A→B]→B→A : ¬ (A → B) → B → A ¬[A→B]→B→A ¬[A→B] y = contradiction (λ _ → y) ¬[A→B] [[A→B]→A]→¬A→A : ((A → B) → A) → ¬ A → A [[A→B]→A]→¬A→A [A→B]→A ¬A = [A→B]→A (⊥-elim ∘′ ¬A) [[A→B]→A]→¬¬A : ((A → B) → A) → ¬ ¬ A [[A→B]→A]→¬¬A [A→B]→A ¬A = ¬A ([[A→B]→A]→¬A→A [A→B]→A ¬A) [[[A→B]→A]→A]→¬B→¬¬A→A : (((A → B) → A) → A) → ¬ B → ¬ ¬ A → A [[[A→B]→A]→A]→¬B→¬¬A→A [[A→B]→A]→A ¬B ¬¬A = [[A→B]→A]→A λ A→B → contradiction (flip _∘′_ A→B ¬B) ¬¬A module _ {a b} {A : Set a} {B : Set b} where contraposition : (A → B) → ¬ B → ¬ A contraposition = flip _∘′_ -- variant of contraposition [A→¬¬B]→¬B→¬A : (A → ¬ ¬ B) → ¬ B → ¬ A [A→¬¬B]→¬B→¬A f ¬B x = (f x) ¬B [¬A→¬B]→¬¬[B→A] : (¬ A → ¬ B) → ¬ ¬ (B → A) [¬A→¬B]→¬¬[B→A] ¬A→¬B ¬[B→A] = ¬[B→A] λ y → ⊥-elim $ ¬A→¬B (¬[A→B]→¬B ¬[B→A]) y [A→¬B]→¬¬A→¬B : (A → ¬ B) → ¬ ¬ A → ¬ B [A→¬B]→¬¬A→¬B A→¬B ¬¬A y = ¬¬A λ x → A→¬B x y module _ {a} {A : Set a} where -- introduction for double negation DN-intro : A → ¬ ¬ A DN-intro = flip _$_ -- triple negation to negation TN-to-N : ¬ ¬ ¬ A → ¬ A TN-to-N = contraposition DN-intro -- Double negation of excluded middle DN-Dec⊎ : ¬ ¬ Dec⊎ A DN-Dec⊎ = λ f → (f ∘ inj₂) (f ∘ inj₁) -- eliminator for ⊥ ⊥-stable : ¬ ¬ ⊥ → ⊥ ⊥-stable f = f id -- Double negation is monad module _ {a} {A : Set a} where DN-join : ¬ ¬ ¬ ¬ A → ¬ ¬ A DN-join = TN-to-N module _ {a b} {A : Set a} {B : Set b} where DN-map : (A → B) → ¬ ¬ A → ¬ ¬ B DN-map = contraposition ∘′ contraposition module _ {a b} {A : Set a} {B : Set b} where DN-bind : (A → ¬ ¬ B) → ¬ ¬ A → ¬ ¬ B DN-bind f = DN-join ∘′ DN-map f DN-bind⁻¹ : (¬ ¬ A → ¬ ¬ B) → A → ¬ ¬ B DN-bind⁻¹ f = f ∘′ DN-intro module _ {a b} {A : Set a} {B : Set b} where DN-ap : ¬ ¬ (A → B) → ¬ ¬ A → ¬ ¬ B DN-ap ff fx = DN-bind (λ f → DN-map f fx) ff DN-ap⁻¹ : (¬ ¬ A → ¬ ¬ B) → ¬ ¬ (A → B) DN-ap⁻¹ f ¬[A→B] = ¬[A→B]→¬[A→¬¬B] ¬[A→B] (DN-bind⁻¹ f) -- distributive properties DN-distrib-× : ¬ ¬ (A × B) → ¬ ¬ A × ¬ ¬ B DN-distrib-× ¬¬A×B = DN-map proj₁ ¬¬A×B , DN-map proj₂ ¬¬A×B DN-undistrib-× : ¬ ¬ A × ¬ ¬ B → ¬ ¬ (A × B) DN-undistrib-× = [A→¬¬B]→¬B→¬A ¬[A×B]→¬¬[¬A⊎¬B] ∘′ ¬A׬B→¬[A⊎B] DN-undistrib-⊎ : ¬ ¬ A ⊎ ¬ ¬ B → ¬ ¬ (A ⊎ B) DN-undistrib-⊎ = Sum.[ DN-map inj₁ , DN-map inj₂ ] stable-undistrib-× : Stable A × Stable B → Stable (A × B) stable-undistrib-× (A-stable , B-stable) ¬¬[A×B] = Prod.map A-stable B-stable $ DN-distrib-× ¬¬[A×B] module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where ip-⊎-DN : (A → (B ⊎ C)) → ¬ ¬ ((A → B) ⊎ (A → C)) ip-⊎-DN f = DN-map Sum.[ (Sum.map const const ∘ f) , (λ ¬A → inj₁ λ x → ⊥-elim (¬A x)) ] DN-Dec⊎ DN-ip : ∀ {p q r} {P : Set p} {Q : Set q} {R : Q → Set r} → Q → (P → Σ Q R) → ¬ ¬ (Σ Q λ x → (P → R x)) DN-ip q f = DN-map Sum.[ (λ x → Prod.map₂ const (f x)) , (λ ¬P → q , λ P → ⊥-elim $ ¬P P) ] DN-Dec⊎ -- Properties of Dec⊎ module _ {a} {A : Set a} where dec⊎⇒dec : Dec⊎ A → Dec A dec⊎⇒dec (inj₁ x) = yes x dec⊎⇒dec (inj₂ y) = no y dec⇒dec⊎ : Dec A → Dec⊎ A dec⇒dec⊎ (yes p) = inj₁ p dec⇒dec⊎ (no ¬p) = inj₂ ¬p ¬-dec⊎ : Dec⊎ A → Dec⊎ (¬ A) ¬-dec⊎ (inj₁ x) = inj₂ (DN-intro x) ¬-dec⊎ (inj₂ y) = inj₁ y module _ {a b} {A : Set a} {B : Set b} where dec⊎-map : (A → B) → (B → A) → Dec⊎ A → Dec⊎ B dec⊎-map f g dec⊎ = Sum.map f (contraposition g) dec⊎ dec⊎-⊎ : Dec⊎ A → Dec⊎ B → Dec⊎ (A ⊎ B) dec⊎-⊎ (inj₁ x) _ = inj₁ (inj₁ x) dec⊎-⊎ (inj₂ ¬x) (inj₁ y) = inj₁ (inj₂ y) dec⊎-⊎ (inj₂ ¬x) (inj₂ ¬y) = inj₂ (¬A׬B→¬[A⊎B] (¬x , ¬y)) dec⊎-× : Dec⊎ A → Dec⊎ B → Dec⊎ (A × B) dec⊎-× (inj₁ x) (inj₁ y) = inj₁ (x , y) dec⊎-× (inj₁ x) (inj₂ ¬y) = inj₂ (¬y ∘ proj₂) dec⊎-× (inj₂ ¬x) _ = inj₂ (¬x ∘ proj₁) -- Properties of Stable module _ {a} {A : Set a} where dec⇒stable : Dec A → Stable A dec⇒stable (yes p) ¬¬A = p dec⇒stable (no ¬p) ¬¬A = ⊥-elim (¬¬A ¬p) ¬-stable : Stable (¬ A) ¬-stable = TN-to-N dec⊎⇒stable : Dec⊎ A → Stable A dec⊎⇒stable dec⊎ = dec⇒stable (dec⊎⇒dec dec⊎) module _ {a p} {A : Set a} {P : A → Set p} where DecU⇒stable : DecU P → ∀ x → Stable (P x) DecU⇒stable P? x = dec⊎⇒stable (P? x) -- Properties of DecU ¬-DecU : DecU P → DecU (λ x → ¬ (P x)) ¬-DecU P? x = ¬-dec⊎ (P? x) DecU⇒decidable : DecU P → U.Decidable P DecU⇒decidable P? x = dec⊎⇒dec (P? x) decidable⇒DecU : U.Decidable P → DecU P decidable⇒DecU P? x = dec⇒dec⊎ (P? x) DecU-map : ∀ {a b p} {A : Set a} {B : Set b} {P : A → Set p} → (f : B → A) → DecU P → DecU (λ x → P (f x)) DecU-map f P? x = dec⊎-map id id (P? (f x)) module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where DecU-⊎ : DecU P → DecU Q → DecU (λ x → P x ⊎ Q x) DecU-⊎ P? Q? x = dec⊎-⊎ (P? x) (Q? x) DecU-× : DecU P → DecU Q → DecU (λ x → P x × Q x) DecU-× P? Q? x = dec⊎-× (P? x) (Q? x) -- Quantifier module _ {a p} {A : Set a} {P : A → Set p} where ∃P→¬∀¬P : ∃ P → ¬ (∀ x → ¬ (P x)) ∃P→¬∀¬P = flip uncurry ∀P→¬∃¬P : (∀ x → P x) → ¬ ∃ λ x → ¬ (P x) ∀P→¬∃¬P f (x , ¬Px) = ¬Px (f x) ¬∃P→∀¬P : ¬ ∃ P → ∀ x → ¬ (P x) ¬∃P→∀¬P = curry ∀¬P→¬∃P : (∀ x → ¬ (P x)) → ¬ ∃ P ∀¬P→¬∃P = uncurry ∃¬P→¬∀P : ∃ (λ x → ¬ (P x)) → ¬ (∀ x → P x) ∃¬P→¬∀P (x , ¬Px) ∀P = ¬Px (∀P x) ¬∀¬P→¬¬∃P : ¬ (∀ x → ¬ P x) → ¬ ¬ ∃ P ¬∀¬P→¬¬∃P ¬∀¬P = contraposition ¬∃P→∀¬P ¬∀¬P ¬¬∃P→¬∀¬P : ¬ ¬ ∃ P → ¬ (∀ x → ¬ P x) ¬¬∃P→¬∀¬P ¬¬∃P = contraposition ∀¬P→¬∃P ¬¬∃P ¬¬∀P→¬∃¬P : ¬ ¬ (∀ x → P x) → ¬ ∃ λ x → ¬ (P x) ¬¬∀P→¬∃¬P ¬¬∀P = contraposition ∃¬P→¬∀P ¬¬∀P ¬¬∃P<=>¬∀¬P : ¬ ¬ ∃ P <=> ¬ (∀ x → ¬ P x) ¬¬∃P<=>¬∀¬P = mk<=> ¬¬∃P→¬∀¬P ¬∀¬P→¬¬∃P -- remove? ∀¬¬P→¬∃¬P : (∀ x → ¬ ¬ P x) → ¬ ∃ λ x → ¬ (P x) ∀¬¬P→¬∃¬P = uncurry -- converse of DNS ¬¬∀P→∀¬¬P : ¬ ¬ (∀ x → P x) → ∀ x → ¬ ¬ P x ¬¬∀P→∀¬¬P f x = DN-map (λ ∀P → ∀P x) f ∃¬¬P→¬¬∃P : (∃ λ x → ¬ ¬ P x) → ¬ ¬ ∃ λ x → P x ∃¬¬P→¬¬∃P (x , ¬¬Px) = DN-map (λ Px → x , Px) ¬¬Px ¬¬∃¬P→¬∀P : ¬ ¬ ∃ (λ x → ¬ (P x)) → ¬ (∀ x → P x) ¬¬∃¬P→¬∀P = contraposition ∀P→¬∃¬P ¬∃¬P→∀¬¬P : ¬ ∃ (λ x → ¬ P x) → ∀ x → ¬ ¬ P x ¬∃¬P→∀¬¬P = curry ∀P→∀¬¬P : (∀ x → P x) → ∀ x → ¬ ¬ P x ∀P→∀¬¬P ∀P x = DN-intro (∀P x) ∃P→∃¬¬P : ∃ P → ∃ λ x → ¬ ¬ P x ∃P→∃¬¬P (x , Px) = x , DN-intro Px module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where [∀¬P→∀¬Q]→¬¬[∃Q→∃P] : ((∀ x → ¬ P x) → (∀ x → ¬ Q x)) → ¬ ¬ (∃ Q → ∃ P) [∀¬P→∀¬Q]→¬¬[∃Q→∃P] ∀¬P→∀¬Q = DN-ap⁻¹ (¬∀¬P→¬¬∃P ∘ contraposition ∀¬P→∀¬Q ∘ ¬¬∃P→¬∀¬P) -- Quantifier rearrangement for stable predicate module _ {a p} {A : Set a} {P : A → Set p} (P-stable : ∀ x → Stable (P x)) where P-stable⇒∃¬¬P→∃P : ∃ (λ x → ¬ ¬ P x) → ∃ P P-stable⇒∃¬¬P→∃P (x , ¬¬Px) = x , P-stable x ¬¬Px P-stable⇒∀¬¬P→∀P : (∀ x → ¬ ¬ P x) → ∀ x → P x P-stable⇒∀¬¬P→∀P ∀¬¬P x = P-stable x (∀¬¬P x) P-stable⇒¬¬∀P→∀P : ¬ ¬ (∀ x → P x) → ∀ x → P x P-stable⇒¬¬∀P→∀P = P-stable⇒∀¬¬P→∀P ∘′ ¬¬∀P→∀¬¬P P-stable⇒¬∃¬P→∀P : ¬ ∃ (λ x → ¬ P x) → ∀ x → P x P-stable⇒¬∃¬P→∀P ¬∃¬P = P-stable⇒∀¬¬P→∀P (¬∃¬P→∀¬¬P ¬∃¬P) P-stable⇒¬∀P→¬¬∃¬P : ¬ (∀ x → P x) → ¬ ¬ ∃ (λ x → ¬ (P x)) P-stable⇒¬∀P→¬¬∃¬P ¬∀P = contraposition P-stable⇒¬∃¬P→∀P ¬∀P module _ {a p} {A : Set a} {P : A → Set p} (P? : DecU P) where P?⇒∃¬¬P→∃P : ∃ (λ x → ¬ ¬ P x) → ∃ P P?⇒∃¬¬P→∃P = P-stable⇒∃¬¬P→∃P (DecU⇒stable P?) P?⇒∀¬¬P→∀P : (∀ x → ¬ ¬ P x) → ∀ x → P x P?⇒∀¬¬P→∀P = P-stable⇒∀¬¬P→∀P (DecU⇒stable P?) P?⇒¬¬∀P→∀P : ¬ ¬ (∀ x → P x) → ∀ x → P x P?⇒¬¬∀P→∀P = P-stable⇒¬¬∀P→∀P (DecU⇒stable P?) P?⇒¬∃¬P→∀P : ¬ ∃ (λ x → ¬ P x) → ∀ x → P x P?⇒¬∃¬P→∀P = P-stable⇒¬∃¬P→∀P (DecU⇒stable P?) P?⇒¬∀P→¬¬∃¬P : ¬ (∀ x → P x) → ¬ ¬ ∃ (λ x → ¬ P x) P?⇒¬∀P→¬¬∃¬P = P-stable⇒¬∀P→¬¬∃¬P (DecU⇒stable P?) -- call/cc P?⇒[¬∀P→∀P]→∀P : (¬ (∀ x → P x) → ∀ x → P x) → ∀ x → P x P?⇒[¬∀P→∀P]→∀P ¬∀P→∀P = P?⇒¬¬∀P→∀P λ ¬∀P → ¬∀P (¬∀P→∀P ¬∀P) P?⇒[∃¬P→∀P]→∀P : (∃ (λ x → ¬ P x) → ∀ x → P x) → ∀ x → P x P?⇒[∃¬P→∀P]→∀P ∃¬P→∀P = P?⇒¬¬∀P→∀P λ ¬∀P → P?⇒¬∀P→¬¬∃¬P ¬∀P λ ∃¬P → ¬∀P (∃¬P→∀P ∃¬P) -- [∀¬P→¬∀Q]→¬∃¬Q→¬¬∃P module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where P?⇒[∃¬P→∃¬Q]→∀Q→∀P : DecU P → (∃ (λ x → ¬ P x) → ∃ (λ x → ¬ Q x)) → (∀ x → Q x) → ∀ x → P x P?⇒[∃¬P→∃¬Q]→∀Q→∀P P? ∃¬P→∃¬Q = P?⇒¬∃¬P→∀P P? ∘ contraposition ∃¬P→∃¬Q ∘ ∀P→¬∃¬P P?⇒[∃Q→∀P]→¬∀¬Q→∀P : DecU P → (∃ Q → ∀ x → P x) → ¬ (∀ x → ¬ Q x) → ∀ x → P x P?⇒[∃Q→∀P]→¬∀¬Q→∀P P? ∃Q→∀P ¬∀¬Q = P?⇒¬¬∀P→∀P P? (DN-map ∃Q→∀P (¬∀¬P→¬¬∃P ¬∀¬Q)) ¬[¬∀P⊎¬∀Q]→∀P×∀Q : DecU P → DecU Q → ¬ (¬ (∀ x → P x) ⊎ ¬ (∀ x → Q x)) → (∀ x → P x) × (∀ x → Q x) ¬[¬∀P⊎¬∀Q]→∀P×∀Q P? Q? ¬[¬∀P⊎¬∀Q] = Prod.map (P?⇒¬¬∀P→∀P P?) (P?⇒¬¬∀P→∀P Q?) (¬[A⊎B]→¬A׬B ¬[¬∀P⊎¬∀Q]) module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where ∃-undistrib-⊎ : ∃ P ⊎ ∃ Q → ∃ (λ x → P x ⊎ Q x) ∃-undistrib-⊎ (inj₁ (x , Px)) = x , inj₁ Px ∃-undistrib-⊎ (inj₂ (x , Qx)) = x , inj₂ Qx ∃-distrib-⊎ : ∃ (λ x → P x ⊎ Q x) → ∃ P ⊎ ∃ Q ∃-distrib-⊎ (x , inj₁ Px) = inj₁ (x , Px) ∃-distrib-⊎ (x , inj₂ Qx) = inj₂ (x , Qx) ∃-distrib-× : ∃ (λ x → P x × Q x) → ∃ P × ∃ Q ∃-distrib-× (x , Px , Qx) = (x , Px) , (x , Qx) ∀-undistrib-× : (∀ x → P x) × (∀ x → Q x) → ∀ x → P x × Q x ∀-undistrib-× (∀P , ∀Q) x = ∀P x , ∀Q x ∀-distrib-× : (∀ x → P x × Q x) → (∀ x → P x) × (∀ x → Q x) ∀-distrib-× ∀x→Px×Qx = proj₁ ∘ ∀x→Px×Qx , proj₂ ∘ ∀x→Px×Qx ∀-undistrib-⊎ : (∀ x → P x) ⊎ (∀ x → Q x) → ∀ x → P x ⊎ Q x ∀-undistrib-⊎ (inj₁ ∀P) x = inj₁ (∀P x) ∀-undistrib-⊎ (inj₂ ∀Q) x = inj₂ (∀Q x) ¬[¬∃P׬∃Q]→¬¬∃x→Px⊎Qx : ¬ (¬ ∃ P × ¬ ∃ Q) → ¬ ¬ ∃ λ x → P x ⊎ Q x ¬[¬∃P׬∃Q]→¬¬∃x→Px⊎Qx = DN-map ∃-undistrib-⊎ ∘′ contraposition ¬[A⊎B]→¬A׬B [¬¬∃x→Px⊎Qx]→¬[¬∃P׬∃Q] : (¬ ¬ ∃ λ x → P x ⊎ Q x) → ¬ (¬ ∃ P × ¬ ∃ Q) [¬¬∃x→Px⊎Qx]→¬[¬∃P׬∃Q] = contraposition ¬A׬B→¬[A⊎B] ∘′ DN-map ∃-distrib-⊎ ¬∀¬P׬∀¬Q→¬¬[∃P×∃Q] : ¬ (∀ x → ¬ P x) × ¬ (∀ x → ¬ Q x) → ¬ ¬ (∃ P × ∃ Q) ¬∀¬P׬∀¬Q→¬¬[∃P×∃Q] = DN-undistrib-× ∘′ Prod.map ¬∀¬P→¬¬∃P ¬∀¬P→¬¬∃P ¬¬[∃P×∃Q]→¬∀¬P׬∀¬Q : ¬ ¬ (∃ P × ∃ Q) → ¬ (∀ x → ¬ P x) × ¬ (∀ x → ¬ Q x) ¬¬[∃P×∃Q]→¬∀¬P׬∀¬Q = Prod.map ¬¬∃P→¬∀¬P ¬¬∃P→¬∀¬P ∘′ DN-distrib-× [∀x→Px→Qx]→∀P→∀Q : (∀ x → P x → Q x) → (∀ x → P x) → ∀ x → Q x [∀x→Px→Qx]→∀P→∀Q f g x = f x (g x)
algebraic-stack_agda0000_doc_6779
module Sessions.Semantics.Commands where open import Prelude open import Data.Fin open import Sessions.Syntax.Types open import Sessions.Syntax.Values mutual data Cmd : Pred RCtx 0ℓ where fork : ∀[ Comp unit ⇒ Cmd ] mkchan : ∀ α → ε[ Cmd ] send : ∀ {a α} → ∀[ (Endptr (a ! α) ✴ Val a) ⇒ Cmd ] receive : ∀ {a α} → ∀[ Endptr (a ¿ α) ⇒ Cmd ] close : ∀[ Endptr end ⇒ Cmd ] δ : ∀ {Δ} → Cmd Δ → Pred RCtx 0ℓ δ (fork {α} _) = Emp δ (mkchan α) = Endptr α ✴ Endptr (α ⁻¹) δ (send {α = α} _) = Endptr α δ (receive {a} {α} _) = Val a ✴ Endptr α δ (close _) = Emp open import Relation.Ternary.Separation.Monad.Free Cmd δ renaming (Cont to Cont') open import Relation.Ternary.Separation.Monad.Error Comp : Type → Pred RCtx _ Comp a = ErrorT Free (Val a)
algebraic-stack_agda0000_doc_6780
{-# OPTIONS --cubical --safe #-} module Relation.Nullary.Decidable.Properties where open import Relation.Nullary.Decidable open import Level open import Relation.Nullary.Stable open import Data.Empty open import HLevels open import Data.Empty.Properties using (isProp¬) open import Data.Unit open import Data.Empty Dec→Stable : ∀ {ℓ} (A : Type ℓ) → Dec A → Stable A Dec→Stable A (yes x) = λ _ → x Dec→Stable A (no x) = λ f → ⊥-elim (f x) isPropDec : (Aprop : isProp A) → isProp (Dec A) isPropDec Aprop (yes a) (yes a') i = yes (Aprop a a' i) isPropDec Aprop (yes a) (no ¬a) = ⊥-elim (¬a a) isPropDec Aprop (no ¬a) (yes a) = ⊥-elim (¬a a) isPropDec {A = A} Aprop (no ¬a) (no ¬a') i = no (isProp¬ A ¬a ¬a' i) True : Dec A → Type True (yes _) = ⊤ True (no _) = ⊥ toWitness : {x : Dec A} → True x → A toWitness {x = yes p} _ = p open import Path open import Data.Bool.Base from-reflects : ∀ b → (d : Dec A) → Reflects A b → does d ≡ b from-reflects false (no y) r = refl from-reflects false (yes y) r = ⊥-elim (r y) from-reflects true (no y) r = ⊥-elim (y r) from-reflects true (yes y) r = refl
algebraic-stack_agda0000_doc_6781
-- Semantics of syntactic traversal and substitution module Semantics.Substitution.Traversal where open import Syntax.Types open import Syntax.Context renaming (_,_ to _,,_) open import Syntax.Terms open import Syntax.Substitution.Kits open import Syntax.Substitution.Instances open import Semantics.Types open import Semantics.Context open import Semantics.Terms open import Semantics.Substitution.Kits open import CategoryTheory.Categories using (Category ; ext) open import CategoryTheory.Functor open import CategoryTheory.NatTrans open import CategoryTheory.Monad open import CategoryTheory.Comonad open import CategoryTheory.Instances.Reactive renaming (top to ⊤) open import TemporalOps.Diamond open import TemporalOps.Box open import TemporalOps.OtherOps open import TemporalOps.Linear open import TemporalOps.StrongMonad open import Data.Sum open import Data.Product using (_,_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_ ; refl ; sym ; trans ; cong ; cong₂ ; subst) open ≡.≡-Reasoning private module F-□ = Functor F-□ private module F-◇ = Functor F-◇ open Comonad W-□ open Monad M-◇ open import Holes.Term using (⌞_⌟) open import Holes.Cong.Propositional module _ {𝒮} {k : Kit 𝒮} (⟦k⟧ : ⟦Kit⟧ k) where open ⟦Kit⟧ ⟦k⟧ open Kit k open ⟦K⟧ ⟦k⟧ open K k -- Soundness of syntactic traversal: -- Denotation of a term M traversed with substitution σ is -- the same as the denotation of σ followed by the denotation of M traverse-sound : ∀{Γ Δ A} (σ : Subst 𝒮 Γ Δ) (M : Γ ⊢ A) -> ⟦ traverse σ M ⟧ₘ ≈ ⟦ M ⟧ₘ ∘ ⟦subst⟧ σ traverse′-sound : ∀{Γ Δ A} (σ : Subst 𝒮 Γ Δ) (C : Γ ⊨ A) -> ⟦ traverse′ σ C ⟧ᵐ ≈ ⟦ C ⟧ᵐ ∘ ⟦subst⟧ σ traverse-sound ● (var ()) traverse-sound (σ ▸ T) (var top) = ⟦𝓉⟧ T traverse-sound (σ ▸ T) (var (pop x)) = traverse-sound σ (var x) traverse-sound σ (lam {Γ} {A} M) {n} {⟦Δ⟧} = ext lemma where lemma : ∀(⟦A⟧ : ⟦ A ⟧ₜ n) → Λ ⟦ traverse (σ ↑ k) M ⟧ₘ n ⟦Δ⟧ ⟦A⟧ ≡ (Λ ⟦ M ⟧ₘ ∘ ⟦subst⟧ σ) n ⟦Δ⟧ ⟦A⟧ lemma ⟦A⟧ rewrite traverse-sound (σ ↑ k) M {n} {⟦Δ⟧ , ⟦A⟧} | ⟦↑⟧ (A now) σ {n} {⟦Δ⟧ , ⟦A⟧} = refl traverse-sound σ (M $ N) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} | traverse-sound σ N {n} {⟦Δ⟧} = refl traverse-sound σ unit = refl traverse-sound σ [ M ,, N ] {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} | traverse-sound σ N {n} {⟦Δ⟧} = refl traverse-sound σ (fst M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (snd M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (inl M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (inr M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (case M inl↦ N₁ ||inr↦ N₂) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} with ⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧) traverse-sound σ (case_inl↦_||inr↦_ {A = A} M N₁ N₂) {n} {⟦Δ⟧} | inj₁ ⟦A⟧ rewrite traverse-sound (σ ↑ k) N₁ {n} {⟦Δ⟧ , ⟦A⟧} | ⟦↑⟧ (A now) σ {n} {⟦Δ⟧ , ⟦A⟧} = refl traverse-sound σ (case_inl↦_||inr↦_ {B = B} M N₁ N₂) {n} {⟦Δ⟧} | inj₂ ⟦B⟧ rewrite traverse-sound (σ ↑ k) N₂ {n} {⟦Δ⟧ , ⟦B⟧} | ⟦↑⟧ (B now) σ {n} {⟦Δ⟧ , ⟦B⟧} = refl traverse-sound σ (sample M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound {Γ} {Δ} {A} σ (stable M) {n} {⟦Δ⟧} = ext lemma where lemma : ∀ l -> ⟦ traverse {Γ} σ (stable M) ⟧ₘ n ⟦Δ⟧ l ≡ (⟦ stable {Γ} M ⟧ₘ ∘ ⟦subst⟧ σ) n ⟦Δ⟧ l lemma l rewrite traverse-sound (σ ↓ˢ k) M {l} {⟦ Δ ˢ⟧□ n ⟦Δ⟧ l} | □-≡ n l (⟦↓ˢ⟧ σ {n} {⟦Δ⟧}) l = refl traverse-sound σ (sig M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (letSig_In_ {A = A} M N) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} | traverse-sound (σ ↑ k) N {n} {⟦Δ⟧ , ⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)} | ⟦↑⟧ (A always) σ {n} {⟦Δ⟧ , (⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))} = refl traverse-sound σ (event E) = traverse′-sound σ E traverse′-sound σ (pure M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse′-sound σ (letSig_InC_ {A = A} S C) {n} {⟦Δ⟧} rewrite traverse-sound σ S {n} {⟦Δ⟧} | traverse′-sound (σ ↑ k) C {n} {⟦Δ⟧ , ⟦ S ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)} | ⟦↑⟧ (A always) σ {n} {⟦Δ⟧ , (⟦ S ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))} = refl traverse′-sound {Γ} {Δ} σ (letEvt_In_ {A = A} {B} E C) {n} {⟦Δ⟧} rewrite traverse-sound σ E {n} {⟦Δ⟧} | (ext λ m → ext λ b → traverse′-sound (σ ↓ˢ k ↑ k) C {m} {b}) = begin μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ ∘ ⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))) ≡⟨ cong (μ.at ⟦ B ⟧ₜ n) (F-◇.fmap-∘ {g = ⟦ C ⟧ᵐ} {⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id} {n} {st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))}) ⟩ μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ) n (F-◇.fmap (⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))) ≡⟨ cong (λ x → μ.at ⟦ B ⟧ₜ n (F-◇.fmap ⟦ C ⟧ᵐ n x)) ( begin F-◇.fmap (⌞ ⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))) ≡⟨ cong! (ext λ m -> ext λ b → ⟦↑⟧ (A now) (σ ↓ˢ k) {m} {b}) ⟩ F-◇.fmap (⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))) ≡⟨ F-◇.fmap-∘ ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (F-◇.fmap (F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))) ≡⟨ cong (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n) (st-nat₁ (⟦subst⟧ (σ ↓ˢ k))) ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⌞ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧) ⌟ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))) ≡⟨ cong! (⟦↓ˢ⟧ σ) ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))) ∎ ) ⟩ μ.at ⟦ B ⟧ₜ n (F-◇.fmap ⟦ C ⟧ᵐ n (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))) ≡⟨ cong (μ.at ⟦ B ⟧ₜ n) (sym (F-◇.fmap-∘ {g = ⟦ C ⟧ᵐ}{ε.at ⟦ Γ ˢ ⟧ₓ * id}{n} {st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))})) ⟩ μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))) ≡⟨⟩ ⟦ letEvt E In C ⟧ᵐ n (⟦subst⟧ σ n ⟦Δ⟧) ∎ traverse′-sound {_} {Δ} σ (select_↦_||_↦_||both↦_ {Γ} {A} {B} {C} E₁ C₁ E₂ C₂ C₃) {n} {⟦Δ⟧} rewrite traverse-sound σ E₁ {n} {⟦Δ⟧} | traverse-sound σ E₂ {n} {⟦Δ⟧} = begin μ.at ⟦ C ⟧ₜ n (F-◇.fmap (⌞ handle ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₁ ⟧ᵐ ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₂ ⟧ᵐ ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₃ ⟧ᵐ ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ≡⟨ cong! (ext λ m → ext λ b → ind-hyp m b) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (⌞ handle (⟦ C₁ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {Event B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) (⟦ C₂ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {Event A now} (σ ↓ˢ k) k) k))) (⟦ C₃ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ≡⟨ cong! (ext λ m → ext λ b → ⟦subst⟧-handle {Δ}{Γ}{A}{B}{C} σ {⟦ C₁ ⟧ᵐ}{⟦ C₂ ⟧ᵐ}{⟦ C₃ ⟧ᵐ}{n = m} {b}) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ ∘ ⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ≡⟨ cong (μ.at ⟦ C ⟧ₜ n) (F-◇.fmap-∘ {g = handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ} {f = ⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id} {n} {st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)}) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n ⌞ (F-◇.fmap (⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ⌟) ≡⟨ cong (λ x → μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n x)) ( begin F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id ∘ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)) ≡⟨ F-◇.fmap-∘ ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (F-◇.fmap (F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ≡⟨ cong (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n) (st-nat₁ (⟦subst⟧ (σ ↓ˢ k))) ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⌞ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧) ⌟ , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))) ≡⟨ cong! (⟦↓ˢ⟧ σ) ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))) ∎ ) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))))) ≡⟨ cong (μ.at ⟦ C ⟧ₜ n) (sym (F-◇.fmap-∘ {g = handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ} {ε.at ⟦ Γ ˢ ⟧ₓ * id}{n} {st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))})) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧)))) ≡⟨⟩ ⟦ select E₁ ↦ C₁ || E₂ ↦ C₂ ||both↦ C₃ ⟧ᵐ n (⟦subst⟧ σ n ⟦Δ⟧) ∎ where ind-hyp : ∀ l c -> handle ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₁ ⟧ᵐ ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₂ ⟧ᵐ ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₃ ⟧ᵐ l c ≡ handle (⟦ C₁ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {Event B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) (⟦ C₂ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {Event A now} (σ ↓ˢ k) k) k))) (⟦ C₃ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) l c ind-hyp l c rewrite ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₁ {n} {⟦Δ⟧}))) | ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₂ {n} {⟦Δ⟧}))) | ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₃ {n} {⟦Δ⟧}))) = refl
algebraic-stack_agda0000_doc_6782
------------------------------------------------------------------------ -- The Agda standard library -- -- Endomorphisms on a Set ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Endomorphism.Propositional {a} (A : Set a) where open import Algebra using (Magma; Semigroup; Monoid) open import Algebra.FunctionProperties.Core using (Op₂) open import Algebra.Morphism; open Definitions open import Algebra.Structures using (IsMagma; IsSemigroup; IsMonoid) open import Data.Nat.Base using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-0-monoid; +-semigroup) open import Data.Product using (_,_) open import Function open import Function.Equality using (_⟨$⟩_) open import Relation.Binary using (_Preserves_⟶_) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) import Function.Endomorphism.Setoid (P.setoid A) as Setoid Endo : Set a Endo = A → A ------------------------------------------------------------------------ -- Conversion back and forth with the Setoid-based notion of Endomorphism fromSetoidEndo : Setoid.Endo → Endo fromSetoidEndo = _⟨$⟩_ toSetoidEndo : Endo → Setoid.Endo toSetoidEndo f = record { _⟨$⟩_ = f ; cong = P.cong f } ------------------------------------------------------------------------ -- N-th composition _^_ : Endo → ℕ → Endo f ^ zero = id f ^ suc n = f ∘′ (f ^ n) ^-homo : ∀ f → Homomorphic₂ ℕ Endo _≡_ (f ^_) _+_ _∘′_ ^-homo f zero n = refl ^-homo f (suc m) n = P.cong (f ∘′_) (^-homo f m n) ------------------------------------------------------------------------ -- Structures ∘-isMagma : IsMagma _≡_ (Op₂ Endo ∋ _∘′_) ∘-isMagma = record { isEquivalence = P.isEquivalence ; ∙-cong = P.cong₂ _∘′_ } ∘-magma : Magma _ _ ∘-magma = record { isMagma = ∘-isMagma } ∘-isSemigroup : IsSemigroup _≡_ (Op₂ Endo ∋ _∘′_) ∘-isSemigroup = record { isMagma = ∘-isMagma ; assoc = λ _ _ _ → refl } ∘-semigroup : Semigroup _ _ ∘-semigroup = record { isSemigroup = ∘-isSemigroup } ∘-id-isMonoid : IsMonoid _≡_ _∘′_ id ∘-id-isMonoid = record { isSemigroup = ∘-isSemigroup ; identity = (λ _ → refl) , (λ _ → refl) } ∘-id-monoid : Monoid _ _ ∘-id-monoid = record { isMonoid = ∘-id-isMonoid } ------------------------------------------------------------------------ -- Homomorphism ^-isSemigroupMorphism : ∀ f → IsSemigroupMorphism +-semigroup ∘-semigroup (f ^_) ^-isSemigroupMorphism f = record { ⟦⟧-cong = P.cong (f ^_) ; ∙-homo = ^-homo f } ^-isMonoidMorphism : ∀ f → IsMonoidMorphism +-0-monoid ∘-id-monoid (f ^_) ^-isMonoidMorphism f = record { sm-homo = ^-isSemigroupMorphism f ; ε-homo = refl }
algebraic-stack_agda0000_doc_6783
