id
stringlengths 27
136
| text
stringlengths 4
1.05M
|
---|---|
algebraic-stack_agda0000_doc_5256 | module bee2 where
open import Bee2.Crypto.Belt
open import Data.ByteString.Utf8
open import Data.ByteString.IO
open import Data.String using (toList)
open import Data.Product using (proj₁)
open import IO
-- beltPBKDF : Password → ℕ → Salt → Kek
main = run (writeBinaryFile "pbkdf2" (proj₁ (beltPBKDF (packStrict "zed") 1000 (packStrict "salt"))))
|
algebraic-stack_agda0000_doc_5257 | {-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Union where
-- Stdlib imports
open import Level using (Level; _⊔_)
open import Data.Sum using (_⊎_; inj₁; inj₂; swap)
open import Relation.Binary using (REL)
-- Local imports
open import Dodo.Binary.Equality
-- # Definitions
infixl 19 _∪₂_
_∪₂_ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
→ REL A B ℓ₁
→ REL A B ℓ₂
→ REL A B (ℓ₁ ⊔ ℓ₂)
_∪₂_ p q x y = p x y ⊎ q x y
-- # Properties
module _ {a b ℓ : Level} {A : Set a} {B : Set b}
{R : REL A B ℓ} where
∪₂-idem : (R ∪₂ R) ⇔₂ R
∪₂-idem = ⇔: ⊆-proof ⊇-proof
where
⊆-proof : (R ∪₂ R) ⊆₂' R
⊆-proof _ _ (inj₁ Rxy) = Rxy
⊆-proof _ _ (inj₂ Rxy) = Rxy
⊇-proof : R ⊆₂' (R ∪₂ R)
⊇-proof _ _ = inj₁
module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} where
∪₂-comm : (P ∪₂ Q) ⇔₂ (Q ∪₂ P)
∪₂-comm = ⇔: (λ _ _ → swap) (λ _ _ → swap)
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁}
{Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-assoc : (P ∪₂ Q) ∪₂ R ⇔₂ P ∪₂ (Q ∪₂ R)
∪₂-assoc = ⇔: ⊆-proof ⊇-proof
where
⊆-proof : ((P ∪₂ Q) ∪₂ R) ⊆₂' (P ∪₂ (Q ∪₂ R))
⊆-proof _ _ (inj₁ (inj₁ Pxy)) = inj₁ Pxy
⊆-proof _ _ (inj₁ (inj₂ Qxy)) = inj₂ (inj₁ Qxy)
⊆-proof _ _ (inj₂ Rxy) = inj₂ (inj₂ Rxy)
⊇-proof : (P ∪₂ (Q ∪₂ R)) ⊆₂' ((P ∪₂ Q) ∪₂ R)
⊇-proof _ _ (inj₁ Pxy) = inj₁ (inj₁ Pxy)
⊇-proof _ _ (inj₂ (inj₁ Qxy)) = inj₁ (inj₂ Qxy)
⊇-proof _ _ (inj₂ (inj₂ Rxy)) = inj₂ Rxy
-- # Operations
-- ## Operations: ⊆₂
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-combine-⊆₂ : P ⊆₂ Q → R ⊆₂ Q → (P ∪₂ R) ⊆₂ Q
∪₂-combine-⊆₂ (⊆: P⊆Q) (⊆: R⊆Q) = ⊆: (λ{x y → λ{(inj₁ Px) → P⊆Q x y Px; (inj₂ Rx) → R⊆Q x y Rx}})
module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} where
∪₂-introˡ : P ⊆₂ (Q ∪₂ P)
∪₂-introˡ = ⊆: λ{_ _ → inj₂}
∪₂-introʳ : P ⊆₂ (P ∪₂ Q)
∪₂-introʳ = ⊆: λ{_ _ → inj₁}
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-introˡ-⊆₂ : P ⊆₂ R → P ⊆₂ (Q ∪₂ R)
∪₂-introˡ-⊆₂ (⊆: P⊆R) = ⊆: (λ x y Pxy → inj₂ (P⊆R x y Pxy))
∪₂-introʳ-⊆₂ : P ⊆₂ Q → P ⊆₂ (Q ∪₂ R)
∪₂-introʳ-⊆₂ (⊆: P⊆Q) = ⊆: (λ x y Pxy → inj₁ (P⊆Q x y Pxy))
∪₂-elimˡ-⊆₂ : (P ∪₂ Q) ⊆₂ R → Q ⊆₂ R
∪₂-elimˡ-⊆₂ (⊆: [P∪Q]⊆R) = ⊆: (λ x y Qxy → [P∪Q]⊆R x y (inj₂ Qxy))
∪₂-elimʳ-⊆₂ : (P ∪₂ Q) ⊆₂ R → P ⊆₂ R
∪₂-elimʳ-⊆₂ (⊆: [P∪Q]⊆R) = ⊆: (λ x y Pxy → [P∪Q]⊆R x y (inj₁ Pxy))
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-substˡ-⊆₂ : P ⊆₂ Q → (P ∪₂ R) ⊆₂ (Q ∪₂ R)
∪₂-substˡ-⊆₂ (⊆: P⊆Q) = ⊆: (λ{x y → λ{(inj₁ Pxy) → inj₁ (P⊆Q x y Pxy); (inj₂ Rxy) → inj₂ Rxy}})
∪₂-substʳ-⊆₂ : P ⊆₂ Q → (R ∪₂ P) ⊆₂ (R ∪₂ Q)
∪₂-substʳ-⊆₂ (⊆: P⊆Q) = ⊆: (λ{x y → λ{(inj₁ Rxy) → inj₁ Rxy; (inj₂ Pxy) → inj₂ (P⊆Q x y Pxy)}})
-- ## Operations: ⇔₂
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
∪₂-substˡ : P ⇔₂ Q → (P ∪₂ R) ⇔₂ (Q ∪₂ R)
∪₂-substˡ = ⇔₂-compose ∪₂-substˡ-⊆₂ ∪₂-substˡ-⊆₂
∪₂-substʳ : P ⇔₂ Q → (R ∪₂ P) ⇔₂ (R ∪₂ Q)
∪₂-substʳ = ⇔₂-compose ∪₂-substʳ-⊆₂ ∪₂-substʳ-⊆₂
|
algebraic-stack_agda0000_doc_5258 | postulate
F : @0 Set → Set
G : @0 Set → Set
G A = F (λ { → A })
|
algebraic-stack_agda0000_doc_5259 | {-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import homotopy.PushoutSplit
open import cw.CW
module cw.cohomology.WedgeOfCells {i} (OT : OrdinaryTheory i)
{n} (⊙skel : ⊙Skeleton {i} (S n)) where
open OrdinaryTheory OT
open import cohomology.Bouquet OT
open import cw.WedgeOfCells (⊙Skeleton.skel ⊙skel)
module _ (m : ℤ) where
CXₙ/Xₙ₋₁ : Group i
CXₙ/Xₙ₋₁ = C m ⊙Xₙ/Xₙ₋₁
CEl-Xₙ/Xₙ₋₁ : Type i
CEl-Xₙ/Xₙ₋₁ = Group.El CXₙ/Xₙ₋₁
abstract
CXₙ/Xₙ₋₁-is-abelian : is-abelian CXₙ/Xₙ₋₁
CXₙ/Xₙ₋₁-is-abelian = C-is-abelian m ⊙Xₙ/Xₙ₋₁
CXₙ/Xₙ₋₁-abgroup : AbGroup i
CXₙ/Xₙ₋₁-abgroup = CXₙ/Xₙ₋₁ , CXₙ/Xₙ₋₁-