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness --sized-types #-} open import Size open import Data.Empty open import Data.Product open import Data.Sum open import Data.List using ([]; _∷_; _∷ʳ_; _++_) open import Codata.Thunk open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Unary using (_∈_; _⊆_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl) open import Function.Base using (case_of_) open import Common module Subtyping {ℙ : Set} (message : Message ℙ) where open Message message open import Trace message open import SessionType message open import Transitions message open import Session message open import Compliance message open import HasTrace message data Sub : SessionType -> SessionType -> Size -> Set where nil<:any : ∀{T i} -> Sub nil T i end<:def : ∀{T S i} (e : End T) (def : Defined S) -> Sub T S i inp<:inp : ∀{f g i} (inc : dom f ⊆ dom g) (F : (x : ℙ) -> Thunk (Sub (f x .force) (g x .force)) i) -> Sub (inp f) (inp g) i out<:out : ∀{f g i} (W : Witness g) (inc : dom g ⊆ dom f) (F : ∀{x} (!x : x ∈ dom g) -> Thunk (Sub (f x .force) (g x .force)) i) -> Sub (out f) (out g) i _<:_ : SessionType -> SessionType -> Set _<:_ T S = Sub T S ∞ sub-defined : ∀{T S} -> T <: S -> Defined T -> Defined S sub-defined (end<:def _ def) _ = def sub-defined (inp<:inp _ _) _ = inp sub-defined (out<:out _ _ _) _ = out sub-sound : ∀{T S R} -> Compliance (R # T) -> T <: S -> ∞Compliance (R # S) force (sub-sound (win#def w def) sub) = win#def w (sub-defined sub def) force (sub-sound (out#inp (_ , !x) F) (end<:def (inp U) def)) with U _ (proj₂ (compliance->defined (F !x .force))) ... | () force (sub-sound (out#inp (_ , !x) F) (inp<:inp _ G)) = out#inp (_ , !x) λ !x -> sub-sound (F !x .force) (G _ .force) force (sub-sound (inp#out (_ , !x) F) (end<:def (out U) def)) = ⊥-elim (U _ !x) force (sub-sound (inp#out (_ , !x) F) (out<:out {f} {g} (_ , !y) inc G)) = inp#out (_ , !y) λ !x -> sub-sound (F (inc !x) .force) (G !x .force) SubtypingQ : SessionType -> SessionType -> Set SubtypingQ T S = ∀{R} -> Compliance (R # T) -> Compliance (R # S) if-eq : ℙ -> SessionType -> SessionType -> Continuation force (if-eq x T S y) with x ?= y ... | yes _ = T ... | no _ = S input* : SessionType input* = inp λ _ -> λ where .force -> win input : ℙ -> SessionType -> SessionType -> SessionType input x T S = inp (if-eq x T S) input*-but : ℙ -> SessionType input*-but x = input x nil win output : ℙ -> SessionType -> SessionType -> SessionType output x T S = out (if-eq x T S) input-if-eq-comp : ∀{f x T} -> Compliance (T # f x .force) -> ∀{y} (!y : y ∈ dom f) -> ∞Compliance (if-eq x T win y .force # f y .force) force (input-if-eq-comp {_} {x} comp {y} !y) with x ?= y ... | yes refl = comp ... | no neq = win#def Win-win !y output-if-eq-comp : ∀{f : Continuation}{x}{T} -> Compliance (T # f x .force) -> ∀{y} (!y : y ∈ dom (if-eq x T nil)) -> ∞Compliance (if-eq x T nil y .force # f y .force) force (output-if-eq-comp {_} {x} comp {y} !y) with x ?= y ... | yes refl = comp force (output-if-eq-comp {_} {x} comp {y} ()) | no neq input*-comp : ∀{f} (W : Witness f) -> Compliance (input* # out f) input*-comp W = inp#out W λ !x -> λ where .force -> win#def Win-win !x input*-but-comp : ∀{f x} (W : Witness f) (N : ¬ x ∈ dom f) -> Compliance (input*-but x # out f) input*-but-comp {f} {x} W N = inp#out W aux where aux : ∀{y : ℙ} -> (fy : y ∈ dom f) -> ∞Compliance (if-eq x nil win y .force # f y .force) force (aux {y} fy) with x ?= y ... | yes refl = ⊥-elim (N fy) ... | no neq = win#def Win-win fy ∈-output-if-eq : ∀{R} (x : ℙ) -> Defined R -> x ∈ dom (if-eq x R nil) ∈-output-if-eq x def with x ?= x ... | yes refl = def ... | no neq = ⊥-elim (neq refl) input-comp : ∀{g x R} -> Compliance (R # g x .force) -> Compliance (input x R win # out g) input-comp {g} {x} comp = inp#out (x , proj₂ (compliance->defined comp)) (input-if-eq-comp {g} comp) output-comp : ∀{f x R} -> Compliance (R # f x .force) -> Compliance (output x R nil # inp f) output-comp {f} {x} comp = out#inp (_ , ∈-output-if-eq x (proj₁ (compliance->defined comp))) (output-if-eq-comp {f} comp) sub-inp-inp : ∀{f g} (spec : SubtypingQ (inp f) (inp g)) (x : ℙ) -> SubtypingQ (f x .force) (g x .force) sub-inp-inp spec x comp with spec (output-comp comp) ... | win#def (out U) def = ⊥-elim (U _ (∈-output-if-eq x (proj₁ (compliance->defined comp)))) ... | out#inp (y , fy) F with F fy .force ... | comp' with x ?= y ... | yes refl = comp' sub-inp-inp spec x comp | out#inp (y , fy) F | win#def () def | no neq sub-out-out : ∀{f g} (spec : SubtypingQ (out f) (out g)) -> ∀{x} -> x ∈ dom g -> SubtypingQ (f x .force) (g x .force) sub-out-out spec {x} gx comp with spec (input-comp comp) ... | inp#out W F with F gx .force ... | comp' with x ?= x ... | yes refl = comp' ... | no neq = ⊥-elim (neq refl) sub-out->def : ∀{f g} (spec : SubtypingQ (out f) (out g)) (Wf : Witness f) -> ∀{x} (gx : x ∈ dom g) -> x ∈ dom f sub-out->def {f} spec Wf {x} gx with x ∈? f ... | yes fx = fx ... | no nfx with spec (input*-but-comp Wf nfx) ... | inp#out W F with F gx .force ... | res with x ?= x sub-out->def {f} spec Wf {x} gx | no nfx | inp#out W F | win#def () def | yes refl ... | no neq = ⊥-elim (neq refl) sub-inp->def : ∀{f g} (spec : SubtypingQ (inp f) (inp g)) -> ∀{x} (fx : x ∈ dom f) -> x ∈ dom g sub-inp->def {f} spec {x} fx with spec {output x win nil} (output-comp (win#def Win-win fx)) ... | win#def (out U) def = ⊥-elim (U _ (∈-output-if-eq x out)) ... | out#inp W F with F (∈-output-if-eq x out) .force ... | comp = proj₂ (compliance->defined comp) sub-complete : ∀{T S i} -> SubtypingQ T S -> Thunk (Sub T S) i force (sub-complete {nil} {_} spec) = nil<:any force (sub-complete {inp f} {nil} spec) with spec {win} (win#def Win-win inp) ... | win#def _ () force (sub-complete {inp _} {inp _} spec) = inp<:inp (sub-inp->def spec) λ x -> sub-complete (sub-inp-inp spec x) force (sub-complete {inp f} {out _} spec) with Empty? f ... | inj₁ U = end<:def (inp U) out ... | inj₂ (x , ?x) with spec {output x win nil} (output-comp (win#def Win-win ?x)) ... | win#def (out U) def = ⊥-elim (U x (∈-output-if-eq x out)) force (sub-complete {out f} {nil} spec) with spec {win} (win#def Win-win out) ... | win#def _ () force (sub-complete {out f} {inp _} spec) with Empty? f ... | inj₁ U = end<:def (out U) inp ... | inj₂ W with spec {input*} (input*-comp W) ... | win#def () _ force (sub-complete {out f} {out g} spec) with Empty? f ... | inj₁ Uf = end<:def (out Uf) out ... | inj₂ Wf with Empty? g ... | inj₂ Wg = out<:out Wg (sub-out->def spec Wf) λ !x -> sub-complete (sub-out-out spec !x) ... | inj₁ Ug with spec {input*} (input*-comp Wf) ... | inp#out (_ , !x) F = ⊥-elim (Ug _ !x) SubtypingQ->SubtypingS : ∀{T S} -> SubtypingQ T S -> SubtypingS T S SubtypingQ->SubtypingS spec comp = compliance-sound (spec (compliance-complete comp .force)) SubtypingS->SubtypingQ : ∀{T S} -> SubtypingS T S -> SubtypingQ T S SubtypingS->SubtypingQ spec comp = compliance-complete (spec (compliance-sound comp)) .force sub-excluded : ∀{T S φ} (sub : T <: S) (tφ : T HasTrace φ) (nsφ : ¬ S HasTrace φ) -> ∃[ ψ ] ∃[ x ] (ψ ⊑ φ × T HasTrace ψ × S HasTrace ψ × T HasTrace (ψ ∷ʳ O x) × ¬ S HasTrace (ψ ∷ʳ O x)) sub-excluded nil<:any tφ nsφ = ⊥-elim (nil-has-no-trace tφ) sub-excluded (end<:def e def) tφ nsφ with end-has-empty-trace e tφ ... | eq rewrite eq = ⊥-elim (nsφ (_ , def , refl)) sub-excluded (inp<:inp inc F) (_ , tdef , refl) nsφ = ⊥-elim (nsφ (_ , inp , refl)) sub-excluded (inp<:inp {f} {g} inc F) (_ , tdef , step inp tr) nsφ = let ψ , x , pre , tψ , sψ , tψx , nψx = sub-excluded (F _ .force) (_ , tdef , tr) (contraposition inp-has-trace nsφ) in _ , _ , some pre , inp-has-trace tψ , inp-has-trace sψ , inp-has-trace tψx , inp-has-no-trace nψx sub-excluded (out<:out W inc F) (_ , tdef , refl) nsφ = ⊥-elim (nsφ (_ , out , refl)) sub-excluded (out<:out {f} {g} W inc F) (_ , tdef , step (out {_} {x} fx) tr) nsφ with x ∈? g ... | yes gx = let ψ , x , pre , tψ , sψ , tψx , nψx = sub-excluded (F gx .force) (_ , tdef , tr) (contraposition out-has-trace nsφ) in _ , _ , some pre , out-has-trace tψ , out-has-trace sψ , out-has-trace tψx , out-has-no-trace nψx ... | no ngx = [] , _ , none , (_ , out , refl) , (_ , out , refl) , (_ , fx , step (out fx) refl) , λ { (_ , _ , step (out gx) _) → ⊥-elim (ngx gx) } sub-after : ∀{T S φ} (tφ : T HasTrace φ) (sφ : S HasTrace φ) -> T <: S -> after tφ <: after sφ sub-after (_ , _ , refl) (_ , _ , refl) sub = sub sub-after tφ@(_ , _ , step inp _) (_ , _ , step inp _) (end<:def e _) with end-has-empty-trace e tφ ... | () sub-after (_ , tdef , step inp tr) (_ , sdef , step inp sr) (inp<:inp _ F) = sub-after (_ , tdef , tr) (_ , sdef , sr) (F _ .force) sub-after tφ@(_ , _ , step (out _) _) (_ , _ , step (out _) _) (end<:def e _) with end-has-empty-trace e tφ ... | () sub-after (_ , tdef , step (out _) tr) (_ , sdef , step (out gx) sr) (out<:out _ _ F) = sub-after (_ , tdef , tr) (_ , sdef , sr) (F gx .force) sub-simulation : ∀{R R' T S S' φ} (comp : Compliance (R # T)) (sub : T <: S) (rr : Transitions R (co-trace φ) R') (sr : Transitions S φ S') -> ∃[ T' ] (Transitions T φ T' × T' <: S') sub-simulation comp sub refl refl = _ , refl , sub sub-simulation (win#def (out U) def) sub (step (out hx) rr) (step inp sr) = ⊥-elim (U _ hx) sub-simulation (out#inp W F) (end<:def (inp U) def) (step (out hx) rr) (step inp sr) with F hx .force ... | comp = ⊥-elim (U _ (proj₂ (compliance->defined comp))) sub-simulation (out#inp W F) (inp<:inp inc G) (step (out hx) rr) (step inp sr) = let _ , tr , sub = sub-simulation (F hx .force) (G _ . force) rr sr in _ , step inp tr , sub sub-simulation (inp#out {h} {f} (_ , fx) F) (end<:def (out U) def) (step inp rr) (step (out gx) sr) with F fx .force ... | comp = ⊥-elim (U _ (proj₂ (compliance->defined comp))) sub-simulation (inp#out W F) (out<:out W₁ inc G) (step inp rr) (step (out fx) sr) = let _ , tr , sub = sub-simulation (F (inc fx) .force) (G fx .force) rr sr in _ , step (out (inc fx)) tr , sub
algebraic-stack_agda0000_doc_14672
{-# OPTIONS --without-K #-} module Util.HoTT.Univalence.Axiom where open import Util.HoTT.Equiv open import Util.HoTT.Univalence.Statement open import Util.Prelude open import Util.Relation.Binary.PropositionalEquality using (Σ-≡⁻) private variable α β γ : Level A B C : Set α postulate univalence : ∀ {α} → Univalence α ≃→≡ : A ≃ B → A ≡ B ≃→≡ A≃B = univalence A≃B .proj₁ .proj₁ ≡→≃∘≃→≡ : (p : A ≃ B) → ≡→≃ (≃→≡ p) ≡ p ≡→≃∘≃→≡ p = univalence p .proj₁ .proj₂ ≃→≡∘≡→≃ : (p : A ≡ B) → ≃→≡ (≡→≃ p) ≡ p ≃→≡∘≡→≃ p = Σ-≡⁻ (univalence (≡→≃ p) .proj₂ (p , refl)) .proj₁ ≃→≡-≡→≃-coh : (p : A ≡ B) → subst (λ q → ≡→≃ q ≡ ≡→≃ p) (≃→≡∘≡→≃ p) (≡→≃∘≃→≡ (≡→≃ p)) ≡ refl ≃→≡-≡→≃-coh p = Σ-≡⁻ (univalence (≡→≃ p) .proj₂ (p , refl)) .proj₂ ≅→≡ : A ≅ B → A ≡ B ≅→≡ = ≃→≡ ∘ ≅→≃
algebraic-stack_agda0000_doc_14673
------------------------------------------------------------------------ -- The Agda standard library -- -- IO ------------------------------------------------------------------------ module IO where open import Coinduction open import Data.Unit open import Data.String open import Data.Colist open import Function import IO.Primitive as Prim open import Level ------------------------------------------------------------------------ -- The IO monad -- One cannot write "infinitely large" computations with the -- postulated IO monad in IO.Primitive without turning off the -- termination checker (or going via the FFI, or perhaps abusing -- something else). The following coinductive deep embedding is -- introduced to avoid this problem. Possible non-termination is -- isolated to the run function below. infixl 1 _>>=_ _>>_ data IO {a} (A : Set a) : Set (suc a) where lift : (m : Prim.IO A) → IO A return : (x : A) → IO A _>>=_ : {B : Set a} (m : ∞ (IO B)) (f : (x : B) → ∞ (IO A)) → IO A _>>_ : {B : Set a} (m₁ : ∞ (IO B)) (m₂ : ∞ (IO A)) → IO A {-# NON_TERMINATING #-} run : ∀ {a} {A : Set a} → IO A → Prim.IO A run (lift m) = m run (return x) = Prim.return x run (m >>= f) = Prim._>>=_ (run (♭ m )) λ x → run (♭ (f x)) run (m₁ >> m₂) = Prim._>>=_ (run (♭ m₁)) λ _ → run (♭ m₂) ------------------------------------------------------------------------ -- Utilities sequence : ∀ {a} {A : Set a} → Colist (IO A) → IO (Colist A) sequence [] = return [] sequence (c ∷ cs) = ♯ c >>= λ x → ♯ (♯ sequence (♭ cs) >>= λ xs → ♯ return (x ∷ ♯ xs)) -- The reason for not defining sequence′ in terms of sequence is -- efficiency (the unused results could cause unnecessary memory use). sequence′ : ∀ {a} {A : Set a} → Colist (IO A) → IO (Lift ⊤) sequence′ [] = return _ sequence′ (c ∷ cs) = ♯ c >> ♯ (♯ sequence′ (♭ cs) >> ♯ return _) mapM : ∀ {a b} {A : Set a} {B : Set b} → (A → IO B) → Colist A → IO (Colist B) mapM f = sequence ∘ map f mapM′ : {A B : Set} → (A → IO B) → Colist A → IO (Lift ⊤) mapM′ f = sequence′ ∘ map f ------------------------------------------------------------------------ -- Simple lazy IO -- Note that the functions below produce commands which, when -- executed, may raise exceptions. -- Note also that the semantics of these functions depends on the -- version of the Haskell base library. If the version is 4.2.0.0 (or -- later?), then the functions use the character encoding specified by -- the locale. For older versions of the library (going back to at -- least version 3) the functions use ISO-8859-1. getContents : IO Costring getContents = lift Prim.getContents readFile : String → IO Costring readFile f = lift (Prim.readFile f) -- Reads a finite file. Raises an exception if the file path refers to -- a non-physical file (like "/dev/zero"). readFiniteFile : String → IO String readFiniteFile f = lift (Prim.readFiniteFile f) writeFile∞ : String → Costring → IO ⊤ writeFile∞ f s = ♯ lift (Prim.writeFile f s) >> ♯ return _ writeFile : String → String → IO ⊤ writeFile f s = writeFile∞ f (toCostring s) appendFile∞ : String → Costring → IO ⊤ appendFile∞ f s = ♯ lift (Prim.appendFile f s) >> ♯ return _ appendFile : String → String → IO ⊤ appendFile f s = appendFile∞ f (toCostring s) putStr∞ : Costring → IO ⊤ putStr∞ s = ♯ lift (Prim.putStr s) >> ♯ return _ putStr : String → IO ⊤ putStr s = putStr∞ (toCostring s) putStrLn∞ : Costring → IO ⊤ putStrLn∞ s = ♯ lift (Prim.putStrLn s) >> ♯ return _ putStrLn : String → IO ⊤ putStrLn s = putStrLn∞ (toCostring s)
algebraic-stack_agda0000_doc_14674
-- {-# OPTIONS -v tc.cover.cover:10 -v tc.cover.splittree:100 -v tc.cover.strategy:100 -v tc.cc:100 #-} module Issue365 where {- Basic data types -} data Nat : Set where zero : Nat succ : Nat -> Nat data Fin : Nat -> Set where fzero : {n : Nat} -> Fin (succ n) fsucc : {n : Nat} -> Fin n -> Fin (succ n) data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (succ n) data _==_ {A : Set} (x : A) : A -> Set where refl : x == x {- Function composition -} _◦_ : {A : Set} {B : A -> Set} {C : (x : A) -> B x -> Set} (f : {x : A} (y : B x) -> C x y) (g : (x : A) -> B x) (x : A) -> C x (g x) (f ◦ g) x = f (g x) {- Indexing and tabulating -} _!_ : {n : Nat} {A : Set} -> Vec A n -> Fin n -> A [] ! () (x :: xs) ! fzero = x (x :: xs) ! (fsucc i) = xs ! i tabulate : {n : Nat} {A : Set} -> (Fin n -> A) -> Vec A n tabulate {zero} f = [] tabulate {succ n} f = f fzero :: tabulate (f ◦ fsucc) lem-tab-! : forall {A n} (xs : Vec A n) -> tabulate (_!_ xs) == xs lem-tab-! {A} {zero} [] = refl lem-tab-! {A} {succ n} (x :: xs) with tabulate (_!_ xs) | lem-tab-! xs lem-tab-! {A} {succ _} (x :: xs) | .xs | refl = refl
algebraic-stack_agda0000_doc_14675
module Operator.Equals {ℓ} where import Lvl open import Data.Boolean open import Functional open import Relator.Equals{ℓ} open import Type{ℓ} -- Type class for run-time checking of equality record Equals(T : Type) : Type where infixl 100 _==_ field _==_ : T → T → Bool field ⦃ completeness ⦄ : ∀{a b : T} → (a ≡ b) → (a == b ≡ 𝑇) open Equals ⦃ ... ⦄ using (_==_) public
algebraic-stack_agda0000_doc_14676
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ) renaming ( Interp to Interp′ ; emp to emp′ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.Util using ( False ; id ) module Web.Semantic.DL.ABox.Interp where infixr 4 _,_ infixr 5 _*_ {- An interpretation of a signature Σ (made of concept and role names) over a set X of individuals consists of - a Signature interpreation I - a mapping from X do Δ I, the domain of interpretation of I Note: In RDF the members of X are sets of IRIs, BNodes or Literals, but IRIs can also refer to TBox elements. -} data Interp (Σ : Signature) (X : Set) : Set₁ where -- I is a full Interpreation (Interp') -- The function X → Δ {Σ} I interprets the variables in X _,_ : ∀ I → (X → Δ {Σ} I) → (Interp Σ X) -- extract the Signature Interpretation, forgetting the interpretation of variables ⌊_⌋ : ∀ {Σ X} → Interp Σ X → Interp′ Σ ⌊ I , i ⌋ = I -- return the individuals function for an interpretation ind : ∀ {Σ X} → (I : Interp Σ X) → X → Δ ⌊ I ⌋ ind (I , i) = i -- paired individuals function for an interpretation, useful for relations/roles ind² : ∀ {Σ X} → (I : Interp Σ X) → (X × X) → (Δ ⌊ I ⌋ × Δ ⌊ I ⌋) ind² I (x , y) = (ind I x , ind I y) -- why * ? _*_ : ∀ {Σ X Y} → (Y → X) → Interp Σ X → Interp Σ Y f * I = (⌊ I ⌋ , λ y → ind I (f y)) -- Empty interpretation emp : ∀ {Σ} → Interp Σ False emp = (emp′ , id) data Surjective {Σ X} (I : Interp Σ X) : Set where -- y is a variable i.e. y : X -- (ind I y), x : Δ -- all elements x of the domain Δ, have a variable y that it is an interpretation of surj : (∀ x → ∃ λ y → ⌊ I ⌋ ⊨ x ≈ ind I y) → (I ∈ Surjective) ind⁻¹ : ∀ {Σ X} {I : Interp Σ X} → (I ∈ Surjective) → (Δ ⌊ I ⌋ → X) ind⁻¹ (surj i) x = proj₁ (i x) surj✓ : ∀ {Σ X} {I : Interp Σ X} (I∈Surj : I ∈ Surjective) → ∀ x → (⌊ I ⌋ ⊨ x ≈ ind I (ind⁻¹ I∈Surj x)) surj✓ (surj i) x = proj₂ (i x)
algebraic-stack_agda0000_doc_14677
{-# OPTIONS --cubical #-} module Cubical.Categories.Everything where import Cubical.Categories.Category import Cubical.Categories.Functor import Cubical.Categories.NaturalTransformation import Cubical.Categories.Presheaves import Cubical.Categories.Sets import Cubical.Categories.Type
algebraic-stack_agda0000_doc_14678
------------------------------------------------------------------------ -- The Agda standard library -- -- Vectors defined by recursion ------------------------------------------------------------------------ -- What is the point of this module? The n-ary products below are intended -- to be used with a fixed n, in which case the nil constructor can be -- avoided: pairs are represented as pairs (x , y), not as triples -- (x , y , unit). -- Additionally, vectors defined by recursion enjoy η-rules. That is to say -- that two vectors of known length are definitionally equal whenever their -- elements are. {-# OPTIONS --without-K --safe #-} module Data.Vec.Recursive where open import Level using (Level; Lift; lift) open import Data.Nat.Base as Nat using (ℕ; zero; suc) open import Data.Empty open import Data.Fin.Base as Fin using (Fin; zero; suc) open import Data.Product as Prod using (_×_; _,_; proj₁; proj₂) open import Data.Sum.Base as Sum using (_⊎_) open import Data.Unit.Base open import Data.Vec.Base as Vec using (Vec; _∷_) open import Function open import Relation.Unary open import Agda.Builtin.Equality using (_≡_) private variable a b c p : Level A : Set a B : Set b C : Set c -- Types and patterns ------------------------------------------------------------------------ pattern 2+_ n = suc (suc n) infix 8 _^_ _^_ : Set a → ℕ → Set a A ^ 0 = Lift _ ⊤ A ^ 1 = A A ^ 2+ n = A × A ^ suc n pattern [] = lift tt infix 3 _∈[_]_ _∈[_]_ : {A : Set a} → A → ∀ n → A ^ n → Set a a ∈[ 0 ] as = Lift _ ⊥ a ∈[ 1 ] a′ = a ≡ a′ a ∈[ 2+ n ] a′ , as = a ≡ a′ ⊎ a ∈[ suc n ] as -- Basic operations ------------------------------------------------------------------------ cons : ∀ n → A → A ^ n → A ^ suc n cons 0 a _ = a cons (suc n) a as = a , as uncons : ∀ n → A ^ suc n → A × A ^ n uncons 0 a = a , lift tt uncons (suc n) (a , as) = a , as head : ∀ n → A ^ suc n → A head n as = proj₁ (uncons n as) tail : ∀ n → A ^ suc n → A ^ n tail n as = proj₂ (uncons n as) fromVec : ∀[ Vec A ⇒ (A ^_) ] fromVec = Vec.foldr (_ ^_) (cons _) _ toVec : Π[ (A ^_) ⇒ Vec A ] toVec 0 as = Vec.[] toVec (suc n) as = head n as ∷ toVec n (tail n as) lookup : ∀ {n} (k : Fin n) → A ^ n → A lookup zero = head _ lookup (suc {n} k) = lookup k ∘′ tail n replicate : ∀ n → A → A ^ n replicate n a = fromVec (Vec.replicate a) tabulate : ∀ n → (Fin n → A) → A ^ n tabulate n f = fromVec (Vec.tabulate f) append : ∀ m n → A ^ m → A ^ n → A ^ (m Nat.+ n) append 0 n xs ys = ys append 1 n x ys = cons n x ys append (2+ m) n (x , xs) ys = x , append (suc m) n xs ys splitAt : ∀ m n → A ^ (m Nat.+ n) → A ^ m × A ^ n splitAt 0 n xs = [] , xs splitAt (suc m) n xs = let (ys , zs) = splitAt m n (tail (m Nat.+ n) xs) in cons m (head (m Nat.+ n) xs) ys , zs -- Manipulating N-ary products ------------------------------------------------------------------------ map : (A → B) → ∀ n → A ^ n → B ^ n map f 0 as = lift tt map f 1 a = f a map f (2+ n) (a , as) = f a , map f (suc n) as ap : ∀ n → (A → B) ^ n → A ^ n → B ^ n ap 0 fs ts = [] ap 1 f t = f t ap (2+ n) (f , fs) (t , ts) = f t , ap (suc n) fs ts module _ {P : ℕ → Set p} where foldr : P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) → ∀ n → A ^ n → P n foldr p0 p1 p2+ 0 as = p0 foldr p0 p1 p2+ 1 a = p1 a foldr p0 p1 p2+ (2+ n) (a , as) = p2+ n a (foldr p0 p1 p2+ (suc n) as) foldl : (P : ℕ → Set p) → P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) → ∀ n → A ^ n → P n foldl P p0 p1 p2+ 0 as = p0 foldl P p0 p1 p2+ 1 a = p1 a foldl P p0 p1 p2+ (2+ n) (a , as) = let p1′ = p1 a in foldl (P ∘′ suc) p1′ (λ a → p2+ 0 a p1′) (p2+ ∘ suc) (suc n) as reverse : ∀ n → A ^ n → A ^ n reverse = foldl (_ ^_) [] id (λ n → _,_) zipWith : (A → B → C) → ∀ n → A ^ n → B ^ n → C ^ n zipWith f 0 as bs = [] zipWith f 1 a b = f a b zipWith f (2+ n) (a , as) (b , bs) = f a b , zipWith f (suc n) as bs unzipWith : (A → B × C) → ∀ n → A ^ n → B ^ n × C ^ n unzipWith f 0 as = [] , [] unzipWith f 1 a = f a unzipWith f (2+ n) (a , as) = Prod.zip _,_ _,_ (f a) (unzipWith f (suc n) as) zip : ∀ n → A ^ n → B ^ n → (A × B) ^ n zip = zipWith _,_ unzip : ∀ n → (A × B) ^ n → A ^ n × B ^ n unzip = unzipWith id
algebraic-stack_agda0000_doc_14679
open import Prelude open import RW.Utils.Monads -- Some Error monad utilities, a là Haskell. module RW.Utils.Error where open import Data.String open Monad {{...}} -- Error Typeclass record IsError {a}(A : Set a) : Set a where field showError : A → String open IsError {{...}} instance IsError-String : IsError String IsError-String = record { showError = λ s → s } -- Error Monad Err : ∀{a} → (E : Set a) ⦃ isErr : IsError E ⦄ → Set a → Set a Err e a = e ⊎ a throwError : ∀{a}{E A : Set a} ⦃ isErr : IsError E ⦄ → E → Err E A throwError = i1 catchError : ∀{a}{E A : Set a} ⦃ isErr : IsError E ⦄ → Err E A → (E → Err E A) → Err E A catchError (i2 a) _ = i2 a catchError (i1 e) f = f e instance MonadError : ∀{e}{E : Set e} ⦃ isErr : IsError E ⦄ → Monad (Err E) MonadError = record { return = i2 ; _>>=_ = λ { (i1 err) _ → i1 err ; (i2 x ) f → f x } } runErr : ∀{a}{E A : Set a} ⦃ isErr : IsError E ⦄ → Err E A → String ⊎ A runErr (i2 a) = i2 a runErr ⦃ s ⦄ (i1 e) = i1 (IsError.showError s e)
algebraic-stack_agda0000_doc_14680
-- Andreas, 2018-04-10, issue #3581, reported by 3abc, test case by Andrea -- Regression in the termination checker introduced together -- with collecting function calls also in the type signatures -- (fix of #1556). open import Agda.Builtin.Bool open import Agda.Builtin.Nat I = Bool i0 = true i1 = false record PathP {l} (A : I → Set l) (x : A i0) (y : A i1) : Set l where field apply : ∀ i → A i open PathP _[_≡_] = PathP _≡_ : ∀ {l} {A : Set l} → A → A → Set l _≡_ {A = A} = PathP (\ _ → A) refl : ∀ {l} {A : Set l} {x : A} → x ≡ x refl {x = x} .apply _ = x cong' : ∀ {l ℓ'} {A : Set l}{B : A → Set ℓ'} (f : (a : A) → B a) {x y} (p : x ≡ y) → PathP (λ i → B (p .apply i)) (f (p .apply i0)) (f (p .apply i1)) cong' f p .apply = λ i → f (p .apply i) foo : Nat → Nat foo zero = zero foo (suc n) = Z .apply true .apply true where postulate Z : (\ _ → foo n ≡ foo n) [ (cong' foo (refl {x = n})) ≡ (\ { .apply i → cong' foo (refl {x = n}) .apply i }) ]
algebraic-stack_agda0000_doc_14681
------------------------------------------------------------------------------ -- Testing Agda internal terms: @Var Nat Args@ when @Args = []@ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module AgdaInternalTerms.VarEmptyArgumentsTerm where postulate D : Set postulate id : (P : D → Set)(x : D) → P x → P x {-# ATP prove id #-}
algebraic-stack_agda0000_doc_14682
{-# OPTIONS --universe-polymorphism #-} module Categories.Groupoid where open import Level open import Categories.Category import Categories.Morphisms record Groupoid {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where private module C = Category C open C using (_⇒_) open Categories.Morphisms C field _⁻¹ : ∀ {A B} → (A ⇒ B) → (B ⇒ A) iso : ∀ {A B} {f : A ⇒ B} → Iso f (f ⁻¹)
algebraic-stack_agda0000_doc_14683
------------------------------------------------------------------------ -- Lemmas ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --exact-split #-} module Math.Combinatorics.ListFunction.Properties.Lemma where open import Data.List hiding (_∷ʳ_) import Data.List.Properties as Lₚ open import Data.List.Relation.Binary.Sublist.Propositional using (_⊆_; []; _∷_; _∷ʳ_) open import Data.Product as Prod using (proj₁; proj₂; _×_; _,_) open import Function open import Relation.Binary.PropositionalEquality module _ {a} {A : Set a} where []⊆xs : ∀ (xs : List A) → [] ⊆ xs []⊆xs [] = [] []⊆xs (x ∷ xs) = x ∷ʳ []⊆xs xs module _ {a b} {A : Set a} {B : Set b} where lemma₁ : ∀ (f : A → B) (x : A) (xss : List (List A)) → map (λ ys → f x ∷ ys) (map (map f) xss) ≡ map (map f) (map (λ ys → x ∷ ys) xss) lemma₁ f x xss = begin map (λ ys → f x ∷ ys) (map (map f) xss) ≡⟨ sym $ Lₚ.map-compose xss ⟩ map (λ ys → f x ∷ map f ys) xss ≡⟨ Lₚ.map-compose xss ⟩ map (map f) (map (λ ys → x ∷ ys) xss) ∎ where open ≡-Reasoning module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where proj₁-map₁ : ∀ (f : A → B) (t : A × C) → proj₁ (Prod.map₁ f t) ≡ f (Prod.proj₁ t) proj₁-map₁ _ _ = refl module _ {a b} {A : Set a} {B : Set b} where proj₁-map₂ : ∀ (f : B → B) (t : A × B) → proj₁ (Prod.map₂ f t) ≡ proj₁ t proj₁-map₂ _ _ = refl proj₁′ : A × B → A proj₁′ = proj₁
algebraic-stack_agda0000_doc_14684
module _ where open import Agda.Builtin.Equality using (_≡_; refl) -- First example -- module M (A : Set) where record R : Set where data D : Set where open R (record {}) postulate x : A F : D → Set₁ F _ rewrite refl {x = x} = Set -- Second example -- record ⊤ : Set where no-eta-equality constructor tt data Box (A : Set) : Set where [_] : A → Box A Unit : Set Unit = Box ⊤ F : Unit → Set → Set F [ _ ] x = x G : {P : Unit → Set} → ((x : ⊤) → P [ x ]) → ((x : Unit) → P x) G f [ x ] = f x record R : Set₁ where no-eta-equality field f : (x : Unit) → Box (F x ⊤) data ⊥ : Set where r : R r = record { f = G [_] } open R r H : ⊥ → Set₁ H _ rewrite refl {x = tt} = Set
algebraic-stack_agda0000_doc_14685
{-# OPTIONS --sized-types #-} open import FRP.JS.Bool using ( Bool ; true ; false ) renaming ( _≟_ to _≟b_ ) open import FRP.JS.Nat using ( ℕ ) open import FRP.JS.Float using ( ℝ ) renaming ( _≟_ to _≟n_ ) open import FRP.JS.String using ( String ) renaming ( _≟_ to _≟s_ ) open import FRP.JS.Array using ( Array ) renaming ( lookup? to alookup? ; _≟[_]_ to _≟a[_]_ ) open import FRP.JS.Object using ( Object ) renaming ( lookup? to olookup? ; _≟[_]_ to _≟o[_]_ ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ) open import FRP.JS.Size using ( Size ; ↑_ ) module FRP.JS.JSON where data JSON : {σ : Size} → Set where null : ∀ {σ} → JSON {σ} string : ∀ {σ} → String → JSON {σ} float : ∀ {σ} → ℝ → JSON {σ} bool : ∀ {σ} → Bool → JSON {σ} array : ∀ {σ} → Array (JSON {σ}) → JSON {↑ σ} object : ∀ {σ} → Object (JSON {σ}) → JSON {↑ σ} {-# COMPILED_JS JSON function(x,v) { if (x === null) { return v.null(null); } else if (x.constructor === String) { return v.string(null,x); } else if (x.constructor === Number) { return v.float(null,x); } else if (x.constructor === Boolean) { return v.bool(null,x); } else if (x.constructor === Array) { return v.array(null,x); } else { return v.object(null,x); } } #-} {-# COMPILED_JS null function() { return null; } #-} {-# COMPILED_JS string function() { return function(x) { return x; }; } #-} {-# COMPILED_JS float function() { return function(x) { return x; }; } #-} {-# COMPILED_JS bool function() { return function(x) { return x; }; } #-} {-# COMPILED_JS array function() { return function(x) { return x; }; } #-} {-# COMPILED_JS object function() { return function(x) { return x; }; } #-} postulate show : JSON → String parse : String → Maybe JSON {-# COMPILED_JS show JSON.stringify #-} {-# COMPILED_JS parse require("agda.box").handle(JSON.parse) #-} Key : Bool → Set Key true = String Key false = ℕ lookup? : ∀ {σ} → Maybe (JSON {↑ σ}) → ∀ {b} → Key b → Maybe (JSON {σ}) lookup? (just (object js)) {true} k = olookup? js k lookup? (just (array js)) {false} i = alookup? js i lookup? _ _ = nothing _≟_ : ∀ {σ τ} → JSON {σ} → JSON {τ} → Bool null ≟ null = true string s ≟ string t = s ≟s t float m ≟ float n = m ≟n n bool b ≟ bool c = b ≟b c array js ≟ array ks = js ≟a[ _≟_ ] ks object js ≟ object ks = js ≟o[ _≟_ ] ks _ ≟ _ = false
algebraic-stack_agda0000_doc_14686
-- Testing the version option on a file with errors. -- -- N.B. It is necessary to change the Issue1244a.out file when using -- different versions of Agda. foo : Set → Set foo a = b
algebraic-stack_agda0000_doc_14687
module Luau.Addr where open import Agda.Builtin.Bool using (true; false) open import Agda.Builtin.Equality using (_≡_) open import Agda.Builtin.Nat using (Nat; _==_) open import Agda.Builtin.String using (String) open import Agda.Builtin.TrustMe using (primTrustMe) open import Properties.Dec using (Dec; yes; no) open import Properties.Equality using (_≢_) Addr : Set Addr = Nat _≡ᴬ_ : (a b : Addr) → Dec (a ≡ b) a ≡ᴬ b with a == b a ≡ᴬ b | false = no p where postulate p : (a ≢ b) a ≡ᴬ b | true = yes primTrustMe
algebraic-stack_agda0000_doc_14320
{-# OPTIONS --rewriting #-} open import Common.Prelude open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} postulate f g : Nat → Nat f-zero : f zero ≡ g zero f-suc : ∀ n → f n ≡ g n → f (suc n) ≡ g (suc n) r : (n : Nat) → f n ≡ g n r zero = f-zero r (suc n) = f-suc n refl where rn : f n ≡ g n rn = r n {-# REWRITE rn #-}
algebraic-stack_agda0000_doc_14321
{-# OPTIONS --cubical-compatible #-} module Common.Equality where open import Agda.Builtin.Equality public open import Common.Level subst : ∀ {a p}{A : Set a}(P : A → Set p){x y : A} → x ≡ y → P x → P y subst P refl t = t cong : ∀ {a b}{A : Set a}{B : Set b}(f : A → B){x y : A} → x ≡ y → f x ≡ f y cong f refl = refl sym : ∀ {a}{A : Set a}{x y : A} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {a}{A : Set a}{x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl
algebraic-stack_agda0000_doc_14322
module _ {T : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where instance PredSet-setLike : SetLike{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike._⊆_ PredSet-setLike = _⊆_ SetLike._≡_ PredSet-setLike = _≡_ SetLike.[⊆]-membership PredSet-setLike = [↔]-intro intro _⊆_.proof SetLike.[≡]-membership PredSet-setLike = [↔]-intro intro _≡_.proof instance PredSet-emptySet : SetLike.EmptySet{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.EmptySet.∅ PredSet-emptySet = ∅ SetLike.EmptySet.membership PredSet-emptySet () instance PredSet-universalSet : SetLike.UniversalSet{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.UniversalSet.𝐔 PredSet-universalSet = 𝐔 SetLike.UniversalSet.membership PredSet-universalSet = record {} instance PredSet-unionOperator : SetLike.UnionOperator{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.UnionOperator._∪_ PredSet-unionOperator = _∪_ SetLike.UnionOperator.membership PredSet-unionOperator = [↔]-intro id id instance PredSet-intersectionOperator : SetLike.IntersectionOperator{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.IntersectionOperator._∩_ PredSet-intersectionOperator = _∩_ SetLike.IntersectionOperator.membership PredSet-intersectionOperator = [↔]-intro id id instance PredSet-complementOperator : SetLike.ComplementOperator{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) SetLike.ComplementOperator.∁ PredSet-complementOperator = ∁_ SetLike.ComplementOperator.membership PredSet-complementOperator = [↔]-intro id id module _ {T : Type{ℓ}} ⦃ equiv : Equiv{ℓ}(T) ⦄ where -- TODO: Levels in SetLike instance PredSet-mapFunction : SetLike.MapFunction{C₁ = PredSet{ℓ}(T) ⦃ equiv ⦄}{C₂ = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)(_∈_) SetLike.MapFunction.map PredSet-mapFunction f = map f SetLike.MapFunction.membership PredSet-mapFunction = [↔]-intro id id instance PredSet-unmapFunction : SetLike.UnmapFunction{C₁ = PredSet{ℓ}(T) ⦃ equiv ⦄}{C₂ = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)(_∈_) SetLike.UnmapFunction.unmap PredSet-unmapFunction = unmap SetLike.UnmapFunction.membership PredSet-unmapFunction = [↔]-intro id id instance PredSet-unapplyFunction : SetLike.UnapplyFunction{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) {O = T} SetLike.UnapplyFunction.unapply PredSet-unapplyFunction = unapply SetLike.UnapplyFunction.membership PredSet-unapplyFunction = [↔]-intro id id instance PredSet-filterFunction : SetLike.FilterFunction{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) {ℓ}{ℓ} SetLike.FilterFunction.filter PredSet-filterFunction = filter SetLike.FilterFunction.membership PredSet-filterFunction = [↔]-intro id id {- TODO: SetLike is not general enough module _ {T : Type{ℓ}} ⦃ equiv : Equiv{ℓ}(T) ⦄ where instance -- PredSet-bigUnionOperator : SetLike.BigUnionOperator{Cₒ = PredSet(PredSet(T) ⦃ {!!} ⦄) ⦃ {!!} ⦄} {Cᵢ = PredSet(T) ⦃ {!!} ⦄} (_∈_)(_∈_) SetLike.BigUnionOperator.⋃ PredSet-bigUnionOperator = {!⋃!} SetLike.BigUnionOperator.membership PredSet-bigUnionOperator = {!!} -}
algebraic-stack_agda0000_doc_14323
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.CommRing where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Structures.NAryOp open import Cubical.Structures.Pointed open import Cubical.Structures.Ring hiding (⟨_⟩) private variable ℓ ℓ' : Level comm-ring-axioms : (X : Type ℓ) (s : raw-ring-structure X) → Type ℓ comm-ring-axioms X (_+_ , ₁ , _·_) = (ring-axioms X (_+_ , ₁ , _·_)) × ((x y : X) → x · y ≡ y · x) comm-ring-structure : Type ℓ → Type ℓ comm-ring-structure = add-to-structure raw-ring-structure comm-ring-axioms CommRing : Type (ℓ-suc ℓ) CommRing {ℓ} = TypeWithStr ℓ comm-ring-structure comm-ring-iso : StrIso comm-ring-structure ℓ comm-ring-iso = add-to-iso (join-iso (nAryFunIso 2) (join-iso pointed-iso (nAryFunIso 2))) comm-ring-axioms comm-ring-axioms-isProp : (X : Type ℓ) (s : raw-ring-structure X) → isProp (comm-ring-axioms X s) comm-ring-axioms-isProp X (_·_ , ₀ , _+_) = isPropΣ (ring-axioms-isProp X (_·_ , ₀ , _+_)) λ ((((isSetX , _) , _) , _) , _) → isPropΠ2 λ _ _ → isSetX _ _ comm-ring-is-SNS : SNS {ℓ} comm-ring-structure comm-ring-iso comm-ring-is-SNS = add-axioms-SNS _ comm-ring-axioms-isProp raw-ring-is-SNS CommRingPath : (M N : CommRing {ℓ}) → (M ≃[ comm-ring-iso ] N) ≃ (M ≡ N) CommRingPath = SIP comm-ring-is-SNS -- CommRing is Ring CommRing→Ring : CommRing {ℓ} → Ring CommRing→Ring (R , str , isRing , ·comm) = R , str , isRing -- CommRing Extractors ⟨_⟩ : CommRing {ℓ} → Type ℓ ⟨ R , _ ⟩ = R module _ (R : CommRing {ℓ}) where commring+-operation = ring+-operation (CommRing→Ring R) commring-is-set = ring-is-set (CommRing→Ring R) commring+-assoc = ring+-assoc (CommRing→Ring R) commring+-id = ring+-id (CommRing→Ring R) commring+-rid = ring+-rid (CommRing→Ring R) commring+-lid = ring+-lid (CommRing→Ring R) commring+-inv = ring+-inv (CommRing→Ring R) commring+-rinv = ring+-rinv (CommRing→Ring R) commring+-linv = ring+-linv (CommRing→Ring R) commring+-comm = ring+-comm (CommRing→Ring R) commring·-operation = ring·-operation (CommRing→Ring R) commring·-assoc = ring·-assoc (CommRing→Ring R) commring·-id = ring·-id (CommRing→Ring R) commring·-rid = ring·-rid (CommRing→Ring R) commring·-lid = ring·-lid (CommRing→Ring R) commring-ldist = ring-ldist (CommRing→Ring R) commring-rdist = ring-rdist (CommRing→Ring R) module commring-operation-syntax where commring+-operation-syntax : (R : CommRing {ℓ}) → ⟨ R ⟩ → ⟨ R ⟩ → ⟨ R ⟩ commring+-operation-syntax R = commring+-operation R infixr 14 commring+-operation-syntax syntax commring+-operation-syntax G x y = x +⟨ G ⟩ y commring·-operation-syntax : (R : CommRing {ℓ}) → ⟨ R ⟩ → ⟨ R ⟩ → ⟨ R ⟩ commring·-operation-syntax R = commring·-operation R infixr 18 commring·-operation-syntax syntax commring·-operation-syntax G x y = x ·⟨ G ⟩ y open commring-operation-syntax commring-comm : (R : CommRing {ℓ}) (x y : ⟨ R ⟩) → x ·⟨ R ⟩ y ≡ y ·⟨ R ⟩ x commring-comm (_ , _ , _ , P) = P -- CommRing ·syntax module commring-·syntax (R : CommRing {ℓ}) where open ring-·syntax (CommRing→Ring R) public
algebraic-stack_agda0000_doc_14324
{-# OPTIONS --cubical #-} open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.Data.BinNat open import Cubical.Data.Bool open import Cubical.Relation.Nullary open import Direction module NNat where -- much of this is based directly on the -- BinNat module in the Cubical Agda library data BNat : Type₀ where b0 : BNat b1 : BNat x0 : BNat → BNat x1 : BNat → BNat sucBNat : BNat → BNat sucBNat b0 = b1 sucBNat b1 = x0 b1 sucBNat (x0 bs) = x1 bs sucBNat (x1 bs) = x0 (sucBNat bs) BNat→ℕ : BNat → ℕ BNat→ℕ b0 = 0 BNat→ℕ b1 = 1 BNat→ℕ (x0 x) = doubleℕ (BNat→ℕ x) BNat→ℕ (x1 x) = suc (doubleℕ (BNat→ℕ x)) -- BNat→Binℕ : BNat → Binℕ -- BNat→Binℕ pos0 = binℕ0 -- BNat→Binℕ pos1 = binℕpos pos1 -- BNat→Binℕ (x0 x) = {!binℕpos (x0 binℕpos (BNat→Binℕ x))!} -- BNat→Binℕ (x1 x) = {!!} BNat→ℕsucBNat : (b : BNat) → BNat→ℕ (sucBNat b) ≡ suc (BNat→ℕ b) BNat→ℕsucBNat b0 = refl BNat→ℕsucBNat b1 = refl BNat→ℕsucBNat (x0 b) = refl BNat→ℕsucBNat (x1 b) = λ i → doubleℕ (BNat→ℕsucBNat b i) ℕ→BNat : ℕ → BNat ℕ→BNat zero = b0 ℕ→BNat (suc zero) = b1 ℕ→BNat (suc (suc n)) = sucBNat (ℕ→BNat (suc n)) ℕ→BNatSuc : ∀ n → ℕ→BNat (suc n) ≡ sucBNat (ℕ→BNat n) ℕ→BNatSuc zero = refl ℕ→BNatSuc (suc n) = refl bNatInd : {P : BNat → Type₀} → P b0 → ((b : BNat) → P b → P (sucBNat b)) → (b : BNat) → P b -- prove later... BNat→ℕ→BNat : (b : BNat) → ℕ→BNat (BNat→ℕ b) ≡ b BNat→ℕ→BNat b = bNatInd refl hs b where hs : (b : BNat) → ℕ→BNat (BNat→ℕ b) ≡ b → ℕ→BNat (BNat→ℕ (sucBNat b)) ≡ sucBNat b hs b hb = ℕ→BNat (BNat→ℕ (sucBNat b)) ≡⟨ cong ℕ→BNat (BNat→ℕsucBNat b) ⟩ ℕ→BNat (suc (BNat→ℕ b)) ≡⟨ ℕ→BNatSuc (BNat→ℕ b) ⟩ sucBNat (ℕ→BNat (BNat→ℕ b)) ≡⟨ cong sucBNat hb ⟩ sucBNat b ∎ ℕ→BNat→ℕ : (n : ℕ) → BNat→ℕ (ℕ→BNat n) ≡ n ℕ→BNat→ℕ zero = refl ℕ→BNat→ℕ (suc n) = BNat→ℕ (ℕ→BNat (suc n)) ≡⟨ cong BNat→ℕ (ℕ→BNatSuc n) ⟩ BNat→ℕ (sucBNat (ℕ→BNat n)) ≡⟨ BNat→ℕsucBNat (ℕ→BNat n) ⟩ suc (BNat→ℕ (ℕ→BNat n)) ≡⟨ cong suc (ℕ→BNat→ℕ n) ⟩ suc n ∎ BNat≃ℕ : BNat ≃ ℕ BNat≃ℕ = isoToEquiv (iso BNat→ℕ ℕ→BNat ℕ→BNat→ℕ BNat→ℕ→BNat) BNat≡ℕ : BNat ≡ ℕ BNat≡ℕ = ua BNat≃ℕ open NatImpl NatImplBNat : NatImpl BNat z NatImplBNat = b0 s NatImplBNat = sucBNat -- data np (r : ℕ) : Type₀ where bp : DirNum r → np r zp : ∀ (d d′ : DirNum r) → bp d ≡ bp d′ xp : DirNum r → np r → np r sucnp : ∀ {r} → np r → np r sucnp {zero} (bp tt) = xp tt (bp tt) sucnp {zero} (zp tt tt i) = xp tt (bp tt) sucnp {zero} (xp tt n) = xp tt (sucnp n) sucnp {suc r} (bp d) = xp (one-n (suc r)) (bp d) sucnp {suc r} (zp d d′ i) = xp (one-n (suc r)) (zp d d′ i) sucnp {suc r} (xp d n) with max? d ... | no _ = xp (next d) n ... | yes _ = xp (zero-n (suc r)) (sucnp n) np→ℕ : (r : ℕ) (x : np r) → ℕ np→ℕ r (bp x) = 0 np→ℕ r (zp d d′ i) = 0 np→ℕ zero (xp x x₁) = suc (np→ℕ zero x₁) np→ℕ (suc r) (xp x x₁) = sucn (DirNum→ℕ x) (doublesℕ (suc r) (np→ℕ (suc r) x₁)) ℕ→np : (r : ℕ) → (n : ℕ) → np r ℕ→np r zero = bp (zero-n r) ℕ→np zero (suc n) = xp tt (ℕ→np zero n) ℕ→np (suc r) (suc n) = sucnp (ℕ→np (suc r) n) ---- generalize bnat: data N (r : ℕ) : Type₀ where bn : DirNum r → N r xr : DirNum r → N r → N r -- should define induction principle for N r -- we have 2ⁿ "unary" constructors, analogous to BNat with 2¹ (b0 and b1) -- rename n to r -- this likely introduces inefficiencies compared -- to BinNat, with the max? check etc. sucN : ∀ {n} → N n → N n sucN {zero} (bn tt) = xr tt (bn tt) sucN {zero} (xr tt x) = xr tt (sucN x) sucN {suc n} (bn (↓ , ds)) = (bn (↑ , ds)) sucN {suc n} (bn (↑ , ds)) with max? ds ... | no _ = (bn (↓ , next ds)) ... | yes _ = xr (zero-n (suc n)) (bn (one-n (suc n))) sucN {suc n} (xr d x) with max? d ... | no _ = xr (next d) x ... | yes _ = xr (zero-n (suc n)) (sucN x) sucnN : {r : ℕ} → (n : ℕ) → (N r → N r) sucnN n = iter n sucN doubleN : (r : ℕ) → N r → N r doubleN zero (bn tt) = bn tt doubleN zero (xr d x) = sucN (sucN (doubleN zero x)) doubleN (suc r) (bn x) with zero-n? x ... | yes _ = bn x -- bad: ... | no _ = caseBool (bn (doubleDirNum (suc r) x)) (xr (zero-n (suc r)) (bn x)) (doubleable-n? x) -- ... | no _ | doubleable = {!bn (doubleDirNum x)!} -- ... | no _ | notdoubleable = xr (zero-n (suc r)) (bn x) doubleN (suc r) (xr x x₁) = sucN (sucN (doubleN (suc r) x₁)) doublesN : (r : ℕ) → ℕ → N r → N r doublesN r zero m = m doublesN r (suc n) m = doublesN r n (doubleN r m) N→ℕ : (r : ℕ) (x : N r) → ℕ N→ℕ zero (bn tt) = zero N→ℕ zero (xr tt x) = suc (N→ℕ zero x) N→ℕ (suc r) (bn x) = DirNum→ℕ x N→ℕ (suc r) (xr d x) = sucn (DirNum→ℕ d) (doublesℕ (suc r) (N→ℕ (suc r) x)) N→ℕsucN : (r : ℕ) (x : N r) → N→ℕ r (sucN x) ≡ suc (N→ℕ r x) N→ℕsucN zero (bn tt) = refl N→ℕsucN zero (xr tt x) = suc (N→ℕ zero (sucN x)) ≡⟨ cong suc (N→ℕsucN zero x) ⟩ suc (suc (N→ℕ zero x)) ∎ N→ℕsucN (suc r) (bn (↓ , d)) = refl N→ℕsucN (suc r) (bn (↑ , d)) with max? d ... | no d≠max = doubleℕ (DirNum→ℕ (next d)) ≡⟨ cong doubleℕ (next≡suc r d d≠max) ⟩ doubleℕ (suc (DirNum→ℕ d)) ∎ ... | yes d≡max = -- this can probably be shortened by not reducing down to zero sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r (suc (suc (doubleℕ (doubleℕ (DirNum→ℕ (zero-n r))))))) ≡⟨ cong (λ x → sucn (doubleℕ x) (doublesℕ r (suc (suc (doubleℕ (doubleℕ x)))))) (zero-n→0 {r}) ⟩ sucn (doubleℕ zero) (doublesℕ r (suc (suc (doubleℕ (doubleℕ zero))))) ≡⟨ refl ⟩ doublesℕ (suc r) (suc zero) -- 2^(r+1) ≡⟨ sym (doubleDoubles r 1) ⟩ doubleℕ (doublesℕ r (suc zero)) --2*2^r ≡⟨ sym (sucPred (doubleℕ (doublesℕ r (suc zero))) (doubleDoublesOne≠0 r)) ⟩ suc (predℕ (doubleℕ (doublesℕ r (suc zero)))) ≡⟨ cong suc (sym (sucPred (predℕ (doubleℕ (doublesℕ r (suc zero)))) (predDoubleDoublesOne≠0 r))) ⟩ suc (suc (predℕ (predℕ (doubleℕ (doublesℕ r (suc zero)))))) ≡⟨ cong (λ x → suc (suc x)) (sym (doublePred (doublesℕ r (suc zero)))) ⟩ suc (suc (doubleℕ (predℕ (doublesℕ r (suc zero))))) ≡⟨ cong (λ x → suc (suc (doubleℕ x))) (sym (maxr≡pred2ʳ r d d≡max)) ⟩ suc (suc (doubleℕ (DirNum→ℕ d))) -- 2*(2^r - 1) + 2 = 2^(r+1) - 2 + 2 = 2^(r+1) ∎ N→ℕsucN (suc r) (xr (↓ , d) x) = refl N→ℕsucN (suc r) (xr (↑ , d) x) with max? d ... | no d≠max = sucn (doubleℕ (DirNum→ℕ (next d))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))) ≡⟨ cong (λ y → sucn (doubleℕ y) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) (next≡suc r d d≠max) ⟩ sucn (doubleℕ (suc (DirNum→ℕ d))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))) ≡⟨ refl ⟩ suc (suc (iter (doubleℕ (DirNum→ℕ d)) suc (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ∎ ... | yes d≡max = sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x)))) ≡⟨ cong (λ z → sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))))) (zero-n≡0 {r}) ⟩ sucn (doubleℕ zero) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x)))) ≡⟨ refl ⟩ doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))) ≡⟨ cong (λ x → doublesℕ r (doubleℕ x)) (N→ℕsucN (suc r) x) ⟩ doublesℕ r (doubleℕ (suc (N→ℕ (suc r) x))) ≡⟨ refl ⟩ doublesℕ r (suc (suc (doubleℕ (N→ℕ (suc r) x)))) -- 2^r * (2x + 2) = 2^(r+1)x + 2^(r+1) ≡⟨ doublesSucSuc r (doubleℕ (N→ℕ (suc r) x)) ⟩ sucn (doublesℕ (suc r) 1) -- _ + 2^(r+1) (doublesℕ (suc r) (N→ℕ (suc r) x)) -- 2^(r+1)x + 2^(r+1) ≡⟨ H r (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩ suc (suc (sucn (doubleℕ (predℕ (doublesℕ r 1))) -- _ + 2(2^r - 1) + 2 (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ refl ⟩ suc (suc (sucn (doubleℕ (predℕ (doublesℕ r 1))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ cong (λ z → suc (suc (sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (max→ℕ r)) ⟩ suc (suc (sucn (doubleℕ (DirNum→ℕ (max-n r))) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ cong (λ z → suc (suc (sucn (doubleℕ (DirNum→ℕ z)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (d≡max)) ⟩ suc (suc (sucn (doubleℕ (DirNum→ℕ d)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) -- (2^r*2x + (2*(2^r - 1))) + 2 = 2^(r+1)x + 2^(r+1) ∎ where H : (n m : ℕ) → sucn (doublesℕ (suc n) 1) m ≡ suc (suc (sucn (doubleℕ (predℕ (doublesℕ n 1))) m)) H zero m = refl H (suc n) m = sucn (doublesℕ n 4) m ≡⟨ cong (λ z → sucn z m) (doublesSucSuc n 2) ⟩ sucn (sucn (doublesℕ (suc n) 1) (doublesℕ n 2)) m ≡⟨ refl ⟩ sucn (sucn (doublesℕ n 2) (doublesℕ n 2)) m ≡⟨ {!!} ⟩ sucn (doubleℕ (doublesℕ n 2)) m ≡⟨ {!!} ⟩ {!!} ℕ→N : (r : ℕ) → (n : ℕ) → N r ℕ→N r zero = bn (zero-n r) ℕ→N zero (suc n) = xr tt (ℕ→N zero n) ℕ→N (suc r) (suc n) = sucN (ℕ→N (suc r) n) ℕ→Nsuc : (r : ℕ) (n : ℕ) → ℕ→N r (suc n) ≡ sucN (ℕ→N r n) ℕ→Nsuc r n = {!!} ℕ→Nsucn : (r : ℕ) (n m : ℕ) → ℕ→N r (sucn n m) ≡ sucnN n (ℕ→N r m) ℕ→Nsucn r n m = {!!} -- NℕNlemma is actually a pretty important fact; -- this is what allows the direct isomorphism of N and ℕ to go -- without the need for an extra datatype, e.g. Pos for BinNat, -- since each ℕ < 2^r maps to its "numeral" in N r. -- should rename and move elsewhere. numeral-next : (r : ℕ) (d : DirNum r) → N (suc r) numeral-next r d = bn (embed-next r d) -- NℕNlemma : (r : ℕ) (d : DirNum r) → ℕ→N r (DirNum→ℕ d) ≡ bn d NℕNlemma zero tt = refl NℕNlemma (suc r) (↓ , ds) = ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds)) ≡⟨ {!!} ⟩ {!!} NℕNlemma (suc r) (↑ , ds) = {!!} N→ℕ→N : (r : ℕ) → (x : N r) → ℕ→N r (N→ℕ r x) ≡ x N→ℕ→N zero (bn tt) = refl N→ℕ→N zero (xr tt x) = cong (xr tt) (N→ℕ→N zero x) N→ℕ→N (suc r) (bn (↓ , ds)) = ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds)) ≡⟨ cong (λ x → ℕ→N (suc r) x) (double-lemma ds) ⟩ ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds)) ≡⟨ NℕNlemma (suc r) (↓ , ds) ⟩ bn (↓ , ds) ∎ N→ℕ→N (suc r) (bn (↑ , ds)) = sucN (ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds))) ≡⟨ cong (λ x → sucN (ℕ→N (suc r) x)) (double-lemma ds) ⟩ sucN (ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds))) ≡⟨ cong sucN (NℕNlemma (suc r) (↓ , ds)) ⟩ sucN (bn (↓ , ds)) ≡⟨ refl ⟩ bn (↑ , ds) ∎ N→ℕ→N (suc r) (xr (↓ , ds) x) = ℕ→N (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) ≡⟨ cong (λ z → ℕ→N (suc r) (sucn z (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) (double-lemma ds) ⟩ ℕ→N (suc r) (sucn (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) ≡⟨ refl ⟩ ℕ→N (suc r) (sucn (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ (suc r) (N→ℕ (suc r) x))) ≡⟨ ℕ→Nsucn (suc r) (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩ sucnN (DirNum→ℕ {suc r} (↓ , ds)) (ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x))) ≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) z) (H (suc r) (suc r) (N→ℕ (suc r) x)) ⟩ sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) (ℕ→N (suc r) (N→ℕ (suc r) x))) ≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) z)) (N→ℕ→N (suc r) x) ⟩ sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) x) ≡⟨ G (suc r) (↓ , ds) x snotz ⟩ xr (↓ , ds) x ∎ where H : (r m n : ℕ) → ℕ→N r (doublesℕ m n) ≡ doublesN r m (ℕ→N r n) H r m n = {!!} G : (r : ℕ) (d : DirNum r) (x : N r) → ¬ (r ≡ 0) → sucnN (DirNum→ℕ {r} d) (doublesN r r x) ≡ xr d x G zero d x 0≠0 = ⊥-elim (0≠0 refl) G (suc r) d (bn x) r≠0 = {!!} G (suc r) d (xr x x₁) r≠0 = {!!} N→ℕ→N (suc r) (xr (↑ , ds) x) with max? ds ... | no ds≠max = sucN (ℕ→N (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ sym (ℕ→Nsuc (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ⟩ ℕ→N (suc r) (suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) ≡⟨ refl ⟩ ℕ→N (suc r) (suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ cong (λ z → ℕ→N (suc r) z) (sym (sucnsuc (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)))) ⟩ ℕ→N (suc r) (sucn (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ ℕ→Nsucn (suc r) (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x))) ⟩ sucnN (doubleℕ (DirNum→ℕ ds)) (ℕ→N (suc r) (suc (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ cong (λ z → sucnN (doubleℕ (DirNum→ℕ ds)) z) (ℕ→Nsuc (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x))) ⟩ -- (2^(r+1)*x + 1) + 2*ds -- = 2*(2^r*x + ds) + 1 -- = 2*( sucnN (doubleℕ (DirNum→ℕ ds)) (sucN (ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x)))) ≡⟨ {!!} ⟩ {!!} ... | yes ds≡max = {!!} ℕ→N→ℕ : (r : ℕ) → (n : ℕ) → N→ℕ r (ℕ→N r n) ≡ n ℕ→N→ℕ zero zero = refl ℕ→N→ℕ (suc r) zero = doubleℕ (DirNum→ℕ (zero-n r)) ≡⟨ cong doubleℕ (zero-n≡0 {r}) ⟩ doubleℕ zero ≡⟨ refl ⟩ zero ∎ ℕ→N→ℕ zero (suc n) = cong suc (ℕ→N→ℕ zero n) ℕ→N→ℕ (suc r) (suc n) = N→ℕ (suc r) (sucN (ℕ→N (suc r) n)) ≡⟨ N→ℕsucN (suc r) (ℕ→N (suc r) n) ⟩ suc (N→ℕ (suc r) (ℕ→N (suc r) n)) ≡⟨ cong suc (ℕ→N→ℕ (suc r) n) ⟩ suc n ∎ N≃ℕ : (r : ℕ) → N r ≃ ℕ N≃ℕ r = isoToEquiv (iso (N→ℕ r) (ℕ→N r) (ℕ→N→ℕ r) (N→ℕ→N r)) N≡ℕ : (r : ℕ) → N r ≡ ℕ N≡ℕ r = ua (N≃ℕ r) ---- pos approach: data NPos (n : ℕ) : Type₀ where npos1 : NPos n x⇀ : DirNum n → NPos n → NPos n sucNPos : ∀ {n} → NPos n → NPos n sucNPos {zero} npos1 = x⇀ tt npos1 sucNPos {zero} (x⇀ tt x) = x⇀ tt (sucNPos x) sucNPos {suc n} npos1 = x⇀ (next (one-n (suc n))) npos1 sucNPos {suc n} (x⇀ d x) with (max? d) ... | (no _) = x⇀ (next d) x ... | (yes _) = x⇀ (zero-n (suc n)) (sucNPos x) -- some examples for sanity check 2₂ : NPos 1 2₂ = x⇀ (↓ , tt) npos1 3₂ : NPos 1 3₂ = x⇀ (↑ , tt) npos1 4₂ : NPos 1 4₂ = x⇀ (↓ , tt) (x⇀ (↓ , tt) npos1) 2₄ : NPos 2 2₄ = x⇀ (↓ , (↑ , tt)) npos1 -- how does this make sense? 3₄ : NPos 2 3₄ = x⇀ (↑ , (↑ , tt)) npos1 -- how does this make sense? -- sucnpos1≡x⇀one-n : ∀ {r} → sucNPos npos1 ≡ x⇀ (one-n r) npos1 -- sucnpos1≡x⇀one-n {zero} = refl -- sucnpos1≡x⇀one-n {suc r} = {!!} -- sucnposx⇀zero-n≡x⇀one-n : ∀ {r} {p} → sucNPos (x⇀ (zero-n r) p) ≡ x⇀ (one-n r) p -- sucnposx⇀zero-n≡x⇀one-n {zero} {npos1} = {!!} -- sucnposx⇀zero-n≡x⇀one-n {zero} {x⇀ x p} = {!!} -- sucnposx⇀zero-n≡x⇀one-n {suc r} {p} = refl nPosInd : ∀ {r} {P : NPos r → Type₀} → P npos1 → ((p : NPos r) → P p → P (sucNPos p)) → (p : NPos r) → P p nPosInd {r} {P} h1 hs ps = f ps where H : (p : NPos r) → P (x⇀ (zero-n r) p) → P (x⇀ (zero-n r) (sucNPos p)) --H p hx0p = hs (x⇀ (one-n r) p) (hs (x⇀ (zero-n r) p) hx0p) f : (ps : NPos r) → P ps f npos1 = h1 f (x⇀ d ps) with (max? d) ... | (no _) = {!nPosInd (hs npos1 h1) H ps!} ... | (yes _) = {!hs (x⇀ (zero-n r) ps) (nPosInd (hs npos1 h1) H ps)!} -- nPosInd {zero} {P} h1 hs ps = f ps -- where -- H : (p : NPos zero) → P (x⇀ (zero-n zero) p) → P (x⇀ (zero-n zero) (sucNPos p)) -- H p hx0p = hs (x⇀ tt (x⇀ (zero-n zero) p)) (hs (x⇀ (zero-n zero) p) hx0p) -- f : (ps : NPos zero) → P ps -- f npos1 = h1 -- f (x⇀ tt ps) = nPosInd (hs npos1 h1) H ps -- nPosInd {suc r} {P} h1 hs ps = f ps -- where -- H : (p : NPos (suc r)) → P (x⇀ (zero-n (suc r)) p) → P (x⇀ (zero-n (suc r)) (sucNPos p)) -- --H p hx0p = hs (x⇀ (one-n r) p) (hs (x⇀ (zero-n r) p) hx0p) -- f : (ps : NPos (suc r)) → P ps -- f npos1 = h1 -- f (x⇀ d ps) = {!!} NPos→ℕ : ∀ r → NPos r → ℕ NPos→ℕ zero npos1 = suc zero NPos→ℕ zero (x⇀ tt x) = suc (NPos→ℕ zero x) NPos→ℕ (suc r) npos1 = suc zero NPos→ℕ (suc r) (x⇀ d x) with max? d ... | no _ = sucn (DirNum→ℕ (next d)) (doublesℕ (suc r) (NPos→ℕ (suc r) x)) ... | yes _ = sucn (DirNum→ℕ (next d)) (doublesℕ (suc r) (suc (NPos→ℕ (suc r) x))) -- NPos→ℕ (suc r) (x⇀ d x) = -- sucn (DirNum→ℕ d) (doublesℕ (suc r) (NPos→ℕ (suc r) x)) NPos→ℕsucNPos : ∀ r → (p : NPos r) → NPos→ℕ r (sucNPos p) ≡ suc (NPos→ℕ r p) NPos→ℕsucNPos zero npos1 = refl NPos→ℕsucNPos zero (x⇀ d p) = cong suc (NPos→ℕsucNPos zero p) NPos→ℕsucNPos (suc r) npos1 = {!!} sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r 2) ≡⟨ cong (λ y → sucn y (doublesℕ r 2)) (zero-n→0) ⟩ sucn (doubleℕ zero) (doublesℕ r 2) ≡⟨ refl ⟩ doublesℕ r 2 ≡⟨ {!!} ⟩ {!!} NPos→ℕsucNPos (suc r) (x⇀ d p) with max? d ... | no _ = {!!} ... | yes _ = {!!} -- zero≠NPos→ℕ : ∀ {r} → (p : NPos r) → ¬ (zero ≡ NPos→ℕ r p) -- zero≠NPos→ℕ {r} p = {!!} ℕ→NPos : ∀ r → ℕ → NPos r ℕ→NPos zero zero = npos1 ℕ→NPos zero (suc zero) = npos1 ℕ→NPos zero (suc (suc n)) = sucNPos (ℕ→NPos zero (suc n)) ℕ→NPos (suc r) zero = npos1 ℕ→NPos (suc r) (suc zero) = npos1 ℕ→NPos (suc r) (suc (suc n)) = sucNPos (ℕ→NPos (suc r) (suc n)) lemma : ∀ {r} → (ℕ→NPos r (NPos→ℕ r npos1)) ≡ npos1 lemma {zero} = refl lemma {suc r} = refl NPos→ℕ→NPos : ∀ r → (p : NPos r) → ℕ→NPos r (NPos→ℕ r p) ≡ p NPos→ℕ→NPos r p = nPosInd lemma hs p where hs : (p : NPos r) → ℕ→NPos r (NPos→ℕ r p) ≡ p → ℕ→NPos r (NPos→ℕ r (sucNPos p)) ≡ (sucNPos p) hs p hp = ℕ→NPos r (NPos→ℕ r (sucNPos p)) ≡⟨ {!!} ⟩ ℕ→NPos r (suc (NPos→ℕ r p)) ≡⟨ {!!} ⟩ sucNPos (ℕ→NPos r (NPos→ℕ r p)) ≡⟨ cong sucNPos hp ⟩ sucNPos p ∎ -- note: the cases for zero and suc r are almost identical -- (why) does this need to split? ℕ→NPos→ℕ : ∀ r → (n : ℕ) → NPos→ℕ r (ℕ→NPos r (suc n)) ≡ (suc n) ℕ→NPos→ℕ zero zero = refl ℕ→NPos→ℕ zero (suc n) = NPos→ℕ zero (sucNPos (ℕ→NPos zero (suc n))) ≡⟨ {!!} ⟩ suc (NPos→ℕ zero (ℕ→NPos zero (suc n))) ≡⟨ cong suc (ℕ→NPos→ℕ zero n) ⟩ suc (suc n) ∎ ℕ→NPos→ℕ (suc r) zero = refl ℕ→NPos→ℕ (suc r) (suc n) = NPos→ℕ (suc r) (sucNPos (ℕ→NPos (suc r) (suc n))) ≡⟨ {!!} ⟩ suc (NPos→ℕ (suc r) (ℕ→NPos (suc r) (suc n))) ≡⟨ cong suc (ℕ→NPos→ℕ (suc r) n) ⟩ suc (suc n) ∎
algebraic-stack_agda0000_doc_14325
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use `Data.Vec.Functional` instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Disabled to prevent warnings from other Table modules {-# OPTIONS --warn=noUserWarning #-} module Data.Table.Properties where {-# WARNING_ON_IMPORT "Data.Table.Properties was deprecated in v1.2. Use Data.Vec.Functional.Properties instead." #-} open import Data.Table open import Data.Table.Relation.Binary.Equality open import Data.Bool.Base using (true; false; if_then_else_) open import Data.Nat.Base using (zero; suc) open import Data.Empty using (⊥-elim) open import Data.Fin using (Fin; suc; zero; _≟_; punchIn) import Data.Fin.Properties as FP open import Data.Fin.Permutation as Perm using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) open import Data.List.Base as L using (List; _∷_; []) open import Data.List.Relation.Unary.Any using (here; there; index) open import Data.List.Membership.Propositional using (_∈_) open import Data.Product as Product using (Σ; ∃; _,_; proj₁; proj₂) open import Data.Vec.Base as V using (Vec; _∷_; []) import Data.Vec.Properties as VP open import Level using (Level) open import Function.Base using (_∘_; flip) open import Function.Inverse using (Inverse) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; sym; cong) open import Relation.Nullary using (does) open import Relation.Nullary.Decidable using (dec-true; dec-false) open import Relation.Nullary.Negation using (contradiction) private variable a : Level A : Set a ------------------------------------------------------------------------ -- select -- Selecting from any table is the same as selecting from a constant table. select-const : ∀ {n} (z : A) (i : Fin n) t → select z i t ≗ select z i (replicate (lookup t i)) select-const z i t j with does (j ≟ i) ... | true = refl ... | false = refl -- Selecting an element from a table then looking it up is the same as looking -- up the index in the original table select-lookup : ∀ {n x i} (t : Table A n) → lookup (select x i t) i ≡ lookup t i select-lookup {i = i} t rewrite dec-true (i ≟ i) refl = refl -- Selecting an element from a table then removing the same element produces a -- constant table select-remove : ∀ {n x} i (t : Table A (suc n)) → remove i (select x i t) ≗ replicate {n = n} x select-remove i t j rewrite dec-false (punchIn i j ≟ i) (FP.punchInᵢ≢i _ _) = refl ------------------------------------------------------------------------ -- permute -- Removing an index 'i' from a table permuted with 'π' is the same as -- removing the element, then permuting with 'π' minus 'i'. remove-permute : ∀ {m n} (π : Permutation (suc m) (suc n)) i (t : Table A (suc n)) → remove (π ⟨$⟩ˡ i) (permute π t) ≗ permute (Perm.remove (π ⟨$⟩ˡ i) π) (remove i t) remove-permute π i t j = P.cong (lookup t) (Perm.punchIn-permute′ π i j) ------------------------------------------------------------------------ -- fromList fromList-∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → lookup (fromList xs) i ∈ xs fromList-∈ {xs = x ∷ xs} zero = here refl fromList-∈ {xs = x ∷ xs} (suc i) = there (fromList-∈ i) index-fromList-∈ : ∀ {xs : List A} {i} → index (fromList-∈ {xs = xs} i) ≡ i index-fromList-∈ {xs = x ∷ xs} {zero} = refl index-fromList-∈ {xs = x ∷ xs} {suc i} = cong suc index-fromList-∈ fromList-index : ∀ {xs} {x : A} (x∈xs : x ∈ xs) → lookup (fromList xs) (index x∈xs) ≡ x fromList-index (here px) = sym px fromList-index (there x∈xs) = fromList-index x∈xs ------------------------------------------------------------------------ -- There exists an isomorphism between tables and vectors. ↔Vec : ∀ {n} → Inverse (≡-setoid A n) (P.setoid (Vec A n)) ↔Vec = record { to = record { _⟨$⟩_ = toVec ; cong = VP.tabulate-cong } ; from = P.→-to-⟶ fromVec ; inverse-of = record { left-inverse-of = VP.lookup∘tabulate ∘ lookup ; right-inverse-of = VP.tabulate∘lookup } } ------------------------------------------------------------------------ -- Other lookup∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → ∃ λ x → x ∈ xs lookup∈ i = _ , fromList-∈ i
algebraic-stack_agda0000_doc_14326
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Unit open import Oscar.Class.Leftunit module Oscar.Class.Leftunit.ToUnit where module _ {𝔞} {𝔄 : Ø 𝔞} {𝔢} {𝔈 : Ø 𝔢} {ℓ} {_↦_ : 𝔄 → 𝔄 → Ø ℓ} (let _↦_ = _↦_; infix 4 _↦_) {ε : 𝔈} {_◃_ : 𝔈 → 𝔄 → 𝔄} (let _◃_ = _◃_; infix 16 _◃_) {x : 𝔄} ⦃ _ : Leftunit.class _↦_ ε _◃_ x ⦄ where instance Leftunit--Unit : Unit.class (ε ◃ x ↦ x) Leftunit--Unit .⋆ = leftunit
algebraic-stack_agda0000_doc_14327
module Lectures.One where -- Check background color -- Check fontsize -- Ask questions at *any* time data ⊤ : Set where tt : ⊤ data ⊥ : Set where absurd : ⊥ → {P : Set} → P absurd () -- Introduce most common key bindings -- C-c C-l load -- C-c C-, show context -- C-c C-. show context + type -- C-c C-SPACE input -- C-c C-A auto -- C-c C-r refine -- C-c C-d type inference -- C-c C-c pattern match -- Briefly introduce syntax -- Introduce Set 0 modus-ponens : {P Q : Set} → P → (P → Q) → Q modus-ponens p f = f p -- Introduce misfix operators ¬_ : Set → Set ¬ P = P → ⊥ contra-elim : {P : Set} → P → ¬ P → ⊥ contra-elim = modus-ponens -- no-dne : {P : Set} → ¬ ¬ P → P -- no-dne ¬¬P = {!!} data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) _isEven : ℕ → Set zero isEven = ⊤ suc zero isEven = ⊥ suc (suc n) isEven = n isEven half : (n : ℕ) → n isEven → ℕ half zero tt = zero half (suc (suc n)) p = suc (half n p) _ : ℕ _ = half 8 tt -- Comment on termination checking -- brexit : ⊥ -- brexit = brexit
algebraic-stack_agda0000_doc_14328
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 13-propositional-truncation where import 12-univalence open 12-univalence public -- Section 13 Propositional truncations, the image of a map, and the replacement axiom -- Section 13.1 Propositional truncations -- Definition 13.1.1 type-hom-Prop : { l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → UU (l1 ⊔ l2) type-hom-Prop P Q = type-Prop P → type-Prop Q hom-Prop : { l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU-Prop (l1 ⊔ l2) hom-Prop P Q = pair ( type-hom-Prop P Q) ( is-prop-function-type (type-Prop P) (type-Prop Q) (is-prop-type-Prop Q)) is-prop-type-hom-Prop : { l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → is-prop (type-hom-Prop P Q) is-prop-type-hom-Prop P Q = is-prop-function-type ( type-Prop P) ( type-Prop Q) ( is-prop-type-Prop Q) equiv-Prop : { l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → UU (l1 ⊔ l2) equiv-Prop P Q = (type-Prop P) ≃ (type-Prop Q) precomp-Prop : { l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) → (A → type-Prop P) → (Q : UU-Prop l3) → (type-hom-Prop P Q) → (A → type-Prop Q) precomp-Prop P f Q g = g ∘ f is-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) is-propositional-truncation l P f = (Q : UU-Prop l) → is-equiv (precomp-Prop P f Q) universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-propositional-truncation l {A = A} P f = (Q : UU-Prop l) (g : A → type-Prop Q) → is-contr (Σ (type-hom-Prop P Q) (λ h → (h ∘ f) ~ g)) -- Some unnumbered remarks after Definition 13.1.3 universal-property-is-propositional-truncation : (l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → is-propositional-truncation l P f → universal-property-propositional-truncation l P f universal-property-is-propositional-truncation l P f is-ptr-f Q g = is-contr-equiv' ( Σ (type-hom-Prop P Q) (λ h → Id (h ∘ f) g)) ( equiv-tot (λ h → equiv-funext)) ( is-contr-map-is-equiv (is-ptr-f Q) g) map-is-propositional-truncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ({l : Level} → is-propositional-truncation l P f) → (Q : UU-Prop l3) (g : A → type-Prop Q) → type-hom-Prop P Q map-is-propositional-truncation P f is-ptr-f Q g = pr1 ( center ( universal-property-is-propositional-truncation _ P f is-ptr-f Q g)) htpy-is-propositional-truncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → (is-ptr-f : {l : Level} → is-propositional-truncation l P f) → (Q : UU-Prop l3) (g : A → type-Prop Q) → ((map-is-propositional-truncation P f is-ptr-f Q g) ∘ f) ~ g htpy-is-propositional-truncation P f is-ptr-f Q g = pr2 ( center ( universal-property-is-propositional-truncation _ P f is-ptr-f Q g)) is-propositional-truncation-universal-property : (l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → universal-property-propositional-truncation l P f → is-propositional-truncation l P f is-propositional-truncation-universal-property l P f up-f Q = is-equiv-is-contr-map ( λ g → is-contr-equiv ( Σ (type-hom-Prop P Q) (λ h → (h ∘ f) ~ g)) ( equiv-tot (λ h → equiv-funext)) ( up-f Q g)) -- Remark 13.1.2 is-propositional-truncation' : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) is-propositional-truncation' l {A = A} P f = (Q : UU-Prop l) → (A → type-Prop Q) → (type-hom-Prop P Q) is-propositional-truncation-simpl : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) ( f : A → type-Prop P) → ( (l : Level) → is-propositional-truncation' l P f) → ( (l : Level) → is-propositional-truncation l P f) is-propositional-truncation-simpl P f up-P l Q = is-equiv-is-prop ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( up-P l Q) -- Example 13.1.3 is-propositional-truncation-const-star : { l1 : Level} (A : UU-pt l1) ( l : Level) → is-propositional-truncation l unit-Prop (const (type-UU-pt A) unit star) is-propositional-truncation-const-star A = is-propositional-truncation-simpl ( unit-Prop) ( const (type-UU-pt A) unit star) ( λ l P f → const unit (type-Prop P) (f (pt-UU-pt A))) -- Example 13.1.4 is-propositional-truncation-id : { l1 : Level} (P : UU-Prop l1) → ( l : Level) → is-propositional-truncation l P id is-propositional-truncation-id P l Q = is-equiv-id (type-hom-Prop P Q) -- Proposition 13.1.5 abstract is-equiv-is-equiv-precomp-Prop : {l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (f : type-hom-Prop P Q) → ((l : Level) (R : UU-Prop l) → is-equiv (precomp-Prop Q f R)) → is-equiv f is-equiv-is-equiv-precomp-Prop P Q f is-equiv-precomp-f = is-equiv-is-equiv-precomp-subuniverse id (λ l → is-prop) P Q f is-equiv-precomp-f triangle-3-for-2-is-ptruncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') (H : (h ∘ f) ~ f') → {l : Level} (Q : UU-Prop l) → ( precomp-Prop P' f' Q) ~ ( (precomp-Prop P f Q) ∘ (precomp h (type-Prop Q))) triangle-3-for-2-is-ptruncation P P' f f' h H Q g = eq-htpy (λ p → inv (ap g (H p))) is-equiv-is-ptruncation-is-ptruncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') (H : (h ∘ f) ~ f') → ((l : Level) → is-propositional-truncation l P f) → ((l : Level) → is-propositional-truncation l P' f') → is-equiv h is-equiv-is-ptruncation-is-ptruncation P P' f f' h H is-ptr-P is-ptr-P' = is-equiv-is-equiv-precomp-Prop P P' h ( λ l Q → is-equiv-right-factor ( precomp-Prop P' f' Q) ( precomp-Prop P f Q) ( precomp h (type-Prop Q)) ( triangle-3-for-2-is-ptruncation P P' f f' h H Q) ( is-ptr-P l Q) ( is-ptr-P' l Q)) is-ptruncation-is-ptruncation-is-equiv : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') (H : (h ∘ f) ~ f') → is-equiv h → ((l : Level) → is-propositional-truncation l P f) → ((l : Level) → is-propositional-truncation l P' f') is-ptruncation-is-ptruncation-is-equiv P P' f f' h H is-equiv-h is-ptr-f l Q = is-equiv-comp ( precomp-Prop P' f' Q) ( precomp-Prop P f Q) ( precomp h (type-Prop Q)) ( triangle-3-for-2-is-ptruncation P P' f f' h H Q) ( is-equiv-precomp-is-equiv h is-equiv-h (type-Prop Q)) ( is-ptr-f l Q) is-ptruncation-is-equiv-is-ptruncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') (h : type-hom-Prop P P') (H : (h ∘ f) ~ f') → ((l : Level) → is-propositional-truncation l P' f') → is-equiv h → ((l : Level) → is-propositional-truncation l P f) is-ptruncation-is-equiv-is-ptruncation P P' f f' h H is-ptr-f' is-equiv-h l Q = is-equiv-left-factor ( precomp-Prop P' f' Q) ( precomp-Prop P f Q) ( precomp h (type-Prop Q)) ( triangle-3-for-2-is-ptruncation P P' f f' h H Q) ( is-ptr-f' l Q) ( is-equiv-precomp-is-equiv h is-equiv-h (type-Prop Q)) -- Corollary 13.1.6 is-uniquely-unique-propositional-truncation : {l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3) (f : A → type-Prop P) (f' : A → type-Prop P') → ({l : Level} → is-propositional-truncation l P f) → ({l : Level} → is-propositional-truncation l P' f') → is-contr (Σ (equiv-Prop P P') (λ e → (map-equiv e ∘ f) ~ f')) is-uniquely-unique-propositional-truncation P P' f f' is-ptr-f is-ptr-f' = is-contr-total-Eq-substructure ( universal-property-is-propositional-truncation _ P f is-ptr-f P' f') ( is-subtype-is-equiv) ( map-is-propositional-truncation P f is-ptr-f P' f') ( htpy-is-propositional-truncation P f is-ptr-f P' f') ( is-equiv-is-ptruncation-is-ptruncation P P' f f' ( map-is-propositional-truncation P f is-ptr-f P' f') ( htpy-is-propositional-truncation P f is-ptr-f P' f') ( λ l → is-ptr-f) ( λ l → is-ptr-f')) -- Axiom 13.1.8 postulate trunc-Prop : {l : Level} → UU l → UU-Prop l type-trunc-Prop : {l : Level} → UU l → UU l type-trunc-Prop A = pr1 (trunc-Prop A) is-prop-type-trunc-Prop : {l : Level} (A : UU l) → is-prop (type-trunc-Prop A) is-prop-type-trunc-Prop A = pr2 (trunc-Prop A) postulate unit-trunc-Prop : {l : Level} (A : UU l) → A → type-Prop (trunc-Prop A) postulate is-propositional-truncation-trunc-Prop : {l1 l2 : Level} (A : UU l1) → is-propositional-truncation l2 (trunc-Prop A) (unit-trunc-Prop A) universal-property-trunc-Prop : {l1 l2 : Level} (A : UU l1) → universal-property-propositional-truncation l2 ( trunc-Prop A) ( unit-trunc-Prop A) universal-property-trunc-Prop A = universal-property-is-propositional-truncation _ ( trunc-Prop A) ( unit-trunc-Prop A) ( is-propositional-truncation-trunc-Prop A) map-universal-property-trunc-Prop : {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) → (A → type-Prop P) → type-hom-Prop (trunc-Prop A) P map-universal-property-trunc-Prop {A = A} P f = map-is-propositional-truncation ( trunc-Prop A) ( unit-trunc-Prop A) ( is-propositional-truncation-trunc-Prop A) ( P) ( f) -- Proposition 13.1.9 unique-functor-trunc-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-contr ( Σ ( type-hom-Prop (trunc-Prop A) (trunc-Prop B)) ( λ h → (h ∘ (unit-trunc-Prop A)) ~ ((unit-trunc-Prop B) ∘ f))) unique-functor-trunc-Prop {l1} {l2} {A} {B} f = universal-property-trunc-Prop A (trunc-Prop B) ((unit-trunc-Prop B) ∘ f) functor-trunc-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → type-hom-Prop (trunc-Prop A) (trunc-Prop B) functor-trunc-Prop f = pr1 (center (unique-functor-trunc-Prop f)) htpy-functor-trunc-Prop : { l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → ( (functor-trunc-Prop f) ∘ (unit-trunc-Prop A)) ~ ((unit-trunc-Prop B) ∘ f) htpy-functor-trunc-Prop f = pr2 (center (unique-functor-trunc-Prop f)) htpy-uniqueness-functor-trunc-Prop : { l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → ( h : type-hom-Prop (trunc-Prop A) (trunc-Prop B)) → ( ( h ∘ (unit-trunc-Prop A)) ~ ((unit-trunc-Prop B) ∘ f)) → (functor-trunc-Prop f) ~ h htpy-uniqueness-functor-trunc-Prop f h H = htpy-eq (ap pr1 (contraction (unique-functor-trunc-Prop f) (pair h H))) id-functor-trunc-Prop : { l1 : Level} {A : UU l1} → functor-trunc-Prop (id {A = A}) ~ id id-functor-trunc-Prop {l1} {A} = htpy-uniqueness-functor-trunc-Prop id id refl-htpy comp-functor-trunc-Prop : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} ( g : B → C) (f : A → B) → ( functor-trunc-Prop (g ∘ f)) ~ ( (functor-trunc-Prop g) ∘ (functor-trunc-Prop f)) comp-functor-trunc-Prop g f = htpy-uniqueness-functor-trunc-Prop ( g ∘ f) ( (functor-trunc-Prop g) ∘ (functor-trunc-Prop f)) ( ( (functor-trunc-Prop g) ·l (htpy-functor-trunc-Prop f)) ∙h ( ( htpy-functor-trunc-Prop g) ·r f)) -- Section 13.2 Propositional truncations as higher inductive types -- Definition 13.2.1 case-paths-induction-principle-propositional-truncation : { l : Level} {l1 l2 : Level} {A : UU l1} ( P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) → ( B : type-Prop P → UU l) → UU (l ⊔ l2) case-paths-induction-principle-propositional-truncation P α f B = (p q : type-Prop P) (x : B p) (y : B q) → Id (tr B (α p q) x) y induction-principle-propositional-truncation : (l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) induction-principle-propositional-truncation l {l1} {l2} {A} P α f = ( B : type-Prop P → UU l) → ( g : (x : A) → (B (f x))) → ( β : case-paths-induction-principle-propositional-truncation P α f B) → Σ ((p : type-Prop P) → B p) (λ h → (x : A) → Id (h (f x)) (g x)) -- Lemma 13.2.2 is-prop-case-paths-induction-principle-propositional-truncation : { l : Level} {l1 l2 : Level} {A : UU l1} ( P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) → ( B : type-Prop P → UU l) → case-paths-induction-principle-propositional-truncation P α f B → ( p : type-Prop P) → is-prop (B p) is-prop-case-paths-induction-principle-propositional-truncation P α f B β p = is-prop-is-contr-if-inh (λ x → pair (tr B (α p p) x) (β p p x)) case-paths-induction-principle-propositional-truncation-is-prop : { l : Level} {l1 l2 : Level} {A : UU l1} ( P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) → ( B : type-Prop P → UU l) → ( (p : type-Prop P) → is-prop (B p)) → case-paths-induction-principle-propositional-truncation P α f B case-paths-induction-principle-propositional-truncation-is-prop P α f B is-prop-B p q x y = is-prop'-is-prop (is-prop-B q) (tr B (α p q) x) y -- Definition 13.2.3 dependent-universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} ( P : UU-Prop l2) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) dependent-universal-property-propositional-truncation l {l1} {l2} {A} P f = ( Q : type-Prop P → UU-Prop l) → is-equiv (precomp-Π f (type-Prop ∘ Q)) -- Theorem 13.2.4 abstract dependent-universal-property-is-propositional-truncation : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ( {l : Level} → is-propositional-truncation l P f) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) dependent-universal-property-is-propositional-truncation {l1} {l2} {A} P f is-ptr-f Q = is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map ( λ (g : A → type-Prop P) → (x : A) → type-Prop (Q (g x))) ( precomp f (type-Prop P)) ( λ h → precomp-Π f (λ p → type-Prop (Q (h p)))) ( is-ptr-f P) ( is-equiv-top-is-equiv-bottom-square ( inv-choice-∞ { C = λ (x : type-Prop P) (p : type-Prop P) → type-Prop (Q p)}) ( inv-choice-∞ { C = λ (x : A) (p : type-Prop P) → type-Prop (Q p)}) ( toto ( λ (g : A → type-Prop P) → (x : A) → type-Prop (Q (g x))) ( precomp f (type-Prop P)) ( λ h → precomp-Π f (λ p → type-Prop (Q (h p))))) ( precomp f (Σ (type-Prop P) (λ p → type-Prop (Q p)))) ( ind-Σ (λ h h' → refl)) ( is-equiv-inv-choice-∞) ( is-equiv-inv-choice-∞) ( is-ptr-f (Σ-Prop P Q))) ( id {A = type-Prop P}) dependent-universal-property-trunc-Prop : {l l1 : Level} (A : UU l1) → dependent-universal-property-propositional-truncation l ( trunc-Prop A) ( unit-trunc-Prop A) dependent-universal-property-trunc-Prop A = dependent-universal-property-is-propositional-truncation ( trunc-Prop A) ( unit-trunc-Prop A) ( is-propositional-truncation-trunc-Prop A) abstract is-propositional-truncation-dependent-universal-property : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) → ( {l : Level} → is-propositional-truncation l P f) is-propositional-truncation-dependent-universal-property P f dup-f Q = dup-f (λ p → Q) abstract induction-principle-dependent-universal-property-propositional-truncation : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) → ( {l : Level} → induction-principle-propositional-truncation l P ( is-prop'-is-prop (is-prop-type-Prop P)) f) induction-principle-dependent-universal-property-propositional-truncation P f dup-f B g α = tot ( λ h → htpy-eq) ( center ( is-contr-map-is-equiv ( dup-f ( λ p → pair ( B p) ( is-prop-case-paths-induction-principle-propositional-truncation ( P) ( is-prop'-is-prop (is-prop-type-Prop P)) f B α p))) ( g))) abstract dependent-universal-property-induction-principle-propositional-truncation : { l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) → ( {l : Level} → induction-principle-propositional-truncation l P ( is-prop'-is-prop (is-prop-type-Prop P)) f) → ( {l : Level} → dependent-universal-property-propositional-truncation l P f) dependent-universal-property-induction-principle-propositional-truncation P f ind-f Q = is-equiv-is-prop ( is-prop-Π (λ p → is-prop-type-Prop (Q p))) ( is-prop-Π (λ a → is-prop-type-Prop (Q (f a)))) ( λ g → pr1 ( ind-f ( λ p → type-Prop (Q p)) ( g) ( case-paths-induction-principle-propositional-truncation-is-prop ( P) ( is-prop'-is-prop (is-prop-type-Prop P)) ( f) ( λ p → type-Prop (Q p)) ( λ p → is-prop-type-Prop (Q p))))) -- Exercises -- Exercise 13.1 is-propositional-truncation-retract : {l l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) → (R : (type-Prop P) retract-of A) → is-propositional-truncation l P (retraction-retract-of R) is-propositional-truncation-retract {A = A} P R Q = is-equiv-is-prop ( is-prop-function-type ( type-Prop P) ( type-Prop Q) ( is-prop-type-Prop Q)) ( is-prop-function-type ( A) ( type-Prop Q) ( is-prop-type-Prop Q)) ( λ g → g ∘ (section-retract-of R)) -- Exercise 13.2 is-propositional-truncation-prod : {l1 l2 l3 l4 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) {A' : UU l3} (P' : UU-Prop l4) (f' : A' → type-Prop P') → ({l : Level} → is-propositional-truncation l P f) → ({l : Level} → is-propositional-truncation l P' f') → {l : Level} → is-propositional-truncation l (prod-Prop P P') (functor-prod f f') is-propositional-truncation-prod P f P' f' is-ptr-f is-ptr-f' Q = is-equiv-top-is-equiv-bottom-square ( ev-pair) ( ev-pair) ( precomp (functor-prod f f') (type-Prop Q)) ( λ h a a' → h (f a) (f' a')) ( refl-htpy) ( is-equiv-ev-pair) ( is-equiv-ev-pair) ( is-equiv-comp' ( λ h a a' → h a (f' a')) ( λ h a p' → h (f a) p') ( is-ptr-f (pair (type-hom-Prop P' Q) (is-prop-type-hom-Prop P' Q))) ( is-equiv-postcomp-Π ( λ a g a' → g (f' a')) ( λ a → is-ptr-f' Q))) equiv-prod-trunc-Prop : {l1 l2 : Level} (A : UU l1) (A' : UU l2) → equiv-Prop (trunc-Prop (A × A')) (prod-Prop (trunc-Prop A) (trunc-Prop A')) equiv-prod-trunc-Prop A A' = pr1 ( center ( is-uniquely-unique-propositional-truncation ( trunc-Prop (A × A')) ( prod-Prop (trunc-Prop A) (trunc-Prop A')) ( unit-trunc-Prop (A × A')) ( functor-prod (unit-trunc-Prop A) (unit-trunc-Prop A')) ( is-propositional-truncation-trunc-Prop (A × A')) ( is-propositional-truncation-prod ( trunc-Prop A) ( unit-trunc-Prop A) ( trunc-Prop A') ( unit-trunc-Prop A') ( is-propositional-truncation-trunc-Prop A) ( is-propositional-truncation-trunc-Prop A')))) -- Exercise 13.3 -- Exercise 13.3(a) conj-Prop = prod-Prop disj-Prop : {l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU-Prop (l1 ⊔ l2) disj-Prop P Q = trunc-Prop (coprod (type-Prop P) (type-Prop Q)) inl-disj-Prop : {l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → type-hom-Prop P (disj-Prop P Q) inl-disj-Prop P Q = (unit-trunc-Prop (coprod (type-Prop P) (type-Prop Q))) ∘ inl inr-disj-Prop : {l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → type-hom-Prop Q (disj-Prop P Q) inr-disj-Prop P Q = (unit-trunc-Prop (coprod (type-Prop P) (type-Prop Q))) ∘ inr -- Exercise 13.3(b) ev-disj-Prop : {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) → type-hom-Prop ( hom-Prop (disj-Prop P Q) R) ( conj-Prop (hom-Prop P R) (hom-Prop Q R)) ev-disj-Prop P Q R h = pair (h ∘ (inl-disj-Prop P Q)) (h ∘ (inr-disj-Prop P Q)) inv-ev-disj-Prop : {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) → type-hom-Prop ( conj-Prop (hom-Prop P R) (hom-Prop Q R)) ( hom-Prop (disj-Prop P Q) R) inv-ev-disj-Prop P Q R (pair f g) = map-universal-property-trunc-Prop R (ind-coprod (λ t → type-Prop R) f g) is-equiv-ev-disj-Prop : {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) → is-equiv (ev-disj-Prop P Q R) is-equiv-ev-disj-Prop P Q R = is-equiv-is-prop ( is-prop-type-Prop (hom-Prop (disj-Prop P Q) R)) ( is-prop-type-Prop (conj-Prop (hom-Prop P R) (hom-Prop Q R))) ( inv-ev-disj-Prop P Q R) -- Exercise 13.5 {- impredicative-trunc-Prop : {l : Level} → UU l → UU-Prop (lsuc l) impredicative-trunc-Prop {l} A = (P : UU-Prop l) → (A → type-Prop P) → type-Prop P -}
algebraic-stack_agda0000_doc_14329
------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for reasoning with a partial setoid ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Reasoning.PartialSetoid {s₁ s₂} (S : PartialSetoid s₁ s₂) where open PartialSetoid S import Relation.Binary.Reasoning.Base.Partial _≈_ trans as Base ------------------------------------------------------------------------ -- Re-export the contents of the base module open Base public hiding (step-∼) ------------------------------------------------------------------------ -- Additional reasoning combinators infixr 2 step-≈ step-≈˘ -- A step using an equality step-≈ = Base.step-∼ syntax step-≈ x y≈z x≈y = x ≈⟨ x≈y ⟩ y≈z -- A step using a symmetric equality step-≈˘ : ∀ x {y z} → y IsRelatedTo z → y ≈ x → x IsRelatedTo z step-≈˘ x y∼z y≈x = x ≈⟨ sym y≈x ⟩ y∼z syntax step-≈˘ x y≈z y≈x = x ≈˘⟨ y≈x ⟩ y≈z
algebraic-stack_agda0000_doc_14330
module Issue1232.Fin where data Fin : Set where zero : Fin
algebraic-stack_agda0000_doc_14331
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote import LibraBFT.Impl.Consensus.ConsensusTypes.TimeoutCertificate as TimeoutCertificate open import LibraBFT.Impl.OBM.Rust.RustTypes import LibraBFT.Impl.Types.CryptoProxies as CryptoProxies import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Hash import Util.KVMap as Map open import Util.Prelude module LibraBFT.Impl.Consensus.PendingVotes where insertVoteM : Vote → ValidatorVerifier → LBFT VoteReceptionResult insertVoteM vote vv = do let liDigest = hashLI (vote ^∙ vLedgerInfo) atv ← use (lPendingVotes ∙ pvAuthorToVote) caseMD Map.lookup (vote ^∙ vAuthor) atv of λ where (just previouslySeenVote) → ifD liDigest ≟Hash (hashLI (previouslySeenVote ^∙ vLedgerInfo)) then (do let newTimeoutVote = Vote.isTimeout vote ∧ not (Vote.isTimeout previouslySeenVote) if not newTimeoutVote then pure DuplicateVote else continue1 liDigest) else pure EquivocateVote nothing → continue1 liDigest where continue2 : U64 → LBFT VoteReceptionResult continue1 : HashValue → LBFT VoteReceptionResult continue1 liDigest = do pv ← use lPendingVotes lPendingVotes ∙ pvAuthorToVote %= Map.kvm-insert-Haskell (vote ^∙ vAuthor) vote let liWithSig = CryptoProxies.addToLi (vote ^∙ vAuthor) (vote ^∙ vSignature) (fromMaybe (LedgerInfoWithSignatures∙new (vote ^∙ vLedgerInfo) Map.empty) (Map.lookup liDigest (pv ^∙ pvLiDigestToVotes))) lPendingVotes ∙ pvLiDigestToVotes %= Map.kvm-insert-Haskell liDigest liWithSig case⊎D ValidatorVerifier.checkVotingPower vv (Map.kvm-keys (liWithSig ^∙ liwsSignatures)) of λ where (Right unit) → pure (NewQuorumCertificate (QuorumCert∙new (vote ^∙ vVoteData) liWithSig)) (Left (ErrVerify (TooLittleVotingPower votingPower _))) → continue2 votingPower (Left _) → pure VRR_TODO continue2 qcVotingPower = caseMD vote ^∙ vTimeoutSignature of λ where (just timeoutSignature) → do pv ← use lPendingVotes let partialTc = TimeoutCertificate.addSignature (vote ^∙ vAuthor) timeoutSignature (fromMaybe (TimeoutCertificate∙new (Vote.timeout vote)) (pv ^∙ pvMaybePartialTC)) lPendingVotes ∙ pvMaybePartialTC %= const (just partialTc) case⊎D ValidatorVerifier.checkVotingPower vv (Map.kvm-keys (partialTc ^∙ tcSignatures)) of λ where (Right unit) → pure (NewTimeoutCertificate partialTc) (Left (ErrVerify (TooLittleVotingPower votingPower _))) → pure (TCVoteAdded votingPower) (Left _) → pure VRR_TODO nothing → pure (QCVoteAdded qcVotingPower)
algebraic-stack_agda0000_doc_14332
{-# OPTIONS --without-K --safe #-} module Polynomial.Simple.AlmostCommutativeRing where import Algebra.Solver.Ring.AlmostCommutativeRing as Complex open import Level open import Relation.Binary open import Algebra open import Algebra.Structures open import Algebra.FunctionProperties import Algebra.Morphism as Morphism open import Function open import Level open import Data.Maybe as Maybe using (Maybe; just; nothing) record IsAlmostCommutativeRing {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (_+_ _*_ : A → A → A) (-_ : A → A) (0# 1# : A) : Set (a ⊔ ℓ) where field isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# -‿cong : -_ Preserves _≈_ ⟶ _≈_ -‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y)) -‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y)) open IsCommutativeSemiring isCommutativeSemiring public import Polynomial.Exponentiation as Exp record AlmostCommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ infixr 8 _^_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 0≟_ : (x : Carrier) → Maybe (0# ≈ x) 1# : Carrier isAlmostCommutativeRing : IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1# open IsAlmostCommutativeRing isAlmostCommutativeRing hiding (refl) public open import Data.Nat as ℕ using (ℕ) commutativeSemiring : CommutativeSemiring _ _ commutativeSemiring = record { isCommutativeSemiring = isCommutativeSemiring } open CommutativeSemiring commutativeSemiring public using ( +-semigroup; +-monoid; +-commutativeMonoid ; *-semigroup; *-monoid; *-commutativeMonoid ; semiring ) rawRing : RawRing _ _ rawRing = record { Carrier = Carrier ; _≈_ = _≈_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0# ; 1# = 1# } _^_ : Carrier → ℕ → Carrier _^_ = Exp._^_ rawRing {-# NOINLINE _^_ #-} refl : ∀ {x} → x ≈ x refl = IsAlmostCommutativeRing.refl isAlmostCommutativeRing flipped : ∀ {c ℓ} → AlmostCommutativeRing c ℓ → AlmostCommutativeRing c ℓ flipped rng = record { Carrier = Carrier ; _≈_ = _≈_ ; _+_ = flip _+_ ; _*_ = flip _*_ ; -_ = -_ ; 0# = 0# ; 0≟_ = 0≟_ ; 1# = 1# ; isAlmostCommutativeRing = record { -‿cong = -‿cong ; -‿*-distribˡ = λ x y → *-comm y (- x) ⟨ trans ⟩ (-‿*-distribˡ x y ⟨ trans ⟩ -‿cong (*-comm x y)) ; -‿+-comm = λ x y → -‿+-comm y x ; isCommutativeSemiring = record { +-isCommutativeMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = flip (+-cong ) } ; assoc = λ x y z → sym (+-assoc z y x) } ; identityˡ = +-identityʳ ; comm = λ x y → +-comm y x } ; *-isCommutativeMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = flip (*-cong ) } ; assoc = λ x y z → sym (*-assoc z y x) } ; identityˡ = *-identityʳ ; comm = λ x y → *-comm y x } ; distribʳ = λ x y z → distribˡ _ _ _ ; zeroˡ = zeroʳ } } } where open AlmostCommutativeRing rng record _-Raw-AlmostCommutative⟶_ {c r₁ r₂ r₃} (From : RawRing c r₁) (To : AlmostCommutativeRing r₂ r₃) : Set (c ⊔ r₁ ⊔ r₂ ⊔ r₃) where private module F = RawRing From module T = AlmostCommutativeRing To open Morphism.Definitions F.Carrier T.Carrier T._≈_ field ⟦_⟧ : Morphism +-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_ *-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_ -‿homo : Homomorphic₁ ⟦_⟧ F.-_ T.-_ 0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0# 1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1# -raw-almostCommutative⟶ : ∀ {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) → AlmostCommutativeRing.rawRing R -Raw-AlmostCommutative⟶ R -raw-almostCommutative⟶ R = record { ⟦_⟧ = id ; +-homo = λ _ _ → refl ; *-homo = λ _ _ → refl ; -‿homo = λ _ → refl ; 0-homo = refl ; 1-homo = refl } where open AlmostCommutativeRing R -- A homomorphism induces a notion of equivalence on the raw ring. Induced-equivalence : ∀ {c₁ c₂ ℓ₁ ℓ₂} {Coeff : RawRing c₁ ℓ₁} {R : AlmostCommutativeRing c₂ ℓ₂} → Coeff -Raw-AlmostCommutative⟶ R → Rel (RawRing.Carrier Coeff) ℓ₂ Induced-equivalence {R = R} morphism a b = ⟦ a ⟧ ≈ ⟦ b ⟧ where open AlmostCommutativeRing R open _-Raw-AlmostCommutative⟶_ morphism ------------------------------------------------------------------------ -- Conversions -- Commutative rings are almost commutative rings. fromCommutativeRing : ∀ {r₁ r₂} → (CR : CommutativeRing r₁ r₂) → (∀ x → Maybe ((CommutativeRing._≈_ CR) (CommutativeRing.0# CR) x)) → AlmostCommutativeRing _ _ fromCommutativeRing CR 0≟_ = record { isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = -‿cong ; -‿*-distribˡ = -‿*-distribˡ ; -‿+-comm = ⁻¹-∙-comm } ; 0≟_ = 0≟_ } where open CommutativeRing CR import Algebra.Properties.Ring as R; open R ring import Algebra.Properties.AbelianGroup as AG; open AG +-abelianGroup fromCommutativeSemiring : ∀ {r₁ r₂} → (CS : CommutativeSemiring r₁ r₂) → (∀ x → Maybe ((CommutativeSemiring._≈_ CS) (CommutativeSemiring.0# CS) x)) → AlmostCommutativeRing _ _ fromCommutativeSemiring CS 0≟_ = record { -_ = id ; isAlmostCommutativeRing = record { isCommutativeSemiring = isCommutativeSemiring ; -‿cong = id ; -‿*-distribˡ = λ _ _ → refl ; -‿+-comm = λ _ _ → refl } ; 0≟_ = 0≟_ } where open CommutativeSemiring CS
algebraic-stack_agda0000_doc_14333
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Bool open import lib.types.Empty open import lib.types.Paths open import lib.types.Pi open import lib.types.Sigma {- This file contains various lemmas that rely on lib.types.Paths or functional extensionality for pointed maps. -} module lib.types.Pointed where {- Sequences of pointed maps and paths between their compositions -} infixr 80 _◃⊙∘_ data ⊙FunctionSeq {i} : Ptd i → Ptd i → Type (lsucc i) where ⊙idf-seq : {X : Ptd i} → ⊙FunctionSeq X X _◃⊙∘_ : {X Y Z : Ptd i} (g : Y ⊙→ Z) (fs : ⊙FunctionSeq X Y) → ⊙FunctionSeq X Z infix 30 _⊙–→_ _⊙–→_ = ⊙FunctionSeq infix 90 _◃⊙idf _◃⊙idf : ∀ {i} {X Y : Ptd i} → (X ⊙→ Y) → X ⊙–→ Y _◃⊙idf fs = fs ◃⊙∘ ⊙idf-seq ⊙compose : ∀ {i} {X Y : Ptd i} → (X ⊙–→ Y) → X ⊙→ Y ⊙compose ⊙idf-seq = ⊙idf _ ⊙compose (g ◃⊙∘ fs) = g ⊙∘ ⊙compose fs record _=⊙∘_ {i} {X Y : Ptd i} (fs gs : X ⊙–→ Y) : Type i where constructor =⊙∘-in field =⊙∘-out : ⊙compose fs == ⊙compose gs open _=⊙∘_ public {- Pointed maps -} ⊙→-level : ∀ {i j} (X : Ptd i) (Y : Ptd j) {n : ℕ₋₂} → has-level n (de⊙ Y) → has-level n (X ⊙→ Y) ⊙→-level X Y Y-level = Σ-level (Π-level (λ _ → Y-level)) (λ f' → =-preserves-level Y-level) ⊙app= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} → f == g → f ⊙∼ g ⊙app= {X = X} {Y = Y} p = app= (fst= p) , ↓-ap-in (_== pt Y) (λ u → u (pt X)) (snd= p) -- function extensionality for pointed maps ⊙λ= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} → f ⊙∼ g → f == g ⊙λ= {g = g} (p , α) = pair= (λ= p) (↓-app=cst-in (↓-idf=cst-out α ∙ ap (_∙ snd g) (! (app=-β p _)))) ⊙λ=' : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y} (p : fst f ∼ fst g) (α : snd f == snd g [ (λ y → y == pt Y) ↓ p (pt X) ]) → f == g ⊙λ=' {g = g} = curry ⊙λ= -- associativity of pointed maps ⊙∘-assoc-pt : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {a₁ a₂ : A} (f : A → B) {b : B} (g : B → C) {c : C} (p : a₁ == a₂) (q : f a₂ == b) (r : g b == c) → ⊙∘-pt (g ∘ f) p (⊙∘-pt g q r) == ⊙∘-pt g (⊙∘-pt f p q) r ⊙∘-assoc-pt _ _ idp _ _ = idp ⊙∘-assoc : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (h : Z ⊙→ W) (g : Y ⊙→ Z) (f : X ⊙→ Y) → ((h ⊙∘ g) ⊙∘ f) ⊙∼ (h ⊙∘ (g ⊙∘ f)) ⊙∘-assoc (h , hpt) (g , gpt) (f , fpt) = (λ _ → idp) , ⊙∘-assoc-pt g h fpt gpt hpt ⊙∘-cst-l : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → (f : X ⊙→ Y) → (⊙cst :> (Y ⊙→ Z)) ⊙∘ f ⊙∼ ⊙cst ⊙∘-cst-l {Z = Z} f = (λ _ → idp) , ap (_∙ idp) (ap-cst (pt Z) (snd f)) ⊙∘-cst-r : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} → (f : Y ⊙→ Z) → f ⊙∘ (⊙cst :> (X ⊙→ Y)) ⊙∼ ⊙cst ⊙∘-cst-r {X = X} f = (λ _ → snd f) , ↓-idf=cst-in' idp private ⊙coe-pt : ∀ {i} {X Y : Ptd i} (p : X == Y) → coe (ap de⊙ p) (pt X) == pt Y ⊙coe-pt idp = idp ⊙coe : ∀ {i} {X Y : Ptd i} → X == Y → X ⊙→ Y ⊙coe p = coe (ap de⊙ p) , ⊙coe-pt p ⊙coe-equiv : ∀ {i} {X Y : Ptd i} → X == Y → X ⊙≃ Y ⊙coe-equiv p = ⊙coe p , snd (coe-equiv (ap de⊙ p)) transport-post⊙∘ : ∀ {i} {j} (X : Ptd i) {Y Z : Ptd j} (p : Y == Z) (f : X ⊙→ Y) → transport (X ⊙→_) p f == ⊙coe p ⊙∘ f transport-post⊙∘ X p@idp f = ! (⊙λ= (⊙∘-unit-l f)) ⊙coe-∙ : ∀ {i} {X Y Z : Ptd i} (p : X == Y) (q : Y == Z) → ⊙coe (p ∙ q) ◃⊙idf =⊙∘ ⊙coe q ◃⊙∘ ⊙coe p ◃⊙idf ⊙coe-∙ p@idp q = =⊙∘-in idp private ⊙coe'-pt : ∀ {i} {X Y : Ptd i} (p : de⊙ X == de⊙ Y) (q : pt X == pt Y [ idf _ ↓ p ]) → coe p (pt X) == pt Y ⊙coe'-pt p@idp q = q ⊙coe' : ∀ {i} {X Y : Ptd i} (p : de⊙ X == de⊙ Y) (q : pt X == pt Y [ idf _ ↓ p ]) → X ⊙→ Y ⊙coe' p q = coe p , ⊙coe'-pt p q private ⊙transport-pt : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y : A} (p : x == y) → transport (de⊙ ∘ B) p (pt (B x)) == pt (B y) ⊙transport-pt B idp = idp ⊙transport : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y : A} (p : x == y) → (B x ⊙→ B y) ⊙transport B p = transport (de⊙ ∘ B) p , ⊙transport-pt B p ⊙transport-∙ : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y z : A} (p : x == y) (q : y == z) → ⊙transport B (p ∙ q) ◃⊙idf =⊙∘ ⊙transport B q ◃⊙∘ ⊙transport B p ◃⊙idf ⊙transport-∙ B p@idp q = =⊙∘-in idp ⊙transport-⊙coe : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y : A} (p : x == y) → ⊙transport B p == ⊙coe (ap B p) ⊙transport-⊙coe B p@idp = idp ⊙transport-natural : ∀ {i j k} {A : Type i} {B : A → Ptd j} {C : A → Ptd k} {x y : A} (p : x == y) (h : ∀ a → B a ⊙→ C a) → h y ⊙∘ ⊙transport B p == ⊙transport C p ⊙∘ h x ⊙transport-natural p@idp h = ! (⊙λ= (⊙∘-unit-l (h _))) {- This requires that B and C have the same universe level -} ⊙transport-natural-=⊙∘ : ∀ {i j} {A : Type i} {B C : A → Ptd j} {x y : A} (p : x == y) (h : ∀ a → B a ⊙→ C a) → h y ◃⊙∘ ⊙transport B p ◃⊙idf =⊙∘ ⊙transport C p ◃⊙∘ h x ◃⊙idf ⊙transport-natural-=⊙∘ p h = =⊙∘-in (⊙transport-natural p h) {- Pointed equivalences -} -- Extracting data from an pointed equivalence module _ {i j} {X : Ptd i} {Y : Ptd j} (⊙e : X ⊙≃ Y) where ⊙≃-to-≃ : de⊙ X ≃ de⊙ Y ⊙≃-to-≃ = fst (fst ⊙e) , snd ⊙e ⊙–> : X ⊙→ Y ⊙–> = fst ⊙e ⊙–>-pt = snd ⊙–> ⊙<– : Y ⊙→ X ⊙<– = is-equiv.g (snd ⊙e) , lemma ⊙e where lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → is-equiv.g (snd ⊙e) (pt Y) == pt X lemma ((f , idp) , f-ise) = is-equiv.g-f f-ise (pt X) ⊙<–-pt = snd ⊙<– infix 120 _⊙⁻¹ _⊙⁻¹ : Y ⊙≃ X _⊙⁻¹ = ⊙<– , is-equiv-inverse (snd ⊙e) module _ {i j} {X : Ptd i} {Y : Ptd j} where ⊙<–-inv-l : (⊙e : X ⊙≃ Y) → ⊙<– ⊙e ⊙∘ ⊙–> ⊙e == ⊙idf _ ⊙<–-inv-l ⊙e = ⊙λ= (<–-inv-l (⊙≃-to-≃ ⊙e) , ↓-idf=cst-in' (lemma ⊙e)) where lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → snd (⊙<– ⊙e ⊙∘ ⊙–> ⊙e) == is-equiv.g-f (snd ⊙e) (pt X) lemma ((f , idp) , f-ise) = idp ⊙<–-inv-r : (⊙e : X ⊙≃ Y) → ⊙–> ⊙e ⊙∘ ⊙<– ⊙e == ⊙idf _ ⊙<–-inv-r ⊙e = ⊙λ= (<–-inv-r (⊙≃-to-≃ ⊙e) , ↓-idf=cst-in' (lemma ⊙e)) where lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → snd (⊙–> ⊙e ⊙∘ ⊙<– ⊙e) == is-equiv.f-g (snd ⊙e) (pt Y) lemma ((f , idp) , f-ise) = ∙-unit-r _ ∙ is-equiv.adj f-ise (pt X) module _ {i} {X Y : Ptd i} where ⊙<–-inv-l-=⊙∘ : (⊙e : X ⊙≃ Y) → ⊙<– ⊙e ◃⊙∘ ⊙–> ⊙e ◃⊙idf =⊙∘ ⊙idf-seq ⊙<–-inv-l-=⊙∘ ⊙e = =⊙∘-in (⊙<–-inv-l ⊙e) ⊙<–-inv-r-=⊙∘ : (⊙e : X ⊙≃ Y) → ⊙–> ⊙e ◃⊙∘ ⊙<– ⊙e ◃⊙idf =⊙∘ ⊙idf-seq ⊙<–-inv-r-=⊙∘ ⊙e = =⊙∘-in (⊙<–-inv-r ⊙e) module _ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (⊙e : X ⊙≃ Y) where post⊙∘-is-equiv : is-equiv (λ (k : Z ⊙→ X) → ⊙–> ⊙e ⊙∘ k) post⊙∘-is-equiv = is-eq (⊙–> ⊙e ⊙∘_) (⊙<– ⊙e ⊙∘_) (to-from ⊙e) (from-to ⊙e) where abstract to-from : ∀ {Y} (⊙e : X ⊙≃ Y) (k : Z ⊙→ Y) → ⊙–> ⊙e ⊙∘ (⊙<– ⊙e ⊙∘ k) == k to-from ((f , idp) , f-ise) (k , k-pt) = ⊙λ=' (f.f-g ∘ k) (↓-idf=cst-in' $ lemma k-pt) where module f = is-equiv f-ise lemma : ∀ {y₀} (k-pt : y₀ == f (pt X)) → ⊙∘-pt f (⊙∘-pt f.g k-pt (f.g-f _)) idp == f.f-g y₀ ∙' k-pt lemma idp = ∙-unit-r _ ∙ f.adj _ from-to : ∀ {Y} (⊙e : X ⊙≃ Y) (k : Z ⊙→ X) → ⊙<– ⊙e ⊙∘ (⊙–> ⊙e ⊙∘ k) == k from-to ((f , idp) , f-ise) (k , idp) = ⊙λ=' (f.g-f ∘ k) $ ↓-idf=cst-in' idp where module f = is-equiv f-ise post⊙∘-equiv : (Z ⊙→ X) ≃ (Z ⊙→ Y) post⊙∘-equiv = _ , post⊙∘-is-equiv pre⊙∘-is-equiv : is-equiv (λ (k : Y ⊙→ Z) → k ⊙∘ ⊙–> ⊙e) pre⊙∘-is-equiv = is-eq (_⊙∘ ⊙–> ⊙e) (_⊙∘ ⊙<– ⊙e) (to-from ⊙e) (from-to ⊙e) where abstract to-from : ∀ {Z} (⊙e : X ⊙≃ Y) (k : X ⊙→ Z) → (k ⊙∘ ⊙<– ⊙e) ⊙∘ ⊙–> ⊙e == k to-from ((f , idp) , f-ise) (k , idp) = ⊙λ=' (ap k ∘ f.g-f) $ ↓-idf=cst-in' $ ∙-unit-r _ where module f = is-equiv f-ise from-to : ∀ {Z} (⊙e : X ⊙≃ Y) (k : Y ⊙→ Z) → (k ⊙∘ ⊙–> ⊙e) ⊙∘ ⊙<– ⊙e == k from-to ((f , idp) , f-ise) (k , idp) = ⊙λ=' (ap k ∘ f.f-g) $ ↓-idf=cst-in' $ ∙-unit-r _ ∙ ap-∘ k f (f.g-f (pt X)) ∙ ap (ap k) (f.adj (pt X)) where module f = is-equiv f-ise pre⊙∘-equiv : (Y ⊙→ Z) ≃ (X ⊙→ Z) pre⊙∘-equiv = _ , pre⊙∘-is-equiv {- Pointed maps out of bool -} -- intuition : [f true] is fixed and the only changable part is [f false]. ⊙Bool→-to-idf : ∀ {i} {X : Ptd i} → ⊙Bool ⊙→ X → de⊙ X ⊙Bool→-to-idf (h , _) = h false ⊙Bool→-equiv-idf : ∀ {i} (X : Ptd i) → (⊙Bool ⊙→ X) ≃ de⊙ X ⊙Bool→-equiv-idf {i} X = equiv ⊙Bool→-to-idf g f-g g-f where g : de⊙ X → ⊙Bool ⊙→ X g x = Bool-rec (pt X) x , idp abstract f-g : ∀ x → ⊙Bool→-to-idf (g x) == x f-g x = idp g-f : ∀ H → g (⊙Bool→-to-idf H) == H g-f (h , hpt) = pair= (λ= lemma) (↓-app=cst-in $ idp =⟨ ! (!-inv-l hpt) ⟩ ! hpt ∙ hpt =⟨ ! (app=-β lemma true) |in-ctx (λ w → w ∙ hpt) ⟩ app= (λ= lemma) true ∙ hpt =∎) where lemma : ∀ b → fst (g (h false)) b == h b lemma true = ! hpt lemma false = idp ⊙Bool→-equiv-idf-nat : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y) → CommSquareEquiv (F ⊙∘_) (fst F) ⊙Bool→-to-idf ⊙Bool→-to-idf ⊙Bool→-equiv-idf-nat F = (comm-sqr λ _ → idp) , snd (⊙Bool→-equiv-idf _) , snd (⊙Bool→-equiv-idf _)
algebraic-stack_agda0000_doc_14334
open import Signature -- | One signature for terms and one for predicates. module Logic (Σ Δ : Sig) (V : Set) where open import Data.Empty renaming (⊥ to Ø) open import Data.Unit open import Data.Sum open import Data.Product renaming (Σ to ∐) open import Data.Nat open import Data.Fin FinSet : Set → Set FinSet X = ∃ λ n → (Fin n → X) dom : ∀{X} → FinSet X → Set dom (n , _) = Fin n get : ∀{X} (F : FinSet X) → dom F → X get (_ , f) k = f k drop : ∀{X} (F : FinSet domEmpty : ∀{X} → FinSet X → Set domEmpty (zero , _) = ⊤ domEmpty (suc _ , _) = Ø open import Terms Σ Term : Set Term = T V -- | An atom is either a predicate on terms or bottom. Atom : Set Atom = ⟪ Δ ⟫ Term -- ⊎ ⊤ {- ⊥ : Atom ⊥ = inj₂ tt -} Formula : Set Formula = Atom Sentence : Set Sentence = FinSet Formula data Parity : Set where ind : Parity coind : Parity record Clause : Set where constructor _⊢[_]_ field head : Sentence par : Parity concl : Formula open Clause public Program : Set Program = FinSet Clause indClauses : Program → Program indClauses (zero , P) = zero , λ () indClauses (suc n , P) = {!!}
algebraic-stack_agda0000_doc_14335
-- Andreas, 2017-01-24, issue #2429 -- Respect subtyping also for irrelevant lambdas! -- Subtyping: (.A → B) ≤ (A → B) -- Where a function is expected, we can put one which does not use its argument. id : ∀{A B : Set} → (.A → B) → A → B id f = f test : ∀{A B : Set} → (.A → B) → A → B test f = λ .a → f a -- Should work! -- The eta-expansion should not change anything!
algebraic-stack_agda0000_doc_6512
{-# OPTIONS --cubical --safe #-} module Function.Surjective.Base where open import Path open import Function.Fiber open import Level open import HITs.PropositionalTruncation open import Data.Sigma Surjective : (A → B) → Type _ Surjective f = ∀ y → ∥ fiber f y ∥ SplitSurjective : (A → B) → Type _ SplitSurjective f = ∀ y → fiber f y infixr 0 _↠!_ _↠_ _↠!_ : Type a → Type b → Type (a ℓ⊔ b) A ↠! B = Σ (A → B) SplitSurjective _↠_ : Type a → Type b → Type (a ℓ⊔ b) A ↠ B = Σ (A → B) Surjective
algebraic-stack_agda0000_doc_6513
module T where postulate x : Set postulate y : Set postulate p : Set -> Set e : Set e = p y
algebraic-stack_agda0000_doc_6514
open import Agda.Builtin.Reflection open import Agda.Builtin.Unit @0 A : Set₁ A = Set macro @0 m : Term → TC ⊤ m B = bindTC (quoteTC A) λ A → unify A B B : Set₁ B = m
algebraic-stack_agda0000_doc_6515
module Prelude.Bool where open import Prelude.Unit open import Prelude.Empty open import Prelude.Equality open import Prelude.Decidable open import Prelude.Function open import Agda.Builtin.Bool public infix 0 if_then_else_ if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A if true then x else y = x if false then x else y = y {-# INLINE if_then_else_ #-} infixr 3 _&&_ infixr 2 _||_ _||_ : Bool → Bool → Bool true || _ = true false || x = x {-# INLINE _||_ #-} _&&_ : Bool → Bool → Bool true && x = x false && _ = false {-# INLINE _&&_ #-} not : Bool → Bool not true = false not false = true {-# INLINE not #-} data IsTrue : Bool → Set where instance true : IsTrue true data IsFalse : Bool → Set where instance false : IsFalse false instance EqBool : Eq Bool _==_ {{EqBool}} false false = yes refl _==_ {{EqBool}} false true = no λ () _==_ {{EqBool}} true false = no λ () _==_ {{EqBool}} true true = yes refl decBool : ∀ b → Dec (IsTrue b) decBool false = no λ () decBool true = yes true {-# INLINE decBool #-} isYes : ∀ {a} {A : Set a} → Dec A → Bool isYes (yes _) = true isYes (no _) = false isNo : ∀ {a} {A : Set a} → Dec A → Bool isNo = not ∘ isYes infix 0 if′_then_else_ if′_then_else_ : ∀ {a} {A : Set a} (b : Bool) → ({{_ : IsTrue b}} → A) → ({{_ : IsFalse b}} → A) → A if′ true then x else _ = x if′ false then _ else y = y
algebraic-stack_agda0000_doc_6516
module Prelude.Char where open import Prelude.Bool postulate Char : Set {-# BUILTIN CHAR Char #-} private primitive primCharEquality : (c c' : Char) -> Bool postulate eof : Char {-# COMPILED_EPIC eof () -> Int = foreign Int "eof" () #-} charEq : Char -> Char -> Bool charEq = primCharEquality
algebraic-stack_agda0000_doc_6517
-- Andreas, 2018-06-15, issue #1086 -- Reported by Andrea -- Fixed by Jesper in https://github.com/agda/agda/commit/242684bca62fabe43e125aefae7526be4b26a135 open import Common.Bool open import Common.Equality and : (a b : Bool) → Bool and true b = b and false b = false test : ∀ a b → and a b ≡ true → a ≡ true test true true refl = refl -- Should succeed.
algebraic-stack_agda0000_doc_6518
------------------------------------------------------------------------ -- Encoder and decoder instances for Atom.χ-ℕ-atoms ------------------------------------------------------------------------ module Coding.Instances.Nat where open import Atom -- The code-Var and code-Const instances are hidden: they are replaced -- by the code-ℕ instance. open import Coding.Instances χ-ℕ-atoms public hiding (rep-Var; rep-Const)
algebraic-stack_agda0000_doc_6519
{-# OPTIONS --warning=error --without-K --guardedness --safe #-} open import LogicalFormulae open import Numbers.Naturals.Definition open import Setoids.Setoids open import Numbers.Naturals.Order open import Vectors module Sequences where record Sequence {a : _} (A : Set a) : Set a where coinductive field head : A tail : Sequence A headInjective : {a : _} {A : Set a} {s1 s2 : Sequence A} → s1 ≡ s2 → Sequence.head s1 ≡ Sequence.head s2 headInjective {s1 = s1} {.s1} refl = refl constSequence : {a : _} {A : Set a} (k : A) → Sequence A Sequence.head (constSequence k) = k Sequence.tail (constSequence k) = constSequence k index : {a : _} {A : Set a} (s : Sequence A) (n : ℕ) → A index s zero = Sequence.head s index s (succ n) = index (Sequence.tail s) n funcToSequence : {a : _} {A : Set a} (f : ℕ → A) → Sequence A Sequence.head (funcToSequence f) = f 0 Sequence.tail (funcToSequence f) = funcToSequence (λ i → f (succ i)) funcToSequenceReversible : {a : _} {A : Set a} (f : ℕ → A) → (n : ℕ) → index (funcToSequence f) n ≡ f n funcToSequenceReversible f zero = refl funcToSequenceReversible f (succ n) = funcToSequenceReversible (λ i → f (succ i)) n map : {a b : _} {A : Set a} {B : Set b} (f : A → B) (s : Sequence A) → Sequence B Sequence.head (map f s) = f (Sequence.head s) Sequence.tail (map f s) = map f (Sequence.tail s) apply : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) (s1 : Sequence A) (s2 : Sequence B) → Sequence C Sequence.head (apply f s1 s2) = f (Sequence.head s1) (Sequence.head s2) Sequence.tail (apply f s1 s2) = apply f (Sequence.tail s1) (Sequence.tail s2) indexAndConst : {a : _} {A : Set a} (a : A) (n : ℕ) → index (constSequence a) n ≡ a indexAndConst a zero = refl indexAndConst a (succ n) = indexAndConst a n mapTwice : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A → B) (g : B → C) (s : Sequence A) → {n : ℕ} → index (map g (map f s)) n ≡ index (map (λ i → g (f i)) s) n mapTwice f g s {zero} = refl mapTwice f g s {succ n} = mapTwice f g (Sequence.tail s) {n} mapAndIndex : {a b : _} {A : Set a} {B : Set b} (s : Sequence A) (f : A → B) (n : ℕ) → f (index s n) ≡ index (map f s) n mapAndIndex s f zero = refl mapAndIndex s f (succ n) = mapAndIndex (Sequence.tail s) f n indexExtensional : {a b c : _} {A : Set a} {B : Set b} (T : Setoid {_} {c} B) (s : Sequence A) (f g : A → B) → (extension : ∀ {x} → (Setoid._∼_ T (f x) (g x))) → {n : ℕ} → Setoid._∼_ T (index (map f s) n) (index (map g s) n) indexExtensional T s f g extension {zero} = extension indexExtensional T s f g extension {succ n} = indexExtensional T (Sequence.tail s) f g extension {n} indexAndApply : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (s1 : Sequence A) (s2 : Sequence B) (f : A → B → C) → {m : ℕ} → index (apply f s1 s2) m ≡ f (index s1 m) (index s2 m) indexAndApply s1 s2 f {zero} = refl indexAndApply s1 s2 f {succ m} = indexAndApply (Sequence.tail s1) (Sequence.tail s2) f {m} mapAndApply : {a b c d : _} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (s1 : Sequence A) (s2 : Sequence B) (f : A → B → C) (g : C → D) → (m : ℕ) → index (map g (apply f s1 s2)) m ≡ g (f (index s1 m) (index s2 m)) mapAndApply s1 s2 f g zero = refl mapAndApply s1 s2 f g (succ m) = mapAndApply (Sequence.tail s1) (Sequence.tail s2) f g m assemble : {a : _} {A : Set a} → (x : A) → (s : Sequence A) → Sequence A Sequence.head (assemble x s) = x Sequence.tail (assemble x s) = s allTrue : {a : _} {A : Set a} {c : _} (pred : A → Set c) (s : Sequence A) → Set c allTrue pred s = (n : ℕ) → pred (index s n) tailFrom : {a : _} {A : Set a} (n : ℕ) → (s : Sequence A) → Sequence A tailFrom zero s = s tailFrom (succ n) s = tailFrom n (Sequence.tail s) subsequence : {a : _} {A : Set a} (x : Sequence A) → (indices : Sequence ℕ) → ((n : ℕ) → index indices n <N index indices (succ n)) → Sequence A Sequence.head (subsequence x selector increasing) = index x (Sequence.head selector) Sequence.tail (subsequence x selector increasing) = subsequence (tailFrom (succ (Sequence.head selector)) x) (Sequence.tail selector) λ n → increasing (succ n) take : {a : _} {A : Set a} (n : ℕ) (s : Sequence A) → Vec A n take zero s = [] take (succ n) s = Sequence.head s ,- take n (Sequence.tail s) unfold : {a : _} {A : Set a} → (A → A) → A → Sequence A Sequence.head (unfold f a) = a Sequence.tail (unfold f a) = unfold f (f a) indexAndUnfold : {a : _} {A : Set a} (f : A → A) (start : A) (n : ℕ) → index (unfold f start) (succ n) ≡ f (index (unfold f start) n) indexAndUnfold f s zero = refl indexAndUnfold f s (succ n) = indexAndUnfold f (f s) n
algebraic-stack_agda0000_doc_6520
{- Properties and Formulae about Cardinality This file contains: - Relation between abstract properties and cardinality in special cases; - Combinatorial formulae, namely, cardinality of A+B, A×B, ΣAB, ΠAB, etc; - A general form of Pigeonhole Principle; - Maximal value of numerical function on finite sets; - Set truncation of FinSet is equivalent to ℕ; - FinProp is equivalent to Bool. -} {-# OPTIONS --safe #-} module Cubical.Data.FinSet.Cardinality where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Transport open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.HITs.SetTruncation as Set open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Unit open import Cubical.Data.Empty as Empty open import Cubical.Data.Bool hiding (_≟_) open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.Fin using (Fin-inj) open import Cubical.Data.Fin.LehmerCode as LehmerCode open import Cubical.Data.SumFin open import Cubical.Data.FinSet.Base open import Cubical.Data.FinSet.Properties open import Cubical.Data.FinSet.FiniteChoice open import Cubical.Data.FinSet.Constructors open import Cubical.Data.FinSet.Induction hiding (_+_) open import Cubical.Relation.Nullary open import Cubical.Functions.Fibration open import Cubical.Functions.Embedding open import Cubical.Functions.Surjection private variable ℓ ℓ' ℓ'' : Level n : ℕ X : FinSet ℓ Y : FinSet ℓ' -- cardinality of finite sets ∣≃card∣ : (X : FinSet ℓ) → ∥ X .fst ≃ Fin (card X) ∥ ∣≃card∣ X = X .snd .snd -- cardinality is invariant under equivalences cardEquiv : (X : FinSet ℓ)(Y : FinSet ℓ') → ∥ X .fst ≃ Y .fst ∥ → card X ≡ card Y cardEquiv X Y e = Prop.rec (isSetℕ _ _) (λ p → Fin-inj _ _ (ua p)) (∣ invEquiv (SumFin≃Fin _) ∣ ⋆̂ ∣invEquiv∣ (∣≃card∣ X) ⋆̂ e ⋆̂ ∣≃card∣ Y ⋆̂ ∣ SumFin≃Fin _ ∣) cardInj : card X ≡ card Y → ∥ X .fst ≃ Y .fst ∥ cardInj {X = X} {Y = Y} p = ∣≃card∣ X ⋆̂ ∣ pathToEquiv (cong Fin p) ∣ ⋆̂ ∣invEquiv∣ (∣≃card∣ Y) cardReflection : card X ≡ n → ∥ X .fst ≃ Fin n ∥ cardReflection {X = X} = cardInj {X = X} {Y = _ , isFinSetFin} card≡MereEquiv : (card X ≡ card Y) ≡ ∥ X .fst ≃ Y .fst ∥ card≡MereEquiv {X = X} {Y = Y} = hPropExt (isSetℕ _ _) isPropPropTrunc (cardInj {X = X} {Y = Y}) (cardEquiv X Y) -- special properties about specific cardinality module _ {X : FinSet ℓ} where card≡0→isEmpty : card X ≡ 0 → ¬ X .fst card≡0→isEmpty p x = Prop.rec isProp⊥ (λ e → subst Fin p (e .fst x)) (∣≃card∣ X) card>0→isInhab : card X > 0 → ∥ X .fst ∥ card>0→isInhab p = Prop.map (λ e → invEq e (Fin>0→isInhab _ p)) (∣≃card∣ X) card>1→hasNonEqualTerm : card X > 1 → ∥ Σ[ a ∈ X .fst ] Σ[ b ∈ X .fst ] ¬ a ≡ b ∥ card>1→hasNonEqualTerm p = Prop.map (λ e → e .fst (Fin>1→hasNonEqualTerm _ p .fst) , e .fst (Fin>1→hasNonEqualTerm _ p .snd .fst) , Fin>1→hasNonEqualTerm _ p .snd .snd ∘ invEq (congEquiv e)) (∣invEquiv∣ (∣≃card∣ X)) card≡1→isContr : card X ≡ 1 → isContr (X .fst) card≡1→isContr p = Prop.rec isPropIsContr (λ e → isOfHLevelRespectEquiv 0 (invEquiv (e ⋆ substEquiv Fin p)) isContrSumFin1) (∣≃card∣ X) card≤1→isProp : card X ≤ 1 → isProp (X .fst) card≤1→isProp p = Prop.rec isPropIsProp (λ e → isOfHLevelRespectEquiv 1 (invEquiv e) (Fin≤1→isProp (card X) p)) (∣≃card∣ X) card≡n : card X ≡ n → ∥ X ≡ 𝔽in n ∥ card≡n {n = n} p = Prop.map (λ e → (λ i → ua e i , isProp→PathP {B = λ j → isFinSet (ua e j)} (λ _ → isPropIsFinSet) (X .snd) (𝔽in n .snd) i )) (∣≃card∣ X ⋆̂ ∣ pathToEquiv (cong Fin p) ⋆ invEquiv (𝔽in≃Fin n) ∣) card≡0 : card X ≡ 0 → X ≡ 𝟘 card≡0 p = propTruncIdempotent≃ (isOfHLevelRespectEquiv 1 (FinSet≡ X 𝟘) (isOfHLevel≡ 1 (card≤1→isProp (subst (λ a → a ≤ 1) (sym p) (≤-solver 0 1))) (isProp⊥*))) .fst (card≡n p) card≡1 : card X ≡ 1 → X ≡ 𝟙 card≡1 p = propTruncIdempotent≃ (isOfHLevelRespectEquiv 1 (FinSet≡ X 𝟙) (isOfHLevel≡ 1 (card≤1→isProp (subst (λ a → a ≤ 1) (sym p) (≤-solver 1 1))) (isPropUnit*))) .fst (Prop.map (λ q → q ∙ 𝔽in1≡𝟙) (card≡n p)) module _ (X : FinSet ℓ) where isEmpty→card≡0 : ¬ X .fst → card X ≡ 0 isEmpty→card≡0 p = Prop.rec (isSetℕ _ _) (λ e → sym (isEmpty→Fin≡0 _ (p ∘ invEq e))) (∣≃card∣ X) isInhab→card>0 : ∥ X .fst ∥ → card X > 0 isInhab→card>0 = Prop.rec2 m≤n-isProp (λ p x → isInhab→Fin>0 _ (p .fst x)) (∣≃card∣ X) hasNonEqualTerm→card>1 : {a b : X. fst} → ¬ a ≡ b → card X > 1 hasNonEqualTerm→card>1 {a = a} {b = b} q = Prop.rec m≤n-isProp (λ p → hasNonEqualTerm→Fin>1 _ (p .fst a) (p .fst b) (q ∘ invEq (congEquiv p))) (∣≃card∣ X) isContr→card≡1 : isContr (X .fst) → card X ≡ 1 isContr→card≡1 p = cardEquiv X (_ , isFinSetUnit) ∣ isContr→≃Unit p ∣ isProp→card≤1 : isProp (X .fst) → card X ≤ 1 isProp→card≤1 p = isProp→Fin≤1 (card X) (Prop.rec isPropIsProp (λ e → isOfHLevelRespectEquiv 1 e p) (∣≃card∣ X)) {- formulae about cardinality -} -- results to be used in direct induction on FinSet card𝟘 : card (𝟘 {ℓ}) ≡ 0 card𝟘 {ℓ = ℓ} = isEmpty→card≡0 (𝟘 {ℓ}) (Empty.rec*) card𝟙 : card (𝟙 {ℓ}) ≡ 1 card𝟙 {ℓ = ℓ} = isContr→card≡1 (𝟙 {ℓ}) isContrUnit* card𝔽in : (n : ℕ) → card (𝔽in {ℓ} n) ≡ n card𝔽in {ℓ = ℓ} n = cardEquiv (𝔽in {ℓ} n) (_ , isFinSetFin) ∣ 𝔽in≃Fin n ∣ -- addition/product formula module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where card+ : card (_ , isFinSet⊎ X Y) ≡ card X + card Y card+ = refl card× : card (_ , isFinSet× X Y) ≡ card X · card Y card× = refl -- total summation/product of numerical functions from finite sets module _ (X : FinSet ℓ) (f : X .fst → ℕ) where sum : ℕ sum = card (_ , isFinSetΣ X (λ x → Fin (f x) , isFinSetFin)) prod : ℕ prod = card (_ , isFinSetΠ X (λ x → Fin (f x) , isFinSetFin)) module _ (f : 𝟘 {ℓ} .fst → ℕ) where sum𝟘 : sum 𝟘 f ≡ 0 sum𝟘 = isEmpty→card≡0 (_ , isFinSetΣ 𝟘 (λ x → Fin (f x) , isFinSetFin)) ((invEquiv (Σ-cong-equiv-fst (invEquiv 𝟘≃Empty)) ⋆ ΣEmpty _) .fst) prod𝟘 : prod 𝟘 f ≡ 1 prod𝟘 = isContr→card≡1 (_ , isFinSetΠ 𝟘 (λ x → Fin (f x) , isFinSetFin)) (isContrΠ⊥*) module _ (f : 𝟙 {ℓ} .fst → ℕ) where sum𝟙 : sum 𝟙 f ≡ f tt* sum𝟙 = cardEquiv (_ , isFinSetΣ 𝟙 (λ x → Fin (f x) , isFinSetFin)) (Fin (f tt*) , isFinSetFin) ∣ Σ-contractFst isContrUnit* ∣ prod𝟙 : prod 𝟙 f ≡ f tt* prod𝟙 = cardEquiv (_ , isFinSetΠ 𝟙 (λ x → Fin (f x) , isFinSetFin)) (Fin (f tt*) , isFinSetFin) ∣ ΠUnit* _ ∣ module _ (X : FinSet ℓ ) (Y : FinSet ℓ') (f : X .fst ⊎ Y .fst → ℕ) where sum⊎ : sum (_ , isFinSet⊎ X Y) f ≡ sum X (f ∘ inl) + sum Y (f ∘ inr) sum⊎ = cardEquiv (_ , isFinSetΣ (_ , isFinSet⊎ X Y) (λ x → Fin (f x) , isFinSetFin)) (_ , isFinSet⊎ (_ , isFinSetΣ X (λ x → Fin (f (inl x)) , isFinSetFin)) (_ , isFinSetΣ Y (λ y → Fin (f (inr y)) , isFinSetFin))) ∣ Σ⊎≃ ∣ ∙ card+ (_ , isFinSetΣ X (λ x → Fin (f (inl x)) , isFinSetFin)) (_ , isFinSetΣ Y (λ y → Fin (f (inr y)) , isFinSetFin)) prod⊎ : prod (_ , isFinSet⊎ X Y) f ≡ prod X (f ∘ inl) · prod Y (f ∘ inr) prod⊎ = cardEquiv (_ , isFinSetΠ (_ , isFinSet⊎ X Y) (λ x → Fin (f x) , isFinSetFin)) (_ , isFinSet× (_ , isFinSetΠ X (λ x → Fin (f (inl x)) , isFinSetFin)) (_ , isFinSetΠ Y (λ y → Fin (f (inr y)) , isFinSetFin))) ∣ Π⊎≃ ∣ ∙ card× (_ , isFinSetΠ X (λ x → Fin (f (inl x)) , isFinSetFin)) (_ , isFinSetΠ Y (λ y → Fin (f (inr y)) , isFinSetFin)) -- technical lemma module _ (n : ℕ)(f : 𝔽in {ℓ} (1 + n) .fst → ℕ) where sum𝔽in1+n : sum (𝔽in (1 + n)) f ≡ f (inl tt*) + sum (𝔽in n) (f ∘ inr) sum𝔽in1+n = sum⊎ 𝟙 (𝔽in n) f ∙ (λ i → sum𝟙 (f ∘ inl) i + sum (𝔽in n) (f ∘ inr)) prod𝔽in1+n : prod (𝔽in (1 + n)) f ≡ f (inl tt*) · prod (𝔽in n) (f ∘ inr) prod𝔽in1+n = prod⊎ 𝟙 (𝔽in n) f ∙ (λ i → prod𝟙 (f ∘ inl) i · prod (𝔽in n) (f ∘ inr)) sumConst𝔽in : (n : ℕ)(f : 𝔽in {ℓ} n .fst → ℕ)(c : ℕ)(h : (x : 𝔽in n .fst) → f x ≡ c) → sum (𝔽in n) f ≡ c · n sumConst𝔽in 0 f c _ = sum𝟘 f ∙ 0≡m·0 c sumConst𝔽in (suc n) f c h = sum𝔽in1+n n f ∙ (λ i → h (inl tt*) i + sumConst𝔽in n (f ∘ inr) c (h ∘ inr) i) ∙ sym (·-suc c n) prodConst𝔽in : (n : ℕ)(f : 𝔽in {ℓ} n .fst → ℕ)(c : ℕ)(h : (x : 𝔽in n .fst) → f x ≡ c) → prod (𝔽in n) f ≡ c ^ n prodConst𝔽in 0 f c _ = prod𝟘 f prodConst𝔽in (suc n) f c h = prod𝔽in1+n n f ∙ (λ i → h (inl tt*) i · prodConst𝔽in n (f ∘ inr) c (h ∘ inr) i) module _ (X : FinSet ℓ) (f : X .fst → ℕ) (c : ℕ)(h : (x : X .fst) → f x ≡ c) where sumConst : sum X f ≡ c · card X sumConst = elimProp (λ X → (f : X .fst → ℕ)(c : ℕ)(h : (x : X .fst) → f x ≡ c) → sum X f ≡ c · (card X)) (λ X → isPropΠ3 (λ _ _ _ → isSetℕ _ _)) (λ n f c h → sumConst𝔽in n f c h ∙ (λ i → c · card𝔽in {ℓ = ℓ} n (~ i))) X f c h prodConst : prod X f ≡ c ^ card X prodConst = elimProp (λ X → (f : X .fst → ℕ)(c : ℕ)(h : (x : X .fst) → f x ≡ c) → prod X f ≡ c ^ (card X)) (λ X → isPropΠ3 (λ _ _ _ → isSetℕ _ _)) (λ n f c h → prodConst𝔽in n f c h ∙ (λ i → c ^ card𝔽in {ℓ = ℓ} n (~ i))) X f c h private ≡≤ : {m n l k r s : ℕ} → m ≤ n → l ≤ k → r ≡ m + l → s ≡ n + k → r ≤ s ≡≤ {m = m} {l = l} {k = k} p q u v = subst2 (_≤_) (sym u) (sym v) (≤-+-≤ p q) ≡< : {m n l k r s : ℕ} → m < n → l ≤ k → r ≡ m + l → s ≡ n + k → r < s ≡< {m = m} {l = l} {k = k} p q u v = subst2 (_<_) (sym u) (sym v) (<-+-≤ p q) sum≤𝔽in : (n : ℕ)(f g : 𝔽in {ℓ} n .fst → ℕ)(h : (x : 𝔽in n .fst) → f x ≤ g x) → sum (𝔽in n) f ≤ sum (𝔽in n) g sum≤𝔽in 0 f g _ = subst2 (_≤_) (sym (sum𝟘 f)) (sym (sum𝟘 g)) ≤-refl sum≤𝔽in (suc n) f g h = ≡≤ (h (inl tt*)) (sum≤𝔽in n (f ∘ inr) (g ∘ inr) (h ∘ inr)) (sum𝔽in1+n n f) (sum𝔽in1+n n g) sum<𝔽in : (n : ℕ)(f g : 𝔽in {ℓ} n .fst → ℕ)(t : ∥ 𝔽in {ℓ} n .fst ∥)(h : (x : 𝔽in n .fst) → f x < g x) → sum (𝔽in n) f < sum (𝔽in n) g sum<𝔽in {ℓ = ℓ} 0 _ _ t _ = Empty.rec (<→≢ (isInhab→card>0 (𝔽in 0) t) (card𝟘 {ℓ = ℓ})) sum<𝔽in (suc n) f g t h = ≡< (h (inl tt*)) (sum≤𝔽in n (f ∘ inr) (g ∘ inr) (<-weaken ∘ h ∘ inr)) (sum𝔽in1+n n f) (sum𝔽in1+n n g) module _ (X : FinSet ℓ) (f g : X .fst → ℕ) where module _ (h : (x : X .fst) → f x ≡ g x) where sum≡ : sum X f ≡ sum X g sum≡ i = sum X (λ x → h x i) prod≡ : prod X f ≡ prod X g prod≡ i = prod X (λ x → h x i) module _ (h : (x : X .fst) → f x ≤ g x) where sum≤ : sum X f ≤ sum X g sum≤ = elimProp (λ X → (f g : X .fst → ℕ)(h : (x : X .fst) → f x ≤ g x) → sum X f ≤ sum X g) (λ X → isPropΠ3 (λ _ _ _ → m≤n-isProp)) sum≤𝔽in X f g h module _ (t : ∥ X .fst ∥) (h : (x : X .fst) → f x < g x) where sum< : sum X f < sum X g sum< = elimProp (λ X → (f g : X .fst → ℕ)(t : ∥ X .fst ∥)(h : (x : X .fst) → f x < g x) → sum X f < sum X g) (λ X → isPropΠ4 (λ _ _ _ _ → m≤n-isProp)) sum<𝔽in X f g t h module _ (X : FinSet ℓ) (f : X .fst → ℕ) where module _ (c : ℕ)(h : (x : X .fst) → f x ≤ c) where sumBounded : sum X f ≤ c · card X sumBounded = subst (λ a → sum X f ≤ a) (sumConst X (λ _ → c) c (λ _ → refl)) (sum≤ X f (λ _ → c) h) module _ (c : ℕ)(h : (x : X .fst) → f x ≥ c) where sumBoundedBelow : sum X f ≥ c · card X sumBoundedBelow = subst (λ a → sum X f ≥ a) (sumConst X (λ _ → c) c (λ _ → refl)) (sum≤ X (λ _ → c) f h) -- some combinatorial identities module _ (X : FinSet ℓ ) (Y : X .fst → FinSet ℓ') where cardΣ : card (_ , isFinSetΣ X Y) ≡ sum X (λ x → card (Y x)) cardΣ = cardEquiv (_ , isFinSetΣ X Y) (_ , isFinSetΣ X (λ x → Fin (card (Y x)) , isFinSetFin)) (Prop.map Σ-cong-equiv-snd (choice X (λ x → Y x .fst ≃ Fin (card (Y x))) (λ x → ∣≃card∣ (Y x)))) cardΠ : card (_ , isFinSetΠ X Y) ≡ prod X (λ x → card (Y x)) cardΠ = cardEquiv (_ , isFinSetΠ X Y) (_ , isFinSetΠ X (λ x → Fin (card (Y x)) , isFinSetFin)) (Prop.map equivΠCod (choice X (λ x → Y x .fst ≃ Fin (card (Y x))) (λ x → ∣≃card∣ (Y x)))) module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where card→ : card (_ , isFinSet→ X Y) ≡ card Y ^ card X card→ = cardΠ X (λ _ → Y) ∙ prodConst X (λ _ → card Y) (card Y) (λ _ → refl) module _ (X : FinSet ℓ ) where cardAut : card (_ , isFinSetAut X) ≡ LehmerCode.factorial (card X) cardAut = refl module _ (X : FinSet ℓ ) (Y : FinSet ℓ') (f : X .fst → Y .fst) where sumCardFiber : card X ≡ sum Y (λ y → card (_ , isFinSetFiber X Y f y)) sumCardFiber = cardEquiv X (_ , isFinSetΣ Y (λ y → _ , isFinSetFiber X Y f y)) ∣ totalEquiv f ∣ ∙ cardΣ Y (λ y → _ , isFinSetFiber X Y f y) -- the pigeonhole priniple -- a logical lemma private ¬ΠQ→¬¬ΣP : (X : Type ℓ) (P : X → Type ℓ' ) (Q : X → Type ℓ'') (r : (x : X) → ¬ (P x) → Q x) → ¬ ((x : X) → Q x) → ¬ ¬ (Σ X P) ¬ΠQ→¬¬ΣP _ _ _ r g f = g (λ x → r x (λ p → f (x , p))) module _ (f : X .fst → Y .fst) (n : ℕ) where fiberCount : ((y : Y .fst) → card (_ , isFinSetFiber X Y f y) ≤ n) → card X ≤ n · card Y fiberCount h = subst (λ a → a ≤ _) (sym (sumCardFiber X Y f)) (sumBounded Y (λ y → card (_ , isFinSetFiber X Y f y)) n h) module _ (p : card X > n · card Y) where ¬¬pigeonHole : ¬ ¬ (Σ[ y ∈ Y .fst ] card (_ , isFinSetFiber X Y f y) > n) ¬¬pigeonHole = ¬ΠQ→¬¬ΣP (Y .fst) (λ y → _ > n) (λ y → _ ≤ n) (λ y → <-asym') (λ h → <-asym p (fiberCount h)) pigeonHole : ∥ Σ[ y ∈ Y .fst ] card (_ , isFinSetFiber X Y f y) > n ∥ pigeonHole = PeirceLaw (isFinSetΣ Y (λ _ → _ , isDecProp→isFinSet m≤n-isProp (≤Dec _ _))) ¬¬pigeonHole -- a special case, proved in Cubical.Data.Fin.Properties -- a technical lemma private Σ∥P∥→∥ΣP∥ : (X : Type ℓ)(P : X → Type ℓ') → Σ X (λ x → ∥ P x ∥) → ∥ Σ X P ∥ Σ∥P∥→∥ΣP∥ _ _ (x , p) = Prop.map (λ q → x , q) p module _ (f : X .fst → Y .fst) (p : card X > card Y) where fiberNonEqualTerm : Σ[ y ∈ Y .fst ] card (_ , isFinSetFiber X Y f y) > 1 → ∥ Σ[ y ∈ Y .fst ] Σ[ a ∈ fiber f y ] Σ[ b ∈ fiber f y ] ¬ a ≡ b ∥ fiberNonEqualTerm (y , p) = Σ∥P∥→∥ΣP∥ _ _ (y , card>1→hasNonEqualTerm {X = _ , isFinSetFiber X Y f y} p) nonInj : Σ[ y ∈ Y .fst ] Σ[ a ∈ fiber f y ] Σ[ b ∈ fiber f y ] ¬ a ≡ b → Σ[ x ∈ X .fst ] Σ[ x' ∈ X .fst ] (¬ x ≡ x') × (f x ≡ f x') nonInj (y , (x , p) , (x' , q) , t) .fst = x nonInj (y , (x , p) , (x' , q) , t) .snd .fst = x' nonInj (y , (x , p) , (x' , q) , t) .snd .snd .fst u = t (λ i → u i , isSet→SquareP (λ i j → isFinSet→isSet (Y .snd)) p q (cong f u) refl i) nonInj (y , (x , p) , (x' , q) , t) .snd .snd .snd = p ∙ sym q pigeonHole' : ∥ Σ[ x ∈ X .fst ] Σ[ x' ∈ X .fst ] (¬ x ≡ x') × (f x ≡ f x') ∥ pigeonHole' = Prop.map nonInj (Prop.rec isPropPropTrunc fiberNonEqualTerm (pigeonHole {X = X} {Y = Y} f 1 (subst (λ a → _ > a) (sym (·-identityˡ _)) p))) -- cardinality and injection/surjection module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where module _ (f : X .fst → Y .fst) where card↪Inequality' : isEmbedding f → card X ≤ card Y card↪Inequality' p = subst2 (_≤_) (sym (sumCardFiber X Y f)) (·-identityˡ _) (sumBounded Y (λ y → card (_ , isFinSetFiber X Y f y)) 1 (λ y → isProp→card≤1 (_ , isFinSetFiber X Y f y) (isEmbedding→hasPropFibers p y))) card↠Inequality' : isSurjection f → card X ≥ card Y card↠Inequality' p = subst2 (_≥_) (sym (sumCardFiber X Y f)) (·-identityˡ _) (sumBoundedBelow Y (λ y → card (_ , isFinSetFiber X Y f y)) 1 (λ y → isInhab→card>0 (_ , isFinSetFiber X Y f y) (p y))) card↪Inequality : ∥ X .fst ↪ Y .fst ∥ → card X ≤ card Y card↪Inequality = Prop.rec m≤n-isProp (λ (f , p) → card↪Inequality' f p) card↠Inequality : ∥ X .fst ↠ Y .fst ∥ → card X ≥ card Y card↠Inequality = Prop.rec m≤n-isProp (λ (f , p) → card↠Inequality' f p) -- maximal value of numerical functions module _ (X : Type ℓ) (f : X → ℕ) where module _ (x : X) where isMax : Type ℓ isMax = (x' : X) → f x' ≤ f x isPropIsMax : isProp isMax isPropIsMax = isPropΠ (λ _ → m≤n-isProp) uniqMax : (x x' : X) → isMax x → isMax x' → f x ≡ f x' uniqMax x x' p q = ≤-antisym (q x) (p x') ΣMax : Type ℓ ΣMax = Σ[ x ∈ X ] isMax x ∃Max : Type ℓ ∃Max = ∥ ΣMax ∥ ∃Max→maxValue : ∃Max → ℕ ∃Max→maxValue = SetElim.rec→Set isSetℕ (λ (x , p) → f x) (λ (x , p) (x' , q) → uniqMax x x' p q) -- lemma about maximal value on sum type module _ (X : Type ℓ ) (Y : Type ℓ') (f : X ⊎ Y → ℕ) where ΣMax⊎-case : ((x , p) : ΣMax X (f ∘ inl))((y , q) : ΣMax Y (f ∘ inr)) → Trichotomy (f (inl x)) (f (inr y)) → ΣMax (X ⊎ Y) f ΣMax⊎-case (x , p) (y , q) (lt r) .fst = inr y ΣMax⊎-case (x , p) (y , q) (lt r) .snd (inl x') = ≤-trans (p x') (<-weaken r) ΣMax⊎-case (x , p) (y , q) (lt r) .snd (inr y') = q y' ΣMax⊎-case (x , p) (y , q) (eq r) .fst = inr y ΣMax⊎-case (x , p) (y , q) (eq r) .snd (inl x') = ≤-trans (p x') (_ , r) ΣMax⊎-case (x , p) (y , q) (eq r) .snd (inr y') = q y' ΣMax⊎-case (x , p) (y , q) (gt r) .fst = inl x ΣMax⊎-case (x , p) (y , q) (gt r) .snd (inl x') = p x' ΣMax⊎-case (x , p) (y , q) (gt r) .snd (inr y') = ≤-trans (q y') (<-weaken r) ∃Max⊎ : ∃Max X (f ∘ inl) → ∃Max Y (f ∘ inr) → ∃Max (X ⊎ Y) f ∃Max⊎ = Prop.map2 (λ p q → ΣMax⊎-case p q (_≟_ _ _)) ΣMax𝟙 : (f : 𝟙 {ℓ} .fst → ℕ) → ΣMax _ f ΣMax𝟙 f .fst = tt* ΣMax𝟙 f .snd x = _ , cong f (sym (isContrUnit* .snd x)) ∃Max𝟙 : (f : 𝟙 {ℓ} .fst → ℕ) → ∃Max _ f ∃Max𝟙 f = ∣ ΣMax𝟙 f ∣ ∃Max𝔽in : (n : ℕ)(f : 𝔽in {ℓ} n .fst → ℕ)(x : ∥ 𝔽in {ℓ} n .fst ∥) → ∃Max _ f ∃Max𝔽in {ℓ = ℓ} 0 _ x = Empty.rec (<→≢ (isInhab→card>0 (𝔽in 0) x) (card𝟘 {ℓ = ℓ})) ∃Max𝔽in 1 f _ = subst (λ X → (f : X .fst → ℕ) → ∃Max _ f) (sym 𝔽in1≡𝟙) ∃Max𝟙 f ∃Max𝔽in (suc (suc n)) f _ = ∃Max⊎ (𝟙 .fst) (𝔽in (suc n) .fst) f (∃Max𝟙 (f ∘ inl)) (∃Max𝔽in (suc n) (f ∘ inr) ∣ * {n = n} ∣) module _ (X : FinSet ℓ) (f : X .fst → ℕ) (x : ∥ X .fst ∥) where ∃MaxFinSet : ∃Max _ f ∃MaxFinSet = elimProp (λ X → (f : X .fst → ℕ)(x : ∥ X .fst ∥) → ∃Max _ f) (λ X → isPropΠ2 (λ _ _ → isPropPropTrunc)) ∃Max𝔽in X f x maxValue : ℕ maxValue = ∃Max→maxValue _ _ ∃MaxFinSet {- some formal consequences of card -} -- card induces equivalence from set truncation of FinSet to natural numbers open Iso Iso-∥FinSet∥₂-ℕ : Iso ∥ FinSet ℓ ∥₂ ℕ Iso-∥FinSet∥₂-ℕ .fun = Set.rec isSetℕ card Iso-∥FinSet∥₂-ℕ .inv n = ∣ 𝔽in n ∣₂ Iso-∥FinSet∥₂-ℕ .rightInv n = card𝔽in n Iso-∥FinSet∥₂-ℕ {ℓ = ℓ} .leftInv = Set.elim {B = λ X → ∣ 𝔽in (Set.rec isSetℕ card X) ∣₂ ≡ X} (λ X → isSetPathImplicit) (elimProp (λ X → ∣ 𝔽in (card X) ∣₂ ≡ ∣ X ∣₂) (λ X → squash₂ _ _) (λ n i → ∣ 𝔽in (card𝔽in {ℓ = ℓ} n i) ∣₂)) -- this is the definition of natural numbers you learned from school ∥FinSet∥₂≃ℕ : ∥ FinSet ℓ ∥₂ ≃ ℕ ∥FinSet∥₂≃ℕ = isoToEquiv Iso-∥FinSet∥₂-ℕ -- FinProp is equivalent to Bool Bool→FinProp : Bool → FinProp ℓ Bool→FinProp true = 𝟙 , isPropUnit* Bool→FinProp false = 𝟘 , isProp⊥* injBool→FinProp : (x y : Bool) → Bool→FinProp {ℓ = ℓ} x ≡ Bool→FinProp y → x ≡ y injBool→FinProp true true _ = refl injBool→FinProp false false _ = refl injBool→FinProp true false p = Empty.rec (snotz (cong (card ∘ fst) p)) injBool→FinProp false true p = Empty.rec (znots (cong (card ∘ fst) p)) isEmbeddingBool→FinProp : isEmbedding (Bool→FinProp {ℓ = ℓ}) isEmbeddingBool→FinProp = injEmbedding isSetBool isSetFinProp (λ {x} {y} → injBool→FinProp x y) card-case : (P : FinProp ℓ) → {n : ℕ} → card (P .fst) ≡ n → Σ[ x ∈ Bool ] Bool→FinProp x ≡ P card-case P {n = 0} p = false , FinProp≡ (𝟘 , isProp⊥*) P .fst (cong fst (sym (card≡0 {X = P .fst} p))) card-case P {n = 1} p = true , FinProp≡ (𝟙 , isPropUnit*) P .fst (cong fst (sym (card≡1 {X = P .fst} p))) card-case P {n = suc (suc n)} p = Empty.rec (¬-<-zero (pred-≤-pred (subst (λ a → a ≤ 1) p (isProp→card≤1 (P .fst) (P .snd))))) isSurjectionBool→FinProp : isSurjection (Bool→FinProp {ℓ = ℓ}) isSurjectionBool→FinProp P = ∣ card-case P refl ∣ FinProp≃Bool : FinProp ℓ ≃ Bool FinProp≃Bool = invEquiv (Bool→FinProp , isEmbedding×isSurjection→isEquiv (isEmbeddingBool→FinProp , isSurjectionBool→FinProp)) isFinSetFinProp : isFinSet (FinProp ℓ) isFinSetFinProp = EquivPresIsFinSet (invEquiv FinProp≃Bool) isFinSetBool -- a more computationally efficient version of equivalence type module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where isFinSet≃Eff' : Dec (card X ≡ card Y) → isFinSet (X .fst ≃ Y .fst) isFinSet≃Eff' (yes p) = factorial (card Y) , Prop.elim2 (λ _ _ → isPropPropTrunc {A = _ ≃ Fin _}) (λ p1 p2 → ∣ equivComp (p1 ⋆ pathToEquiv (cong Fin p) ⋆ SumFin≃Fin _) (p2 ⋆ SumFin≃Fin _) ⋆ lehmerEquiv ⋆ lehmerFinEquiv ⋆ invEquiv (SumFin≃Fin _) ∣) (∣≃card∣ X) (∣≃card∣ Y) isFinSet≃Eff' (no ¬p) = 0 , ∣ uninhabEquiv (¬p ∘ cardEquiv X Y ∘ ∣_∣) (idfun _) ∣ isFinSet≃Eff : isFinSet (X .fst ≃ Y .fst) isFinSet≃Eff = isFinSet≃Eff' (discreteℕ _ _) module _ (X Y : FinSet ℓ) where isFinSetType≡Eff : isFinSet (X .fst ≡ Y .fst) isFinSetType≡Eff = EquivPresIsFinSet (invEquiv univalence) (isFinSet≃Eff X Y)
algebraic-stack_agda0000_doc_6521
------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable setoid membership over vectors. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (DecSetoid) module Data.Vec.Membership.DecSetoid {c ℓ} (DS : DecSetoid c ℓ) where open import Data.Vec using (Vec) open import Data.Vec.Relation.Unary.Any using (any) open import Relation.Nullary using (Dec) open DecSetoid DS renaming (Carrier to A) ------------------------------------------------------------------------ -- Re-export contents of propositional membership open import Data.Vec.Membership.Setoid setoid public ------------------------------------------------------------------------ -- Other operations infix 4 _∈?_ _∈?_ : ∀ x {n} (xs : Vec A n) → Dec (x ∈ xs) x ∈? xs = any (x ≟_) xs
algebraic-stack_agda0000_doc_6522
module _ where open import Agda.Primitive.Cubical postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-}
algebraic-stack_agda0000_doc_6523
module #8 where {- Define multiplication and exponentiation using recN. Verify that (N, +, 0, ×, 1) is a semiring using only indN. You will probably also need to use symmetry and transitivity of equality, Lemmas 2.1.1 and 2.1.2. -} open import Data.Nat recₙ : ∀{c}{C : Set c} → C → (ℕ → C → C) → ℕ → C recₙ c₀ cₛ zero = c₀ recₙ c₀ cₛ (suc n) = cₛ n (recₙ c₀ cₛ n) mul-recₙ : ℕ → ℕ → ℕ mul-recₙ n = recₙ 0 (λ _ z → z + n) exp-recₙ : ℕ → ℕ → ℕ exp-recₙ n = recₙ 1 (λ _ z → z * n) ind-ℕ : ∀{k}{C : ℕ → Set k} → C zero → ((n : ℕ) → C n → C (suc n)) → (n : ℕ) → C n ind-ℕ c0 cs zero = c0 ind-ℕ c0 cs (suc n) = cs n (ind-ℕ c0 cs n) record Semiring (X : Set) : Set where field ε : X _⊕_ : X → X → X _⊛_ : X → X → X open Semiring {{...}} public natIsSemiring : Semiring ℕ natIsSemiring = record { ε = zero ; _⊕_ = _+_ ; _⊛_ = _*_ } {- Semiring Laws Follow -}
algebraic-stack_agda0000_doc_6524
--------------------------------------- -- Pairs of sets --------------------------------------- {-# OPTIONS --allow-unsolved-meta #-} module sv20.assign2.SetTheory.Pairs where -- Everything involving pairs, be them unordered -- or ordered pairs. Also the definition of power set -- and cartesian product between sets. open import sv20.assign2.SetTheory.Logic open import sv20.assign2.SetTheory.Algebra open import sv20.assign2.SetTheory.Subset open import sv20.assign2.SetTheory.ZAxioms -- Pairs, justified by the pair axiom _ₚ_ : 𝓢 → 𝓢 → 𝓢 x ₚ y = proj₁ (pair x y) pair-d : (x y : 𝓢) → ∀ {z} → z ∈ x ₚ y ⇔ (z ≡ x ∨ z ≡ y) pair-d x y = proj₂ _ (pair x y) -- Both ∧-projections pair-d₁ : (x y : 𝓢) → ∀ {z} → z ∈ x ₚ y → (z ≡ x ∨ z ≡ y) pair-d₁ x y = ∧-proj₁ (pair-d x y) pair-d₂ : (x y : 𝓢) → ∀ {z} → (z ≡ x ∨ z ≡ y) → z ∈ x ₚ y pair-d₂ x y = ∧-proj₂ (pair-d x y) pair-p₁ : (x y : 𝓢) → x ₚ y ≡ y ₚ x pair-p₁ x y = equalitySubset (x ₚ y) (y ₚ x) (p₁ , p₂) where p₁ : (z : 𝓢) → z ∈ x ₚ y → z ∈ y ₚ x p₁ z z∈x,y = pair-d₂ y x (∨-sym _ _ (pair-d₁ x y z∈x,y)) p₂ : (z : 𝓢) → z ∈ y ₚ x → z ∈ x ₚ y p₂ z z∈y,x = pair-d₂ x y (∨-sym _ _ (pair-d₁ y x z∈y,x)) singleton : 𝓢 → 𝓢 singleton x = x ₚ x singletonp : (x : 𝓢) → ∀ {z} → z ∈ singleton x → z ≡ x singletonp x x₁ = ∨-idem _ (pair-d₁ x x x₁) singletonp₂ : (x : 𝓢) → x ∈ singleton x singletonp₂ x = pair-d₂ x x (inj₁ refl) singletonp₃ : (x : 𝓢) → ∀ {y} → x ≡ y → x ∈ singleton y singletonp₃ x x≡y = pair-d₂ _ _ (inj₁ x≡y) singletonp₄ : (x y : 𝓢) → x ∈ singleton y → x ∩ singleton y ≡ ∅ singletonp₄ x y h = {!!} where p₁ : x ≡ y p₁ = singletonp _ h p₂ : x ∩ singleton x ≡ ∅ p₂ = {!!} pair-prop-helper₁ : {a b c : 𝓢} → a ≡ b ∨ a ≡ c → a ≢ b → a ≡ c pair-prop-helper₁ (inj₁ a≡b) h = ⊥-elim (h a≡b) pair-prop-helper₁ (inj₂ refl) _ = refl pair-prop-helper₂ : {a b : 𝓢} → a ≢ b → b ≢ a pair-prop-helper₂ h b≡a = h (sym _ _ b≡a) -- Theorem 44, p. 31 (Suppes, 1972). pair-prop : (x y u v : 𝓢) → x ₚ y ≡ u ₚ v → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) pair-prop x y u v eq = ∨-e _ _ _ (pem (x ≡ y)) h-x≡y h-x≢y where u∈u,v : u ∈ (u ₚ v) u∈u,v = ∨-prop₁ (pair-d₂ u v) refl u∈x,y : u ∈ (x ₚ y) u∈x,y = memberEq u (u ₚ v) (x ₚ y) (u∈u,v , (sym _ _ eq)) disj₁ : u ≡ x ∨ u ≡ y disj₁ = pair-d₁ _ _ u∈x,y v∈u,v : v ∈ (u ₚ v) v∈u,v = ∨-prop₂ (pair-d₂ u v) refl v∈x,y : v ∈ (x ₚ y) v∈x,y = memberEq v (u ₚ v) (x ₚ y) (v∈u,v , (sym _ _ eq)) disj₂ : v ≡ x ∨ v ≡ y disj₂ = pair-d₁ _ _ v∈x,y x∈x,y : x ∈ (x ₚ y) x∈x,y = ∨-prop₁ (pair-d₂ x y) refl x∈u,v : x ∈ (u ₚ v) x∈u,v = memberEq x (x ₚ y) (u ₚ v) (x∈x,y , eq) disj₃ : x ≡ u ∨ x ≡ v disj₃ = pair-d₁ _ _ x∈u,v y∈x,y : y ∈ (x ₚ y) y∈x,y = ∨-prop₂ (pair-d₂ x y) refl y∈u,v : y ∈ (u ₚ v) y∈u,v = memberEq y (x ₚ y) (u ₚ v) (y∈x,y , eq) disj₄ : y ≡ u ∨ y ≡ v disj₄ = pair-d₁ _ _ y∈u,v h-x≡y : x ≡ y → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h-x≡y eq₂ = inj₁ (x≡u , v≡y) where x≡u : u ≡ x x≡u = ∨-idem _ disj-aux where disj-aux : u ≡ x ∨ u ≡ x disj-aux = subs _ (sym _ _ eq₂) disj₁ v≡y : v ≡ y v≡y = ∨-idem _ disj-aux where disj-aux : v ≡ y ∨ v ≡ y disj-aux = subs _ eq₂ disj₂ h-x≢y : x ≢ y → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h-x≢y ¬eq = ∨-e _ _ _ (pem (x ≡ u)) h₁ h₂ where h₁ : x ≡ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₁ x≡u = ∨-e _ _ _ (pem (y ≡ u)) h₁₁ h₁₂ where h₁₁ : y ≡ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₁₁ y≡u = ⊥-elim (¬eq (trans x≡u (sym _ _ y≡u))) h₁₂ : y ≢ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₁₂ h = inj₁ (sym _ _ x≡u , sym _ _ (pair-prop-helper₁ disj₄ h)) h₂ : x ≢ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₂ h = inj₂ (sym _ _ (pair-prop-helper₁ disj₃ h) , (pair-prop-helper₁ disj₁ (pair-prop-helper₂ h))) -- Theorem 45, p. 32 (Suppes 1960). singleton-eq : (x y : 𝓢) → singleton x ≡ singleton y → x ≡ y singleton-eq x y eq = sym _ _ (∧-proj₁ (∨-idem _ aux)) where aux : ((y ≡ x) ∧ (y ≡ x)) ∨ ((y ≡ x) ∧ (y ≡ x)) aux = pair-prop x x y y eq singleton-⊆ : (x A : 𝓢) → x ∈ A → singleton x ⊆ A singleton-⊆ x A x∈A t t∈xₛ = subs _ (sym _ _ (singletonp _ t∈xₛ)) x∈A prop-p₂ : (y z : 𝓢) → y ₚ z ≡ singleton y ∪ singleton z prop-p₂ y z = equalitySubset _ _ (p₁ , p₂) where p₁ : (x : 𝓢) → x ∈ y ₚ z → x ∈ singleton y ∪ singleton z p₁ _ h = ∪-d₂ _ _ (∨-prop₅ (pair-d₁ _ _ h) (singletonp₃ _) (singletonp₃ _)) p₂ : (x : 𝓢) → x ∈ singleton y ∪ singleton z → x ∈ y ₚ z p₂ x h = pair-d₂ _ _ (∨-prop₅ (∪-d₁ _ _ h) (singletonp _) (singletonp _)) -- Ordered pairs _ₒ_ : 𝓢 → 𝓢 → 𝓢 x ₒ y = singleton x ₚ (x ₚ y) -- Just an abvreviation for next theorem abv₁ : 𝓢 → 𝓢 → 𝓢 → 𝓢 → Set abv₁ u x v y = (u ₚ u ≡ x ₚ x ∧ u ₚ v ≡ x ₚ y) ∨ (u ₚ v ≡ x ₚ x ∧ u ₚ u ≡ x ₚ y) -- Theorem 46, p. 32 (Suppes). ord-p : (x y u v : 𝓢) → x ₒ y ≡ u ₒ v → x ≡ u ∧ y ≡ v ord-p x y u v eq = ∨-e _ _ _ aux a→c b→c where aux : (singleton u ≡ singleton x ∧ (u ₚ v) ≡ (x ₚ y)) ∨ ((u ₚ v) ≡ singleton x ∧ singleton u ≡ (x ₚ y)) aux = pair-prop _ _ _ _ eq a→c : singleton u ≡ singleton x ∧ u ₚ v ≡ x ₚ y → x ≡ u ∧ y ≡ v a→c (eqₚ , eqₛ) = x≡u , y≡v where x≡u : x ≡ u x≡u = singleton-eq _ _ (sym _ _ eqₚ) p₁ : (x ≡ u ∧ y ≡ v) ∨ (y ≡ u ∧ x ≡ v) p₁ = pair-prop _ _ _ _ eqₛ p₂ : x ≡ u ∧ y ≡ v → y ≡ v p₂ (h₁ , h₂) = h₂ p₃ : y ≡ u ∧ x ≡ v → y ≡ v p₃ (h₁ , h₂) = subs (λ w → w ≡ v) x≡y h₂ where x≡y : x ≡ y x≡y = subs (λ w → x ≡ w) (sym y u h₁) x≡u y≡v : y ≡ v y≡v = ∨-e _ _ _ p₁ p₂ p₃ b→c : u ₚ v ≡ singleton x ∧ singleton u ≡ x ₚ y → x ≡ u ∧ y ≡ v b→c (h₁ , h₂) = p₃ , subs (λ w → w ≡ v) p₈ p₄ where p₁ : (x ≡ u ∧ x ≡ v) ∨ (x ≡ u ∧ x ≡ v) p₁ = pair-prop _ _ _ _ h₁ p₂ : x ≡ u ∧ x ≡ v p₂ = ∨-idem _ p₁ p₃ : x ≡ u p₃ = ∧-proj₁ p₂ p₄ : x ≡ v p₄ = ∧-proj₂ p₂ p₅ : (x ≡ u ∧ y ≡ u) ∨ (y ≡ u ∧ x ≡ u) p₅ = pair-prop _ _ _ _ h₂ p₆ : x ≡ u ∧ y ≡ u p₆ = ∨-∧ p₅ p₇ : y ≡ u p₇ = ∧-proj₂ p₆ p₈ : x ≡ y p₈ = subs (λ w → w ≡ y) (sym _ _ p₃) (sym _ _ p₇) -- Power sets 𝓟_ : 𝓢 → 𝓢 𝓟 x = proj₁ (pow x) -- Theorem 86, p. 47 (Suppes 1960) 𝓟-d : (x : 𝓢) → ∀ {z} → z ∈ (𝓟 x) ⇔ z ⊆ x 𝓟-d x = proj₂ _ (pow x) -- Both projections. 𝓟-d₁ : (x : 𝓢) → ∀ {z} → z ∈ (𝓟 x) → z ⊆ x 𝓟-d₁ _ = ∧-proj₁ (𝓟-d _) 𝓟-d₂ : (x : 𝓢) → ∀ {z} → z ⊆ x → z ∈ (𝓟 x) 𝓟-d₂ _ = ∧-proj₂ (𝓟-d _) -- Theorem 87, p. 47 (Suppes 1960). A∈𝓟A : (A : 𝓢) → A ∈ 𝓟 A A∈𝓟A A = 𝓟-d₂ A subsetOfItself -- Theorem 91, p. 48 (Suppes 1960). ⊆𝓟 : (A B : 𝓢) → A ⊆ B ⇔ 𝓟 A ⊆ 𝓟 B ⊆𝓟 A B = iₗ , iᵣ where iₗ : A ⊆ B → 𝓟 A ⊆ 𝓟 B iₗ A⊆B t t∈𝓟A = 𝓟-d₂ _ t⊆B where t⊆A : t ⊆ A t⊆A = 𝓟-d₁ A t∈𝓟A t⊆B : t ⊆ B t⊆B = trans-⊆ _ _ _ (t⊆A , A⊆B) iᵣ : 𝓟 A ⊆ 𝓟 B → A ⊆ B iᵣ 𝓟A⊆𝓟B t t∈A = 𝓟-d₁ _ A∈𝓟B _ t∈A where A∈𝓟B : A ∈ 𝓟 B A∈𝓟B = 𝓟A⊆𝓟B _ (A∈𝓟A _) -- Theorem 92, p. 48 (Suppes 1960). 𝓟∪ : (A B : 𝓢) → (𝓟 A) ∪ (𝓟 B) ⊆ 𝓟 (A ∪ B) 𝓟∪ A B t t∈𝓟A∪𝓟B = 𝓟-d₂ _ t⊆A∪B where ∪₁ : t ∈ 𝓟 A ∨ t ∈ 𝓟 B ∪₁ = ∪-d₁ _ _ t∈𝓟A∪𝓟B p : t ⊆ A ∨ t ⊆ B p = ∨-prop₄ aux₁ (𝓟-d₁ _) where aux₁ : t ⊆ A ∨ t ∈ 𝓟 B aux₁ = ∨-prop₃ ∪₁ (𝓟-d₁ _) t⊆A∪B : t ⊆ A ∪ B t⊆A∪B = ∪-prop₂ _ _ _ p -- Cartesian Product. First we have to prove some things using -- the subset axiom in order to be able to define cartesian products. -- Two abvreviations to make sub₄ shorter. abv₂ : 𝓢 → 𝓢 → 𝓢 → Set abv₂ z A B = z ∈ 𝓟 (𝓟 (A ∪ B)) abv₃ : 𝓢 → 𝓢 → 𝓢 → Set abv₃ z A B = ∃ (λ y → ∃ (λ w → (y ∈ A ∧ w ∈ B) ∧ z ≡ y ₒ w)) --Instance of the subset axiom. sub₄ : (A B : 𝓢) → ∃ (λ C → {z : 𝓢} → z ∈ C ⇔ abv₂ z A B ∧ abv₃ z A B) sub₄ A B = sub (λ x → abv₃ x A B) (𝓟 (𝓟 (A ∪ B))) -- Proved inside theorem 95, p. 49 (Suppes 1960) prop₁ : (A B x : 𝓢) → abv₃ x A B → abv₂ x A B prop₁ A B x (y , (z , ((y∈A , z∈B) , eqo))) = subs _ (sym _ _ eqo) yₒz∈𝓟𝓟A∪B where yₛ⊆A : singleton y ⊆ A yₛ⊆A = singleton-⊆ _ _ y∈A yₛ⊆A∪B : singleton y ⊆ A ∪ B yₛ⊆A∪B t t∈yₛ = trans-⊆ _ _ _ (yₛ⊆A , (∪-prop _ _)) _ t∈yₛ zₛ⊆B : singleton z ⊆ B zₛ⊆B = singleton-⊆ _ _ z∈B zₛ⊆A∪B : singleton z ⊆ A ∪ B zₛ⊆A∪B t t∈zₛ = trans-⊆ _ _ _ (zₛ⊆B , ∪-prop₃ _ _) _ t∈zₛ y,z⊆A∪B : y ₚ z ⊆ A ∪ B y,z⊆A∪B t t∈y,z = ∪-prop₄ _ _ _ yₛ⊆A∪B zₛ⊆A∪B _ p where p : t ∈ singleton y ∪ singleton z p = subs (λ w → t ∈ w) (prop-p₂ y z) t∈y,z yₛ∈𝓟A∪B : singleton y ∈ 𝓟 (A ∪ B) yₛ∈𝓟A∪B = 𝓟-d₂ _ yₛ⊆A∪B y,z∈𝓟A∪B : y ₚ z ∈ 𝓟 (A ∪ B) y,z∈𝓟A∪B = 𝓟-d₂ _ y,z⊆A∪B yₒz⊆𝓟A∪B : y ₒ z ⊆ 𝓟 (A ∪ B) yₒz⊆𝓟A∪B t t∈o = ∨-e _ _ _ (pair-d₁ _ _ t∈o) i₁ i₂ where i₁ : t ≡ singleton y → t ∈ 𝓟 (A ∪ B) i₁ eq = subs _ (sym t (singleton y) eq) yₛ∈𝓟A∪B i₂ : t ≡ y ₚ z → t ∈ 𝓟 (A ∪ B) i₂ eq = subs _ (sym t (y ₚ z) eq) y,z∈𝓟A∪B yₒz∈𝓟𝓟A∪B : y ₒ z ∈ 𝓟 (𝓟 (A ∪ B)) yₒz∈𝓟𝓟A∪B = 𝓟-d₂ _ yₒz⊆𝓟A∪B Aᵤ : 𝓢 → 𝓢 → 𝓢 Aᵤ A B = proj₁ (sub₄ A B) -- Theorem 95, p 49 (Suppes 1960). pAᵤ : (A B : 𝓢) → {z : 𝓢} → z ∈ (Aᵤ A B) ⇔ abv₂ z A B ∧ abv₃ z A B pAᵤ A B = proj₂ _ (sub₄ A B) crts : (A B : 𝓢) → ∃ (λ C → (z : 𝓢) → z ∈ C ⇔ abv₃ z A B) crts A B = (Aᵤ A B) , (λ w → ⇔-p₂ w (pAᵤ A B) (prop₁ A B w)) _X_ : 𝓢 → 𝓢 → 𝓢 A X B = proj₁ (crts A B) -- Theorem 97, p. 50 (Suppes 1960). crts-p : (A B x : 𝓢) → x ∈ A X B ⇔ abv₃ x A B crts-p A B x = proj₂ _ (crts A B) x -- Both projections crts-p₁ : (A B x : 𝓢) → x ∈ A X B → abv₃ x A B crts-p₁ A B x = ∧-proj₁ (crts-p A B x) crts-p₂ : (A B x : 𝓢) → abv₃ x A B → x ∈ A X B crts-p₂ A B x = ∧-proj₂ (crts-p A B x) crts-d₁ : (x y A B : 𝓢) → x ₒ y ∈ A X B → x ∈ A ∧ y ∈ B crts-d₁ x y A B h = (subs (λ w → w ∈ A) (sym _ _ eq₁) aux∈A) , subs (λ w → w ∈ B) (sym _ _ eq₂) aux₂∈B where foo : ∃ (λ z → ∃ (λ w → (z ∈ A ∧ w ∈ B) ∧ (x ₒ y) ≡ (z ₒ w))) foo = crts-p₁ A B (x ₒ y) h aux : 𝓢 aux = proj₁ foo aux-p : ∃ (λ w → (aux ∈ A ∧ w ∈ B) ∧ (x ₒ y) ≡ (aux ₒ w)) aux-p = proj₂ _ foo aux₂ : 𝓢 aux₂ = proj₁ aux-p aux₂-p : (aux ∈ A ∧ aux₂ ∈ B) ∧ (x ₒ y) ≡ (aux ₒ aux₂) aux₂-p = proj₂ _ aux-p aux∈A : aux ∈ A aux∈A = ∧-proj₁ (∧-proj₁ aux₂-p) aux₂∈B : aux₂ ∈ B aux₂∈B = ∧-proj₂ (∧-proj₁ aux₂-p) eq : x ₒ y ≡ aux ₒ aux₂ eq = ∧-proj₂ aux₂-p eqs : x ≡ aux ∧ y ≡ aux₂ eqs = ord-p _ _ _ _ eq eq₁ : x ≡ aux eq₁ = ∧-proj₁ eqs eq₂ : y ≡ aux₂ eq₂ = ∧-proj₂ eqs -- References -- -- Suppes, Patrick (1960). Axiomatic Set Theory. -- The University Series in Undergraduate Mathematics. -- D. Van Nostrand Company, inc. -- -- Enderton, Herbert B. (1977). Elements of Set Theory. -- Academic Press Inc.
algebraic-stack_agda0000_doc_6525
postulate A : Set I : ..(_ : A) → Set R : A → Set f : ∀ ..(x : A) (r : R x) → I x -- can now be used here ^
algebraic-stack_agda0000_doc_6526
module examplesPaperJFP.VariableListForDispatchOnly where open import Data.Product hiding (map) open import Data.List open import NativeIO open import StateSizedIO.GUI.WxBindingsFFI open import Relation.Binary.PropositionalEquality data VarList : Set₁ where [] : VarList addVar : (A : Set) → Var A → VarList → VarList prod : VarList → Set prod [] = Unit prod (addVar A v []) = A prod (addVar A v l) = A × prod l takeVar : (l : VarList) → NativeIO (prod l) takeVar [] = nativeReturn unit takeVar (addVar A v []) = nativeTakeVar {A} v native>>= λ a → nativeReturn a takeVar (addVar A v (addVar B v′ l)) = nativeTakeVar {A} v native>>= λ a → takeVar (addVar B v′ l) native>>= λ rest → nativeReturn ( a , rest ) putVar : (l : VarList) → prod l → NativeIO Unit putVar [] _ = nativeReturn unit putVar (addVar A v []) a = nativePutVar {A} v a putVar (addVar A v (addVar B v′ l)) (a , rest) = nativePutVar {A} v a native>>= λ _ → putVar (addVar B v′ l) rest native>>= nativeReturn dispatch : (l : VarList) → (prod l → NativeIO (prod l)) → NativeIO Unit dispatch l f = takeVar l native>>= λ a → f a native>>= λ a₁ → putVar l a₁ dispatchList : (l : VarList) → List (prod l → NativeIO (prod l)) → NativeIO Unit dispatchList l [] = nativeReturn unit dispatchList l (p ∷ rest) = dispatch l p native>>= λ _ → dispatchList l rest
algebraic-stack_agda0000_doc_6527
{-# OPTIONS --without-K #-} open import lib.Basics {- The generic nonrecursive higher inductive type with one point constructor and one paths constructor. -} module lib.types.Generic1HIT {i j} (A : Type i) (B : Type j) (g h : B → A) where {- data T : Type where cc : A → T pp : (b : B) → cc (f' b) ≡ cc (g b) -} module _ where private data #T-aux : Type (lmax i j) where #cc : A → #T-aux data #T : Type (lmax i j) where #t : #T-aux → (Unit → Unit) → #T T : Type _ T = #T cc : A → T cc a = #t (#cc a) _ postulate -- HIT pp : (b : B) → cc (g b) == cc (h b) module Elim {k} {P : T → Type k} (cc* : (a : A) → P (cc a)) (pp* : (b : B) → cc* (g b) == cc* (h b) [ P ↓ pp b ]) where f : Π T P f = f-aux phantom where f-aux : Phantom pp* → Π T P f-aux phantom (#t (#cc a) _) = cc* a postulate -- HIT pp-β : (b : B) → apd f (pp b) == pp* b open Elim public using () renaming (f to elim) module Rec {k} {C : Type k} (cc* : A → C) (pp* : (b : B) → cc* (g b) == cc* (h b)) where private module M = Elim cc* (λ b → ↓-cst-in (pp* b)) f : T → C f = M.f pp-β : (b : B) → ap f (pp b) == pp* b pp-β b = apd=cst-in {f = f} (M.pp-β b) module RecType {k} (C : A → Type k) (D : (b : B) → C (g b) ≃ C (h b)) where open Rec C (ua ∘ D) public coe-pp-β : (b : B) (d : C (g b)) → coe (ap f (pp b)) d == –> (D b) d coe-pp-β b d = coe (ap f (pp b)) d =⟨ pp-β _ |in-ctx (λ u → coe u d) ⟩ coe (ua (D b)) d =⟨ coe-β (D b) d ⟩ –> (D b) d ∎ -- Dependent path in [P] over [pp b] module _ {b : B} {d : C (g b)} {d' : C (h b)} where ↓-pp-in : –> (D b) d == d' → d == d' [ f ↓ pp b ] ↓-pp-in p = from-transp f (pp b) (coe-pp-β b d ∙' p) ↓-pp-out : d == d' [ f ↓ pp b ] → –> (D b) d == d' ↓-pp-out p = ! (coe-pp-β b d) ∙ to-transp p ↓-pp-β : (q : –> (D b) d == d') → ↓-pp-out (↓-pp-in q) == q ↓-pp-β q = ↓-pp-out (↓-pp-in q) =⟨ idp ⟩ ! (coe-pp-β b d) ∙ to-transp (from-transp f (pp b) (coe-pp-β b d ∙' q)) =⟨ to-transp-β f (pp b) (coe-pp-β b d ∙' q) |in-ctx (λ u → ! (coe-pp-β b d) ∙ u) ⟩ ! (coe-pp-β b d) ∙ (coe-pp-β b d ∙' q) =⟨ lem (coe-pp-β b d) q ⟩ q ∎ where lem : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → ! p ∙ (p ∙' q) == q lem idp idp = idp
algebraic-stack_agda0000_doc_15104
-- Problem 2: Multiplication for matrices (from the matrix algebra DSL). module P2 where -- 2a: Type the variables in the text. -- (This answer uses Agda syntax, but that is not required.) postulate Nat : Set postulate V : Nat -> Set -> Set postulate Fin : Nat -> Set Op : Set -> Set Op a = a -> a -> a postulate sum : {n : Nat} {a : Set} -> Op a -> V n a -> a postulate zipWith : {n : Nat} {a : Set} -> Op a -> V n a -> V n a -> V n a data M (m n : Nat) (a : Set) : Set where matrix : (Fin m -> Fin n -> a) -> M m n a record Dummy (a : Set) : Set where field m : Nat n : Nat A : M m n a p : Nat B : M n p a i : Fin m j : Fin p -- 2b: Type |mul| and |proj| postulate proj : {m n : Nat} {a : Set} -> Fin m -> Fin n -> M m n a -> a mul : {m n p : Nat} {a : Set} -> Op a -> Op a -> M m n a -> M n p a -> M m p a -- 2c: Implement |mul|. postulate row : {m n : Nat} {a : Set} -> Fin m -> M m n a -> V n a col : {m n : Nat} {a : Set} -> Fin n -> M m n a -> V m a mul addE mulE A B = matrix (\i j -> sum addE (zipWith mulE (row i A) (col j B)))
algebraic-stack_agda0000_doc_15105
{-# OPTIONS --without-K --safe #-} module C where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality open import Singleton infixr 70 _×ᵤ_ infixr 60 _+ᵤₗ_ infixr 60 _+ᵤᵣ_ infixr 50 _⊚_ ------------------------------------------------------------------------------ -- Pi data 𝕌 : Set ⟦_⟧ : 𝕌 → Σ[ A ∈ Set ] A data _⟷_ : 𝕌 → 𝕌 → Set data 𝕌 where 𝟙 : 𝕌 _+ᵤₗ_ : 𝕌 → 𝕌 → 𝕌 _+ᵤᵣ_ : 𝕌 → 𝕌 → 𝕌 _×ᵤ_ : 𝕌 → 𝕌 → 𝕌 Singᵤ : 𝕌 → 𝕌 Recipᵤ : 𝕌 → 𝕌 ⟦ 𝟙 ⟧ = ⊤ , tt ⟦ T₁ ×ᵤ T₂ ⟧ = zip _×_ _,_ ⟦ T₁ ⟧ ⟦ T₂ ⟧ ⟦ T₁ +ᵤₗ T₂ ⟧ = zip _⊎_ (λ x _ → inj₁ x) ⟦ T₁ ⟧ ⟦ T₂ ⟧ ⟦ T₁ +ᵤᵣ T₂ ⟧ = zip _⊎_ (λ _ y → inj₂ y) ⟦ T₁ ⟧ ⟦ T₂ ⟧ ⟦ Singᵤ T ⟧ = < uncurry Singleton , (λ y → proj₂ y , refl) > ⟦ T ⟧ ⟦ Recipᵤ T ⟧ = < uncurry Recip , (λ _ _ → tt) > ⟦ T ⟧ data _⟷_ where swap₊₁ : {t₁ t₂ : 𝕌} → t₁ +ᵤₗ t₂ ⟷ t₂ +ᵤᵣ t₁ swap₊₂ : {t₁ t₂ : 𝕌} → t₁ +ᵤᵣ t₂ ⟷ t₂ +ᵤₗ t₁ assocl₊₁ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤₗ (t₂ +ᵤₗ t₃) ⟷ (t₁ +ᵤₗ t₂) +ᵤₗ t₃ assocl₊₂ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤₗ (t₂ +ᵤᵣ t₃) ⟷ (t₁ +ᵤₗ t₂) +ᵤₗ t₃ assocl₊₃ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤᵣ (t₂ +ᵤₗ t₃) ⟷ (t₁ +ᵤᵣ t₂) +ᵤₗ t₃ assocl₊₄ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃) ⟷ (t₁ +ᵤₗ t₂) +ᵤᵣ t₃ assocl₊₅ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃) ⟷ (t₁ +ᵤᵣ t₂) +ᵤᵣ t₃ assocr₊₁ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) +ᵤₗ t₃ ⟷ t₁ +ᵤₗ (t₂ +ᵤᵣ t₃) assocr₊₂ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) +ᵤₗ t₃ ⟷ t₁ +ᵤₗ (t₂ +ᵤₗ t₃) assocr₊₃ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤᵣ t₂) +ᵤₗ t₃ ⟷ t₁ +ᵤᵣ (t₂ +ᵤₗ t₃) assocr₊₄ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) +ᵤᵣ t₃ ⟷ t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃) assocr₊₅ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤᵣ t₂) +ᵤᵣ t₃ ⟷ t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃) unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ⟷ t uniti⋆l : {t : 𝕌} → t ⟷ 𝟙 ×ᵤ t unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ⟷ t uniti⋆r : {t : 𝕌} → t ⟷ t ×ᵤ 𝟙 swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ⟷ t₂ ×ᵤ t₁ assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) ×ᵤ t₃ assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ⟷ t₁ ×ᵤ (t₂ ×ᵤ t₃) dist₁ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤₗ (t₂ ×ᵤ t₃) dist₂ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤᵣ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤᵣ (t₂ ×ᵤ t₃) factor₁ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤₗ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤₗ t₂) ×ᵤ t₃ factor₂ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤᵣ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤᵣ t₂) ×ᵤ t₃ distl₁ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤₗ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤₗ (t₁ ×ᵤ t₃) distl₂ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤᵣ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤᵣ (t₁ ×ᵤ t₃) factorl₁ : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤₗ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤₗ t₃) factorl₂ : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤᵣ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤᵣ t₃) id⟷ : {t : 𝕌} → t ⟷ t _⊚_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕₁_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤₗ t₂ ⟷ t₃ +ᵤₗ t₄) _⊕₂_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤᵣ t₂ ⟷ t₃ +ᵤᵣ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ ×ᵤ t₂ ⟷ t₃ ×ᵤ t₄) -- monad return : (T : 𝕌) → T ⟷ Singᵤ T join : (T : 𝕌) → Singᵤ (Singᵤ T) ⟷ Singᵤ T unjoin : (T : 𝕌) → Singᵤ T ⟷ Singᵤ (Singᵤ T) tensorl : (T₁ T₂ : 𝕌) → (Singᵤ T₁ ×ᵤ T₂) ⟷ Singᵤ (T₁ ×ᵤ T₂) tensorr : (T₁ T₂ : 𝕌) → (T₁ ×ᵤ Singᵤ T₂) ⟷ Singᵤ (T₁ ×ᵤ T₂) tensor : (T₁ T₂ : 𝕌) → (Singᵤ T₁ ×ᵤ Singᵤ T₂) ⟷ Singᵤ (T₁ ×ᵤ T₂) untensor : (T₁ T₂ : 𝕌) → Singᵤ (T₁ ×ᵤ T₂) ⟷ (Singᵤ T₁ ×ᵤ Singᵤ T₂) plusl : (T₁ T₂ : 𝕌) → (Singᵤ T₁ +ᵤₗ T₂) ⟷ Singᵤ (T₁ +ᵤₗ T₂) plusr : (T₁ T₂ : 𝕌) → (T₁ +ᵤᵣ Singᵤ T₂) ⟷ Singᵤ (T₁ +ᵤᵣ T₂) -- comonad extract : (T : 𝕌) → Singᵤ T ⟷ T cojoin : (T : 𝕌) → Singᵤ T ⟷ Singᵤ (Singᵤ T) counjoin : (T : 𝕌) → Singᵤ (Singᵤ T) ⟷ Singᵤ T cotensorl : (T₁ T₂ : 𝕌) → Singᵤ (T₁ ×ᵤ T₂) ⟷ (Singᵤ T₁ ×ᵤ T₂) cotensorr : (T₁ T₂ : 𝕌) → Singᵤ (T₁ ×ᵤ T₂) ⟷ (T₁ ×ᵤ Singᵤ T₂) coplusl : (T₁ T₂ : 𝕌) → Singᵤ (T₁ +ᵤₗ T₂) ⟷ (Singᵤ T₁ +ᵤₗ T₂) coplusr : (T₁ T₂ : 𝕌) → Singᵤ (T₁ +ᵤᵣ T₂) ⟷ (T₁ +ᵤᵣ Singᵤ T₂) -- both? Singᵤ : (T₁ T₂ : 𝕌) → (T₁ ⟷ T₂) → (Singᵤ T₁ ⟷ Singᵤ T₂) -- eta/epsilon η : (T : 𝕌) → 𝟙 ⟷ (Singᵤ T ×ᵤ Recipᵤ T) ε : (T : 𝕌) → (Singᵤ T ×ᵤ Recipᵤ T) ⟷ 𝟙 !_ : {t₁ t₂ : 𝕌} → t₁ ⟷ t₂ → t₂ ⟷ t₁ ! swap₊₁ = swap₊₂ ! swap₊₂ = swap₊₁ ! assocl₊₁ = assocr₊₂ ! assocl₊₂ = assocr₊₁ ! assocl₊₃ = assocr₊₃ ! assocl₊₄ = assocr₊₄ ! assocl₊₅ = assocr₊₅ ! assocr₊₁ = assocl₊₂ ! assocr₊₂ = assocl₊₁ ! assocr₊₃ = assocl₊₃ ! assocr₊₄ = assocl₊₄ ! assocr₊₅ = assocl₊₅ ! unite⋆l = uniti⋆l ! uniti⋆l = unite⋆l ! unite⋆r = uniti⋆r ! uniti⋆r = unite⋆r ! swap⋆ = swap⋆ ! assocl⋆ = assocr⋆ ! assocr⋆ = assocl⋆ ! dist₁ = factor₁ ! dist₂ = factor₂ ! factor₁ = dist₁ ! factor₂ = dist₂ ! distl₁ = factorl₁ ! distl₂ = factorl₂ ! factorl₁ = distl₁ ! factorl₂ = distl₂ ! id⟷ = id⟷ ! (c ⊚ c₁) = (! c₁) ⊚ (! c) ! (c ⊕₁ c₁) = (! c) ⊕₁ (! c₁) ! (c ⊕₂ c₁) = (! c) ⊕₂ (! c₁) ! (c ⊗ c₁) = (! c) ⊗ (! c₁) ! return T = extract T ! join T = return (Singᵤ T) ! unjoin T = join T ! tensorl T₁ T₂ = cotensorl T₁ T₂ ! tensorr T₁ T₂ = cotensorr T₁ T₂ ! tensor T₁ T₂ = untensor T₁ T₂ ! untensor T₁ T₂ = tensor T₁ T₂ ! plusl T₁ T₂ = coplusl T₁ T₂ ! plusr T₁ T₂ = coplusr T₁ T₂ ! extract T = return T ! cojoin T = join T ! counjoin T = return (Singᵤ T) ! cotensorl T₁ T₂ = tensorl T₁ T₂ ! cotensorr T₁ T₂ = tensorr T₁ T₂ ! coplusl T₁ T₂ = plusl T₁ T₂ ! coplusr T₁ T₂ = plusr T₁ T₂ ! Singᵤ T₁ T₂ c = Singᵤ T₂ T₁ (! c) ! η T = ε T ! ε T = η T
algebraic-stack_agda0000_doc_15106
{-# OPTIONS --universe-polymorphism #-} module Categories.Product where open import Level open import Function using () renaming (_∘_ to _∙_) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap) open import Categories.Category private map⁎ : ∀ {a b p q} {A : Set a} {B : A → Set b} {P : A → Set p} {Q : {x : A} → P x → B x → Set q} → (f : (x : A) → B x) → (∀ {x} → (y : P x) → Q y (f x)) → (v : Σ A P) → Σ (B (proj₁ v)) (Q (proj₂ v)) map⁎ f g (x , y) = (f x , g y) map⁎′ : ∀ {a b p q} {A : Set a} {B : A → Set b} {P : Set p} {Q : P → Set q} → (f : (x : A) → B x) → ((x : P) → Q x) → (v : A × P) → B (proj₁ v) × Q (proj₂ v) map⁎′ f g (x , y) = (f x , g y) zipWith : ∀ {a b c p q r s} {A : Set a} {B : Set b} {C : Set c} {P : A → Set p} {Q : B → Set q} {R : C → Set r} {S : (x : C) → R x → Set s} (_∙_ : A → B → C) → (_∘_ : ∀ {x y} → P x → Q y → R (x ∙ y)) → (_*_ : (x : C) → (y : R x) → S x y) → (x : Σ A P) → (y : Σ B Q) → S (proj₁ x ∙ proj₁ y) (proj₂ x ∘ proj₂ y) zipWith _∙_ _∘_ _*_ (a , p) (b , q) = (a ∙ b) * (p ∘ q) syntax zipWith f g h = f -< h >- g Product : ∀ {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) Product C D = record { Obj = C.Obj × D.Obj ; _⇒_ = C._⇒_ -< _×_ >- D._⇒_ ; _≡_ = C._≡_ -< _×_ >- D._≡_ ; _∘_ = zip C._∘_ D._∘_ ; id = C.id , D.id ; assoc = C.assoc , D.assoc ; identityˡ = C.identityˡ , D.identityˡ ; identityʳ = C.identityʳ , D.identityʳ ; equiv = record { refl = C.Equiv.refl , D.Equiv.refl ; sym = map C.Equiv.sym D.Equiv.sym ; trans = zip C.Equiv.trans D.Equiv.trans } ; ∘-resp-≡ = zip C.∘-resp-≡ D.∘-resp-≡ } where module C = Category C module D = Category D open import Categories.Functor using (Functor; module Functor) infixr 2 _※_ _※_ : ∀ {o ℓ e o′₁ ℓ′₁ e′₁ o′₂ ℓ′₂ e′₂} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {D₂ : Category o′₂ ℓ′₂ e′₂} → (F : Functor C D₁) → (G : Functor C D₂) → Functor C (Product D₁ D₂) F ※ G = record { F₀ = < F.F₀ , G.F₀ > ; F₁ = < F.F₁ , G.F₁ > ; identity = F.identity , G.identity ; homomorphism = F.homomorphism , G.homomorphism ; F-resp-≡ = < F.F-resp-≡ , G.F-resp-≡ > } where module F = Functor F module G = Functor G infixr 2 _⁂_ _⁂_ : ∀ {o₁ ℓ₁ e₁ o′₁ ℓ′₁ e′₁ o₂ ℓ₂ e₂ o′₂ ℓ′₂ e′₂} {C₁ : Category o₁ ℓ₁ e₁} {D₁ : Category o′₁ ℓ′₁ e′₁} → {C₂ : Category o₂ ℓ₂ e₂} {D₂ : Category o′₂ ℓ′₂ e′₂} → (F₁ : Functor C₁ D₁) → (F₂ : Functor C₂ D₂) → Functor (Product C₁ C₂) (Product D₁ D₂) F ⁂ G = record { F₀ = map F.F₀ G.F₀ ; F₁ = map F.F₁ G.F₁ ; identity = F.identity , G.identity ; homomorphism = F.homomorphism , G.homomorphism ; F-resp-≡ = map F.F-resp-≡ G.F-resp-≡ } where module F = Functor F module G = Functor G open import Categories.NaturalTransformation using (NaturalTransformation; module NaturalTransformation) infixr 2 _⁂ⁿ_ _⁂ⁿ_ : ∀ {o₁ ℓ₁ e₁ o′₁ ℓ′₁ e′₁ o₂ ℓ₂ e₂ o′₂ ℓ′₂ e′₂} {C₁ : Category o₁ ℓ₁ e₁} {D₁ : Category o′₁ ℓ′₁ e′₁} → {C₂ : Category o₂ ℓ₂ e₂} {D₂ : Category o′₂ ℓ′₂ e′₂} → {F₁ G₁ : Functor C₁ D₁} {F₂ G₂ : Functor C₂ D₂} → (α : NaturalTransformation F₁ G₁) → (β : NaturalTransformation F₂ G₂) → NaturalTransformation (F₁ ⁂ F₂) (G₁ ⁂ G₂) α ⁂ⁿ β = record { η = map⁎′ α.η β.η; commute = map⁎′ α.commute β.commute } where module α = NaturalTransformation α module β = NaturalTransformation β infixr 2 _※ⁿ_ _※ⁿ_ : ∀ {o ℓ e o′₁ ℓ′₁ e′₁} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {F₁ G₁ : Functor C D₁} (α : NaturalTransformation F₁ G₁) → ∀ {o′₂ ℓ′₂ e′₂} {D₂ : Category o′₂ ℓ′₂ e′₂} {F₂ G₂ : Functor C D₂} (β : NaturalTransformation F₂ G₂) → NaturalTransformation (F₁ ※ F₂) (G₁ ※ G₂) α ※ⁿ β = record { η = < α.η , β.η >; commute = < α.commute , β.commute > } where module α = NaturalTransformation α module β = NaturalTransformation β assocˡ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} → (C₁ : Category o₁ ℓ₁ e₁) (C₂ : Category o₂ ℓ₂ e₂) (C₃ : Category o₃ ℓ₃ e₃) → Functor (Product (Product C₁ C₂) C₃) (Product C₁ (Product C₂ C₃)) assocˡ C₁ C₂ C₃ = record { F₀ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > > ; F₁ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > > ; identity = C₁.Equiv.refl , C₂.Equiv.refl , C₃.Equiv.refl ; homomorphism = C₁.Equiv.refl , C₂.Equiv.refl , C₃.Equiv.refl ; F-resp-≡ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > > } where module C₁ = Category C₁ module C₂ = Category C₂ module C₃ = Category C₃ assocʳ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} → (C₁ : Category o₁ ℓ₁ e₁) (C₂ : Category o₂ ℓ₂ e₂) (C₃ : Category o₃ ℓ₃ e₃) → Functor (Product C₁ (Product C₂ C₃)) (Product (Product C₁ C₂) C₃) assocʳ C₁ C₂ C₃ = record { F₀ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ > ; F₁ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ > ; identity = (C₁.Equiv.refl , C₂.Equiv.refl) , C₃.Equiv.refl ; homomorphism = (C₁.Equiv.refl , C₂.Equiv.refl) , C₃.Equiv.refl ; F-resp-≡ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ > } where module C₁ = Category C₁ module C₂ = Category C₂ module C₃ = Category C₃ πˡ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor (Product C D) C πˡ {C = C} = record { F₀ = proj₁; F₁ = proj₁; identity = refl ; homomorphism = refl; F-resp-≡ = proj₁ } where open Category.Equiv C using (refl) πʳ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor (Product C D) D πʳ {D = D} = record { F₀ = proj₂; F₁ = proj₂; identity = refl ; homomorphism = refl; F-resp-≡ = proj₂ } where open Category.Equiv D using (refl) Swap : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor (Product D C) (Product C D) Swap {C = C} {D = D} = (record { F₀ = swap ; F₁ = swap ; identity = C.Equiv.refl , D.Equiv.refl ; homomorphism = C.Equiv.refl , D.Equiv.refl ; F-resp-≡ = swap }) where module C = Category C module D = Category D
algebraic-stack_agda0000_doc_15107
open import Nat open import Prelude open import List open import core open import judgemental-erase open import sensibility open import moveerase module checks where -- these three judmgements lift the action semantics judgements to relate -- an expression and a list of pair-wise composable actions to the -- expression that's produced by tracing through the action semantics for -- each element in that list. -- -- we do this just by appealing to the original judgement with -- constraints on the terms to enforce composability. -- -- in all three cases, we assert that the empty list of actions -- constitutes a reflexivity step, so when you run out of actions to -- preform you have to be where you wanted to be. -- -- note that the only difference between the types for each judgement and -- the original action semantics is that the action is now a list of -- actions. data runtype : (t : τ̂) (Lα : List action) (t' : τ̂) → Set where DoRefl : {t : τ̂} → runtype t [] t DoType : {t : τ̂} {α : action} {t' t'' : τ̂} {L : List action} → t + α +> t' → runtype t' L t'' → runtype t (α :: L) t'' data runsynth : (Γ : ·ctx) (e : ê) (t1 : τ̇) (Lα : List action) (e' : ê) (t2 : τ̇) → Set where DoRefl : {Γ : ·ctx} {e : ê} {t : τ̇} → runsynth Γ e t [] e t DoSynth : {Γ : ·ctx} {e : ê} {t : τ̇} {α : action} {e' e'' : ê} {t' t'' : τ̇} {L : List action} → Γ ⊢ e => t ~ α ~> e' => t' → runsynth Γ e' t' L e'' t'' → runsynth Γ e t (α :: L) e'' t'' data runana : (Γ : ·ctx) (e : ê) (Lα : List action) (e' : ê) (t : τ̇) → Set where DoRefl : {Γ : ·ctx} {e : ê} {t : τ̇} → runana Γ e [] e t DoAna : {Γ : ·ctx} {e : ê} {α : action} {e' e'' : ê} {t : τ̇} {L : List action} → Γ ⊢ e ~ α ~> e' ⇐ t → runana Γ e' L e'' t → runana Γ e (α :: L) e'' t -- all three run judgements lift to the list monoid as expected. these -- theorems are simple because the structure of lists is simple, but they -- amount a reasoning principle about the composition of action sequences -- by letting you split lists in (nearly) arbitrary places and argue -- about the consequences of the splits before composing them together. runtype++ : ∀{t t' t'' L1 L2 } → runtype t L1 t' → runtype t' L2 t'' → runtype t (L1 ++ L2) t'' runtype++ DoRefl d2 = d2 runtype++ (DoType x d1) d2 = DoType x (runtype++ d1 d2) runsynth++ : ∀{Γ e t L1 e' t' L2 e'' t''} → runsynth Γ e t L1 e' t' → runsynth Γ e' t' L2 e'' t'' → runsynth Γ e t (L1 ++ L2) e'' t'' runsynth++ DoRefl d2 = d2 runsynth++ (DoSynth x d1) d2 = DoSynth x (runsynth++ d1 d2) runana++ : ∀{Γ e t L1 e' L2 e''} → runana Γ e L1 e' t → runana Γ e' L2 e'' t → runana Γ e (L1 ++ L2) e'' t runana++ DoRefl d2 = d2 runana++ (DoAna x d1) d2 = DoAna x (runana++ d1 d2) -- the following collection of lemmas asserts that the various runs -- interoperate nicely. in many cases, these amount to observing -- something like congruence: if a subterm is related to something by one -- of the judgements, it can be replaced by the thing to which it is -- related in a larger context without disrupting that larger -- context. -- -- taken together, this is a little messier than a proper congruence, -- because the action semantics demand well-typedness at each step, and -- therefore there are enough premises to each lemma to supply to the -- action semantics rules. -- -- therefore, these amount to a checksum on the zipper actions under the -- lifing of the action semantics to the list monoid. -- -- they only check the zipper actions they happen to be include, however, -- which is driven by the particular lists we use in the proofs of -- contructability and reachability, which may or may not be all of -- them. additionally, the lemmas given here are what is needed for these -- proofs, not anything that's more general. -- type zippers ziplem-tmarr1 : ∀ {t1 t1' t2 L } → runtype t1' L t1 → runtype (t1' ==>₁ t2) L (t1 ==>₁ t2) ziplem-tmarr1 DoRefl = DoRefl ziplem-tmarr1 (DoType x L') = DoType (TMArrZip1 x) (ziplem-tmarr1 L') ziplem-tmarr2 : ∀ {t1 t2 t2' L } → runtype t2' L t2 → runtype (t1 ==>₂ t2') L (t1 ==>₂ t2) ziplem-tmarr2 DoRefl = DoRefl ziplem-tmarr2 (DoType x L') = DoType (TMArrZip2 x) (ziplem-tmarr2 L') -- expression zippers ziplem-asc1 : ∀{Γ t L e e'} → runana Γ e L e' t → runsynth Γ (e ·:₁ t) t L (e' ·:₁ t) t ziplem-asc1 DoRefl = DoRefl ziplem-asc1 (DoAna a r) = DoSynth (SAZipAsc1 a) (ziplem-asc1 r) ziplem-asc2 : ∀{Γ t L t' t◆ t'◆} → erase-t t t◆ → erase-t t' t'◆ → runtype t L t' → runsynth Γ (⦇-⦈ ·:₂ t) t◆ L (⦇-⦈ ·:₂ t') t'◆ ziplem-asc2 {Γ} er er' rt with erase-t◆ er | erase-t◆ er' ... | refl | refl = ziplem-asc2' {Γ = Γ} rt where ziplem-asc2' : ∀{t L t' Γ } → runtype t L t' → runsynth Γ (⦇-⦈ ·:₂ t) (t ◆t) L (⦇-⦈ ·:₂ t') (t' ◆t) ziplem-asc2' DoRefl = DoRefl ziplem-asc2' (DoType x rt) = DoSynth (SAZipAsc2 x (◆erase-t _ _ refl) (◆erase-t _ _ refl) (ASubsume SEHole TCHole1)) (ziplem-asc2' rt) ziplem-lam : ∀ {Γ x e t t1 t2 L e'} → x # Γ → t ▸arr (t1 ==> t2) → runana (Γ ,, (x , t1)) e L e' t2 → runana Γ (·λ x e) L (·λ x e') t ziplem-lam a m DoRefl = DoRefl ziplem-lam a m (DoAna x₁ d) = DoAna (AAZipLam a m x₁) (ziplem-lam a m d) ziplem-plus1 : ∀{ Γ e L e' f} → runana Γ e L e' num → runsynth Γ (e ·+₁ f) num L (e' ·+₁ f) num ziplem-plus1 DoRefl = DoRefl ziplem-plus1 (DoAna x d) = DoSynth (SAZipPlus1 x) (ziplem-plus1 d) ziplem-plus2 : ∀{ Γ e L e' f} → runana Γ e L e' num → runsynth Γ (f ·+₂ e) num L (f ·+₂ e') num ziplem-plus2 DoRefl = DoRefl ziplem-plus2 (DoAna x d) = DoSynth (SAZipPlus2 x) (ziplem-plus2 d) ziplem-ap2 : ∀{ Γ e L e' t t' f tf} → Γ ⊢ f => t' → t' ▸arr (t ==> tf) → runana Γ e L e' t → runsynth Γ (f ∘₂ e) tf L (f ∘₂ e') tf ziplem-ap2 wt m DoRefl = DoRefl ziplem-ap2 wt m (DoAna x d) = DoSynth (SAZipApAna m wt x) (ziplem-ap2 wt m d) ziplem-nehole-a : ∀{Γ e e' L t t'} → (Γ ⊢ e ◆e => t) → runsynth Γ e t L e' t' → runsynth Γ ⦇⌜ e ⌟⦈ ⦇-⦈ L ⦇⌜ e' ⌟⦈ ⦇-⦈ ziplem-nehole-a wt DoRefl = DoRefl ziplem-nehole-a wt (DoSynth {e = e} x d) = DoSynth (SAZipHole (rel◆ e) wt x) (ziplem-nehole-a (actsense-synth (rel◆ e) (rel◆ _) x wt) d) ziplem-nehole-b : ∀{Γ e e' L t t' t''} → (Γ ⊢ e ◆e => t) → (t'' ~ t') → runsynth Γ e t L e' t' → runana Γ ⦇⌜ e ⌟⦈ L ⦇⌜ e' ⌟⦈ t'' ziplem-nehole-b wt c DoRefl = DoRefl ziplem-nehole-b wt c (DoSynth x rs) = DoAna (AASubsume (erase-in-hole (rel◆ _)) (SNEHole wt) (SAZipHole (rel◆ _) wt x) TCHole1) (ziplem-nehole-b (actsense-synth (rel◆ _) (rel◆ _) x wt) c rs) -- because the point of the reachability theorems is to show that we -- didn't forget to define any of the action semantic cases, it's -- important that theorems include the fact that the witness only uses -- move -- otherwise, you could cheat by just prepending [ del ] to the -- list produced by constructability. constructability does also use -- some, but not all, of the possible movements, so this would no longer -- demonstrate the property we really want. to that end, we define a -- predicate on lists that they contain only (move _) and that the -- various things above that produce the lists we use have this property. -- predicate data movements : List action → Set where AM:: : {L : List action} {δ : direction} → movements L → movements ((move δ) :: L) AM[] : movements [] -- movements breaks over the list monoid, as expected movements++ : {l1 l2 : List action} → movements l1 → movements l2 → movements (l1 ++ l2) movements++ (AM:: m1) m2 = AM:: (movements++ m1 m2) movements++ AM[] m2 = m2 -- these are zipper lemmas that are specific to list of movement -- actions. they are not true for general actions, but because -- reachability is restricted to movements, we get some milage out of -- them anyway. endpoints : ∀{ Γ e t L e' t'} → Γ ⊢ (e ◆e) => t → runsynth Γ e t L e' t' → movements L → t == t' endpoints _ DoRefl AM[] = refl endpoints wt (DoSynth x rs) (AM:: mv) with endpoints (actsense-synth (rel◆ _) (rel◆ _) x wt) rs mv ... | refl = π2 (moveerase-synth (rel◆ _) wt x) ziplem-moves-asc2 : ∀{ Γ l t t' e t◆ } → movements l → erase-t t t◆ → Γ ⊢ e <= t◆ → runtype t l t' → runsynth Γ (e ·:₂ t) t◆ l (e ·:₂ t') t◆ ziplem-moves-asc2 _ _ _ DoRefl = DoRefl ziplem-moves-asc2 (AM:: m) er wt (DoType x rt) with moveeraset' er x ... | er' = DoSynth (SAZipAsc2 x er' er wt) (ziplem-moves-asc2 m er' wt rt) synthana-moves : ∀{t t' l e e' Γ} → Γ ⊢ e ◆e => t' → movements l → t ~ t' → runsynth Γ e t' l e' t' → runana Γ e l e' t synthana-moves _ _ _ DoRefl = DoRefl synthana-moves wt (AM:: m) c (DoSynth x rs) with π2 (moveerase-synth (rel◆ _) wt x) ... | refl = DoAna (AASubsume (rel◆ _) wt x c) (synthana-moves (actsense-synth (rel◆ _) (rel◆ _) x wt) m c rs) ziplem-moves-ap1 : ∀{Γ l e1 e1' e2 t t' tx} → Γ ⊢ e1 ◆e => t → t ▸arr (tx ==> t') → Γ ⊢ e2 <= tx → movements l → runsynth Γ e1 t l e1' t → runsynth Γ (e1 ∘₁ e2) t' l (e1' ∘₁ e2) t' ziplem-moves-ap1 _ _ _ _ DoRefl = DoRefl ziplem-moves-ap1 wt1 mch wt2 (AM:: m) (DoSynth x rs) with π2 (moveerase-synth (rel◆ _) wt1 x) ... | refl = DoSynth (SAZipApArr mch (rel◆ _) wt1 x wt2) (ziplem-moves-ap1 (actsense-synth (rel◆ _) (rel◆ _) x wt1) mch wt2 m rs)
algebraic-stack_agda0000_doc_15108
{-# OPTIONS --no-import-sorts #-} open import Agda.Primitive renaming (Set to _X_X_) test : _X_X₁_ test = _X_X_
algebraic-stack_agda0000_doc_15109
{-# OPTIONS --without-K #-} open import Agda.Primitive using (Level; lsuc) open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong) open import Data.Empty using (⊥; ⊥-elim) open import Data.Product using (proj₁; proj₂; Σ-syntax; _,_) open import Function.Base using (_∘_) variable ℓ ℓ′ : Level A C : Set ℓ B : A → Set ℓ {- Sizes Defining sizes as a generalized form of Brouwer ordinals, with an order (see https://arxiv.org/abs/2104.02549) -} infix 30 ↑_ infix 30 ⊔_ data Size {ℓ} : Set (lsuc ℓ) where ↑_ : Size {ℓ} → Size ⊔_ : {A : Set ℓ} → (A → Size {ℓ}) → Size data _≤_ {ℓ} : Size {ℓ} → Size {ℓ} → Set (lsuc ℓ) where ↑s≤↑s : ∀ {r s} → r ≤ s → ↑ r ≤ ↑ s s≤⊔f : ∀ {s} f (a : A) → s ≤ f a → s ≤ ⊔ f ⊔f≤s : ∀ {s} f → (∀ (a : A) → f a ≤ s) → ⊔ f ≤ s -- A possible definition of the smallest size ◯ : Size ◯ = ⊔ ⊥-elim ◯≤s : ∀ {s} → ◯ ≤ s ◯≤s = ⊔f≤s ⊥-elim λ () -- Reflexivity of ≤ s≤s : ∀ {s : Size {ℓ}} → s ≤ s s≤s {s = ↑ s} = ↑s≤↑s s≤s s≤s {s = ⊔ f} = ⊔f≤s f (λ a → s≤⊔f f a s≤s) -- Transitivity of ≤ s≤s≤s : ∀ {r s t : Size {ℓ}} → r ≤ s → s ≤ t → r ≤ t s≤s≤s (↑s≤↑s r≤s) (↑s≤↑s s≤t) = ↑s≤↑s (s≤s≤s r≤s s≤t) s≤s≤s r≤s (s≤⊔f f a s≤fa) = s≤⊔f f a (s≤s≤s r≤s s≤fa) s≤s≤s (⊔f≤s f fa≤s) s≤t = ⊔f≤s f (λ a → s≤s≤s (fa≤s a) s≤t) s≤s≤s (s≤⊔f f a s≤fa) (⊔f≤s f fa≤t) = s≤s≤s s≤fa (fa≤t a) -- Successor behaves as expected wrt ≤ s≤↑s : ∀ {s : Size {ℓ}} → s ≤ ↑ s s≤↑s {s = ↑ s} = ↑s≤↑s s≤↑s s≤↑s {s = ⊔ f} = ⊔f≤s f (λ a → s≤s≤s s≤↑s (↑s≤↑s (s≤⊔f f a s≤s))) -- Strict order _<_ : Size {ℓ} → Size {ℓ} → Set (lsuc ℓ) r < s = ↑ r ≤ s {- Well-founded induction for Sizes via an accessibility predicate based on strict order -} record Acc (s : Size {ℓ}) : Set (lsuc ℓ) where inductive pattern constructor acc field acc< : (∀ r → r < s → Acc r) open Acc -- The accessibility predicate is a mere proposition accIsProp : ∀ {s : Size {ℓ}} → (acc1 acc2 : Acc s) → acc1 ≡ acc2 accIsProp (acc p) (acc q) = cong acc (funext p q (λ r → funext (p r) (q r) (λ r<s → accIsProp (p r r<s) (q r r<s)))) where postulate funext : ∀ (p q : ∀ x → B x) → (∀ x → p x ≡ q x) → p ≡ q -- A size smaller or equal to an accessible size is still accessible acc≤ : ∀ {r s : Size {ℓ}} → r ≤ s → Acc s → Acc r acc≤ r≤s (acc p) = acc (λ t t<r → p t (s≤s≤s t<r r≤s)) -- All sizes are accessible wf : ∀ (s : Size {ℓ}) → Acc s wf (↑ s) = acc (λ { _ (↑s≤↑s r≤s) → acc≤ r≤s (wf s) }) wf (⊔ f) = acc (λ { r (s≤⊔f f a r<fa) → (wf (f a)).acc< r r<fa }) -- Well-founded induction: -- If P holds on every smaller size, then P holds on this size -- Recursion occurs structurally on the accessbility of sizes wfInd : ∀ (P : Size {ℓ} → Set ℓ′) → (∀ s → (∀ r → r < s → P r) → P s) → ∀ s → P s wfInd P f s = wfAcc s (wf s) where wfAcc : ∀ s → Acc s → P s wfAcc s (acc p) = f s (λ r r<s → wfAcc r (p r r<s)) {- W types W∞ is the full or "infinite" form, where there are no sizes; W is the bounded-sized form, parameterized by some Size, where constructors take a proof of smaller-sizedness -} data W∞ (A : Set ℓ) (B : A → Set ℓ) : Set ℓ where sup∞ : ∀ a → (B a → W∞ A B) → W∞ A B data W (A : Set ℓ) (B : A → Set ℓ) (s : Size {ℓ}) : Set (lsuc ℓ) where sup : ∀ r → r < s → (a : A) → (B a → W A B r) → W A B s -- Eliminator for the W type based on wellfoundedness of sizes elimW : (P : ∀ s → W A B s → Set ℓ′) → (p : ∀ s → (∀ r → r < s → (w : W A B r) → P r w) → (w : W A B s) → P s w) → ∀ s → (w : W A B s) → P s w elimW P = wfInd (λ s → (w : W _ _ s) → P s w) -- A full W∞ to a size-paired bounded-sized W form findW : W∞ {ℓ} A B → Σ[ s ∈ Size ] W A B s findW (sup∞ a f) = let s = ⊔ (proj₁ ∘ findW ∘ f) in ↑ s , sup s s≤s a ⊔f where ⊔f : _ ⊔f b with proj₂ (findW (f b)) ... | sup r r<s a g = sup r (s≤s≤s r<s (s≤⊔f (proj₁ ∘ findW ∘ f) b s≤s)) a g -- The axiom of choice specialized to sized W types, "choosing" a size ac : ∀ a → (B a → Σ[ s ∈ Size ] W A B s) → Σ[ s ∈ Size ] (B a → W A B s) ac a f = ⊔ (proj₁ ∘ f) , f′ where f′ : _ f′ b with proj₂ (f b) ... | sup r r<s a f = sup r (s≤s≤s r<s (s≤⊔f _ b s≤s)) a f -- Constructing a bounded-sized W out of the necessary pieces mkW : ∀ a → (B a → Σ[ s ∈ Size ] W A B s) → Σ[ s ∈ Size ] W A B s mkW a f = let sf = ac a f in sup (proj₁ sf) ? a (proj₂ f)
algebraic-stack_agda0000_doc_15110
{-# OPTIONS --cubical --safe #-} module Cubical.Homotopy.Loopspace where open import Cubical.Core.Everything open import Cubical.Data.Nat open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.GroupoidLaws {- loop space of a pointed type -} Ω : {ℓ : Level} → Pointed ℓ → Pointed ℓ Ω (_ , a) = ((a ≡ a) , refl) {- n-fold loop space of a pointed type -} Ω^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Pointed ℓ (Ω^ 0) p = p (Ω^ (suc n)) p = Ω ((Ω^ n) p) {- loop space map -} Ω→ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → (Ω A →∙ Ω B) Ω→ (f , f∙) = (λ p → (sym f∙ ∙ cong f p) ∙ f∙) , cong (λ q → q ∙ f∙) (sym (rUnit (sym f∙))) ∙ lCancel f∙
algebraic-stack_agda0000_doc_15111
module Sets.ImageSet.Oper where open import Data open import Functional open import Logic open import Logic.Propositional open import Logic.Predicate import Lvl open import Sets.ImageSet open import Structure.Function open import Structure.Setoid renaming (_≡_ to _≡ₛ_) open import Type open import Type.Dependent private variable ℓ ℓₑ ℓᵢ ℓᵢ₁ ℓᵢ₂ ℓᵢ₃ ℓᵢₑ ℓ₁ ℓ₂ ℓ₃ : Lvl.Level private variable T X Y Z : Type{ℓ} module _ where open import Data.Boolean open import Data.Boolean.Stmt open import Data.Either as Either using (_‖_) open import Function.Domains ∅ : ImageSet{ℓᵢ}(T) ∅ = intro empty 𝐔 : ImageSet{Lvl.of(T)}(T) 𝐔 = intro id singleton : T → ImageSet{ℓᵢ}(T) singleton(x) = intro{Index = Unit} \{<> → x} pair : T → T → ImageSet{ℓᵢ}(T) pair x y = intro{Index = Lvl.Up(Bool)} \{(Lvl.up 𝐹) → x ; (Lvl.up 𝑇) → y} _∪_ : ImageSet{ℓᵢ₁}(T) → ImageSet{ℓᵢ₂}(T) → ImageSet{ℓᵢ₁ Lvl.⊔ ℓᵢ₂}(T) A ∪ B = intro{Index = Index(A) ‖ Index(B)} (Either.map1 (elem(A)) (elem(B))) ⋃ : ImageSet{ℓᵢ}(ImageSet{ℓᵢ}(T)) → ImageSet{ℓᵢ}(T) ⋃ A = intro{Index = Σ(Index(A)) (Index ∘ elem(A))} \{(intro ia i) → elem(elem(A)(ia))(i)} indexFilter : (A : ImageSet{ℓᵢ}(T)) → (Index(A) → Stmt{ℓ}) → ImageSet{ℓᵢ Lvl.⊔ ℓ}(T) indexFilter A P = intro {Index = Σ(Index(A)) P} (elem(A) ∘ Σ.left) filter : (T → Stmt{ℓ}) → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ Lvl.⊔ ℓ}(T) filter P(A) = indexFilter A (P ∘ elem(A)) indexFilterBool : (A : ImageSet{ℓᵢ}(T)) → (Index(A) → Bool) → ImageSet{ℓᵢ}(T) indexFilterBool A f = indexFilter A (IsTrue ∘ f) filterBool : (T → Bool) → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ}(T) filterBool f(A) = indexFilterBool A (f ∘ elem(A)) map : (X → Y) → (ImageSet{ℓᵢ}(X) → ImageSet{ℓᵢ}(Y)) map f(A) = intro{Index = Index(A)} (f ∘ elem(A)) unapply : (X → Y) → ⦃ _ : Equiv{ℓₑ}(Y)⦄ → (Y → ImageSet{Lvl.of(X) Lvl.⊔ ℓₑ}(X)) unapply f(y) = intro{Index = ∃(x ↦ f(x) ≡ₛ y)} [∃]-witness -- unmap : (X → Y) → ⦃ _ : Equiv{ℓₑ}(Y)⦄ → (ImageSet{{!Lvl.of(T) Lvl.⊔ ℓₑ!}}(Y) → ImageSet{Lvl.of(T) Lvl.⊔ ℓₑ}(X)) -- unmap f(B) = intro{Index = ∃(x ↦ f(x) ∈ B)} [∃]-witness ℘ : ImageSet{ℓᵢ}(T) → ImageSet{Lvl.𝐒(ℓᵢ)}(ImageSet{ℓᵢ}(T)) ℘(A) = intro{Index = Index(A) → Stmt} (indexFilter A) _∩_ : ⦃ _ : Equiv{ℓᵢ}(T) ⦄ → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ}(T) A ∩ B = indexFilter(A) (iA ↦ elem(A) iA ∈ B) ⋂ : ⦃ _ : Equiv{ℓᵢ}(T) ⦄ → ImageSet{Lvl.of(T)}(ImageSet{Lvl.of(T)}(T)) → ImageSet{ℓᵢ Lvl.⊔ Lvl.of(T)}(T) -- ⋂ As = intro{Index = Σ((iAs : Index(As)) → Index(elem(As) iAs)) (f ↦ (∀{iAs₁ iAs₂} → (elem(elem(As) iAs₁)(f iAs₁) ≡ₛ elem(elem(As) iAs₂)(f iAs₂))))} {!!} (TODO: I think this definition only works with excluded middle because one must determine if an A from AS is empty or not and if it is not, then one can apply its index to the function in the Σ) ⋂ As = indexFilter(⋃ As) (iUAs ↦ ∃{Obj = (iAs : Index(As)) → Index(elem(As) iAs)}(f ↦ ∀{iAs} → (elem(⋃ As) iUAs ≡ₛ elem(elem(As) iAs) (f iAs)))) -- ⋂ As = indexFilter(⋃ As) (iUAs ↦ ∀{iAs} → (elem(⋃ As) iUAs ∈ elem(As) iAs)) {- module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where open import Data.Boolean open import Data.Either as Either using (_‖_) open import Data.Tuple as Tuple using (_⨯_ ; _,_) import Structure.Container.SetLike as Sets open import Structure.Function.Domain open import Structure.Operator.Properties open import Structure.Relator open import Structure.Relator.Properties open import Syntax.Transitivity private variable A B C : ImageSet{ℓₑ}(T) private variable x y a b : T [∈]-of-elem : ∀{ia : Index(A)} → (elem(A)(ia) ∈ A) ∃.witness ([∈]-of-elem {ia = ia}) = ia ∃.proof [∈]-of-elem = reflexivity(_≡ₛ_) instance ∅-membership : Sets.EmptySet(_∈_ {T = T}{ℓ}) Sets.EmptySet.∅ ∅-membership = ∅ Sets.EmptySet.membership ∅-membership () instance 𝐔-membership : Sets.UniversalSet(_∈_ {T = T}) Sets.UniversalSet.𝐔 𝐔-membership = 𝐔 Sets.UniversalSet.membership 𝐔-membership {x = x} = [∃]-intro x ⦃ reflexivity(_≡ₛ_) ⦄ instance singleton-membership : Sets.SingletonSet(_∈_ {T = T}{ℓ}) Sets.SingletonSet.singleton singleton-membership = singleton Sets.SingletonSet.membership singleton-membership = proof where proof : (x ∈ singleton{ℓᵢ = ℓᵢ}(a)) ↔ (x ≡ₛ a) Tuple.left proof xin = [∃]-intro <> ⦃ xin ⦄ Tuple.right proof ([∃]-intro i ⦃ eq ⦄ ) = eq instance pair-membership : Sets.PairSet(_∈_ {T = T}{ℓ}) Sets.PairSet.pair pair-membership = pair Sets.PairSet.membership pair-membership = proof where proof : (x ∈ pair a b) ↔ (x ≡ₛ a)∨(x ≡ₛ b) Tuple.left proof ([∨]-introₗ p) = [∃]-intro (Lvl.up 𝐹) ⦃ p ⦄ Tuple.left proof ([∨]-introᵣ p) = [∃]-intro (Lvl.up 𝑇) ⦃ p ⦄ Tuple.right proof ([∃]-intro (Lvl.up 𝐹) ⦃ eq ⦄) = [∨]-introₗ eq Tuple.right proof ([∃]-intro (Lvl.up 𝑇) ⦃ eq ⦄) = [∨]-introᵣ eq instance [∪]-membership : Sets.UnionOperator(_∈_ {T = T}) Sets.UnionOperator._∪_ [∪]-membership = _∪_ Sets.UnionOperator.membership [∪]-membership = proof where proof : (x ∈ (A ∪ B)) ↔ (x ∈ A)∨(x ∈ B) Tuple.left proof ([∨]-introₗ ([∃]-intro ia)) = [∃]-intro (Either.Left ia) Tuple.left proof ([∨]-introᵣ ([∃]-intro ib)) = [∃]-intro (Either.Right ib) Tuple.right proof ([∃]-intro ([∨]-introₗ ia)) = [∨]-introₗ ([∃]-intro ia) Tuple.right proof ([∃]-intro ([∨]-introᵣ ib)) = [∨]-introᵣ ([∃]-intro ib) instance [∩]-membership : Sets.IntersectionOperator(_∈_ {T = T}) Sets.IntersectionOperator._∩_ [∩]-membership = _∩_ Sets.IntersectionOperator.membership [∩]-membership = proof where proof : (x ∈ (A ∩ B)) ↔ (x ∈ A)∧(x ∈ B) _⨯_.left proof ([↔]-intro ([∃]-intro iA ⦃ pA ⦄) ([∃]-intro iB ⦃ pB ⦄)) = [∃]-intro (intro iA ([∃]-intro iB ⦃ symmetry(_≡ₛ_) pA 🝖 pB ⦄)) _⨯_.right proof ([∃]-intro (intro iA ([∃]-intro iB ⦃ pAB ⦄)) ⦃ pxAB ⦄) = [∧]-intro ([∃]-intro iA) ([∃]-intro iB ⦃ pxAB 🝖 pAB ⦄) instance map-membership : Sets.MapFunction(_∈_ {T = T})(_∈_ {T = T}) Sets.MapFunction.map map-membership f = map f Sets.MapFunction.membership map-membership {f = f} ⦃ function ⦄ = proof where proof : (y ∈ map f(A)) ↔ ∃(x ↦ (x ∈ A) ∧ (f(x) ≡ₛ y)) ∃.witness (Tuple.left (proof) ([∃]-intro x ⦃ [∧]-intro xA fxy ⦄)) = [∃]-witness xA ∃.proof (Tuple.left (proof {y = y} {A = A}) ([∃]-intro x ⦃ [∧]-intro xA fxy ⦄)) = y 🝖[ _≡ₛ_ ]-[ fxy ]-sym f(x) 🝖[ _≡ₛ_ ]-[ congruence₁(f) ⦃ function ⦄ ([∃]-proof xA) ] f(elem(A) ([∃]-witness xA)) 🝖[ _≡ₛ_ ]-[] elem (map f(A)) ([∃]-witness xA) 🝖[ _≡ₛ_ ]-end ∃.witness (Tuple.right (proof {A = A}) ([∃]-intro iA)) = elem(A) iA ∃.proof (Tuple.right proof ([∃]-intro iA ⦃ p ⦄)) = [∧]-intro ([∈]-of-elem {ia = iA}) (symmetry(_≡ₛ_) p) indexFilter-membership : ∀{P : Index(A) → Stmt{ℓ}} → (x ∈ indexFilter A P) ↔ ∃(i ↦ (x ≡ₛ elem(A) i) ∧ P(i)) _⨯_.left indexFilter-membership ([∃]-intro iA ⦃ [∧]-intro xe p ⦄) = [∃]-intro (intro iA p) ⦃ xe ⦄ _⨯_.right indexFilter-membership ([∃]-intro (intro iA p) ⦃ xe ⦄) = [∃]-intro iA ⦃ [∧]-intro xe p ⦄ indexFilter-subset : ∀{P : Index(A) → Stmt{ℓₑ}} → (indexFilter{ℓₑ} A P ⊆ A) indexFilter-subset = [∃]-map-proof [∧]-elimₗ ∘ [↔]-to-[→] indexFilter-membership indexFilter-elem-membershipₗ : ∀{P : Index(A) → Stmt{ℓ}}{i : Index(A)} → (elem(A)(i) ∈ indexFilter A P) ← P(i) indexFilter-elem-membershipₗ {i = i} pi = [∃]-intro (intro i pi) ⦃ reflexivity _ ⦄ indexFilter-elem-membershipᵣ : ⦃ _ : Equiv{ℓₑ}(Index(A)) ⦄ ⦃ _ : Injective(elem A) ⦄ → ∀{P : Index(A) → Stmt{ℓ}} ⦃ _ : UnaryRelator(P) ⦄{i : Index(A)} → (elem(A)(i) ∈ indexFilter A P) → P(i) indexFilter-elem-membershipᵣ {A = A}{P = P} {i = i} ([∃]-intro (intro iA PiA) ⦃ p ⦄) = substitute₁ₗ(P) (injective(elem A) p) PiA instance filter-membership : Sets.FilterFunction(_∈_ {T = T}) Sets.FilterFunction.filter filter-membership f = filter{ℓ = ℓₑ} f Sets.FilterFunction.membership filter-membership {P = P} = proof where proof : (x ∈ filter P(A)) ↔ ((x ∈ A) ∧ P(x)) Tuple.left proof ([∧]-intro ([∃]-intro i ⦃ p ⦄) pb) = [∃]-intro (intro i (substitute₁(P) p pb)) ⦃ p ⦄ Tuple.left (Tuple.right proof ([∃]-intro (intro iA PiA))) = [∃]-intro iA Tuple.right (Tuple.right proof ([∃]-intro (intro iA PiA) ⦃ pp ⦄)) = substitute₁ₗ(P) pp PiA filter-subset : ∀{P : T → Stmt{ℓₑ}} → (filter P(A) ⊆ A) filter-subset ([∃]-intro (intro i p) ⦃ xf ⦄) = [∃]-intro i ⦃ xf ⦄ instance postulate [∩]-commutativity : Commutativity(_∩_ {T = T}) -- TODO: These should come from Structure.Container.SetLike, which in turn should come from Structure.Operator.Lattice, which in turn should come from Structure.Relator.Ordering.Lattice postulate [∩]-subset-of-right : (A ⊆ B) → (A ∩ B ≡ₛ B) postulate [∩]-subset-of-left : (B ⊆ A) → (A ∩ B ≡ₛ A) postulate [∩]-subsetₗ : (A ∩ B) ⊆ A [∩]-subsetᵣ : (A ∩ B) ⊆ B [∩]-subsetᵣ {A} {B} {x} xAB = indexFilter-subset ([↔]-to-[→] (commutativity(_∩_) ⦃ [∩]-commutativity ⦄ {A} {B} {x}) xAB) instance ℘-membership : Sets.PowerFunction(_∈_)(_∈_) Sets.PowerFunction.℘ ℘-membership = ℘ Sets.PowerFunction.membership ℘-membership = [↔]-intro l r where l : (B ∈ ℘(A)) ← (B ⊆ A) ∃.witness (l {B} {A} BA) iA = elem(A) iA ∈ B _⨯_.left (∃.proof (l {B}{A} BA) {x}) a = apply a $ A ∩ B 🝖[ _⊆_ ]-[ [∩]-subsetᵣ ] B 🝖[ _⊆_ ]-end _⨯_.right (∃.proof (l {B}{A} BA) {x}) b = apply b $ B 🝖[ _⊆_ ]-[ BA ] A 🝖[ _⊆_ ]-[ sub₂(_≡_)(_⊇_) ([∩]-subset-of-left BA) ] A ∩ B 🝖[ _⊆_ ]-end r : (B ∈ ℘(A)) → (B ⊆ A) r ([∃]-intro _ ⦃ BA ⦄) xB with [↔]-to-[→] BA xB ... | [∃]-intro (intro iA _) ⦃ xe ⦄ = [∃]-intro iA ⦃ xe ⦄ -}
algebraic-stack_agda0000_doc_15112
open import Agda.Builtin.IO using (IO) open import Agda.Builtin.String using (String) open import Agda.Builtin.Unit using (⊤) data D : Set where c₁ c₂ : D f : D → Set → String f c₁ = λ _ → "OK" f c₂ = λ _ → "OK" -- The following pragma should refer to the generated Haskell name -- for f. {-# FOREIGN GHC {-# NOINLINE d_f_8 #-} #-} x : String x = f c₁ ⊤ postulate putStrLn : String → IO ⊤ {-# FOREIGN GHC import qualified Data.Text.IO #-} {-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn #-} main : IO ⊤ main = putStrLn x
algebraic-stack_agda0000_doc_15113
{-# OPTIONS --no-unreachable-check #-} module Issue424 where data _≡_ {A : Set₁} (x : A) : A → Set where refl : x ≡ x f : Set → Set f A = A f A = A fails : (A : Set) → f A ≡ A fails A = refl -- The case tree compiler used to treat f as a definition with an -- absurd pattern.
algebraic-stack_agda0000_doc_15114
{-# OPTIONS --cubical --no-import-sorts #-} open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Function.Base using (_∋_; _$_) open import MorePropAlgebra.Bundles import Cubical.Structures.CommRing as Std module MorePropAlgebra.Properties.CommRing {ℓ} (assumptions : CommRing {ℓ}) where open CommRing assumptions renaming (Carrier to R) import MorePropAlgebra.Properties.Ring module Ring'Properties = MorePropAlgebra.Properties.Ring (record { CommRing assumptions }) module Ring' = Ring (record { CommRing assumptions }) ( Ring') = Ring ∋ (record { CommRing assumptions }) stdIsCommRing : Std.IsCommRing 0r 1r _+_ _·_ (-_) stdIsCommRing .Std.IsCommRing.isRing = Ring'Properties.stdIsRing stdIsCommRing .Std.IsCommRing.·-comm = ·-comm stdCommRing : Std.CommRing {ℓ} stdCommRing = record { CommRing assumptions ; isCommRing = stdIsCommRing } -- -- module RingTheory' = Std.Theory stdRing
algebraic-stack_agda0000_doc_15115
------------------------------------------------------------------------ -- The Agda standard library -- -- Trie, basic type and operations ------------------------------------------------------------------------ -- See README.Data.Trie.NonDependent for an example of using a trie to -- build a lexer. {-# OPTIONS --without-K --safe --sized-types #-} open import Relation.Binary using (Rel; StrictTotalOrder) module Data.Trie {k e r} (S : StrictTotalOrder k e r) where open import Level open import Size open import Data.List.Base using (List; []; _∷_; _++_) import Data.List.NonEmpty as List⁺ open import Data.Maybe.Base as Maybe using (Maybe; just; nothing; maybe′) open import Data.Product as Prod using (∃) open import Data.These.Base as These using (These) open import Function open import Relation.Unary using (IUniversal; _⇒_) open StrictTotalOrder S using (module Eq) renaming (Carrier to Key) open import Data.List.Relation.Binary.Equality.Setoid Eq.setoid open import Data.AVL.Value ≋-setoid using (Value) ------------------------------------------------------------------------ -- Definition -- Trie is defined in terms of Trie⁺, the type of non-empty trie. This -- guarantees that the trie is minimal: each path in the tree leads to -- either a value or a number of non-empty sub-tries. open import Data.Trie.NonEmpty S as Trie⁺ public using (Trie⁺; Tries⁺; Word; eat) Trie : ∀ {v} (V : Value v) → Size → Set (v ⊔ k ⊔ e ⊔ r) Trie V i = Maybe (Trie⁺ V i) ------------------------------------------------------------------------ -- Operations -- Functions acting on Trie are wrappers for functions acting on Tries. -- Sometimes the empty case is handled in a special way (e.g. insertWith -- calls singleton when faced with an empty Trie). module _ {v} {V : Value v} where private Val = Value.family V ------------------------------------------------------------------------ -- Lookup lookup : ∀ ks → Trie V ∞ → Maybe (These (Val ks) (Tries⁺ (eat V ks) ∞)) lookup ks t = t Maybe.>>= Trie⁺.lookup ks lookupValue : ∀ ks → Trie V ∞ → Maybe (Val ks) lookupValue ks t = t Maybe.>>= Trie⁺.lookupValue ks lookupTries⁺ : ∀ ks → Trie V ∞ → Maybe (Tries⁺ (eat V ks) ∞) lookupTries⁺ ks t = t Maybe.>>= Trie⁺.lookupTries⁺ ks lookupTrie : ∀ k → Trie V ∞ → Trie (eat V (k ∷ [])) ∞ lookupTrie k t = t Maybe.>>= Trie⁺.lookupTrie⁺ k ------------------------------------------------------------------------ -- Construction empty : Trie V ∞ empty = nothing singleton : ∀ ks → Val ks → Trie V ∞ singleton ks v = just (Trie⁺.singleton ks v) insertWith : ∀ ks → (Maybe (Val ks) → Val ks) → Trie V ∞ → Trie V ∞ insertWith ks f (just t) = just (Trie⁺.insertWith ks f t) insertWith ks f nothing = singleton ks (f nothing) insert : ∀ ks → Val ks → Trie V ∞ → Trie V ∞ insert ks = insertWith ks ∘′ const fromList : List (∃ Val) → Trie V ∞ fromList = Maybe.map Trie⁺.fromList⁺ ∘′ List⁺.fromList toList : Trie V ∞ → List (∃ Val) toList (just t) = List⁺.toList (Trie⁺.toList⁺ t) toList nothing = [] ------------------------------------------------------------------------ -- Modification module _ {v w} {V : Value v} {W : Value w} where private Val = Value.family V Wal = Value.family W map : ∀ {i} → ∀[ Val ⇒ Wal ] → Trie V i → Trie W i map = Maybe.map ∘′ Trie⁺.map V W -- Deletion module _ {v} {V : Value v} where -- Use a function to decide how to modify the sub-Trie⁺ whose root is -- at the end of path ks. deleteWith : ∀ {i} (ks : Word) → (∀ {i} → Trie⁺ (eat V ks) i → Maybe (Trie⁺ (eat V ks) i)) → Trie V i → Trie V i deleteWith ks f t = t Maybe.>>= Trie⁺.deleteWith ks f -- Remove the whole node deleteTrie⁺ : ∀ {i} (ks : Word) → Trie V i → Trie V i deleteTrie⁺ ks t = t Maybe.>>= Trie⁺.deleteTrie⁺ ks -- Remove the value and keep the sub-Tries (if any) deleteValue : ∀ {i} (ks : Word) → Trie V i → Trie V i deleteValue ks t = t Maybe.>>= Trie⁺.deleteValue ks -- Remove the sub-Tries and keep the value (if any) deleteTries⁺ : ∀ {i} (ks : Word) → Trie V i → Trie V i deleteTries⁺ ks t = t Maybe.>>= Trie⁺.deleteTries⁺ ks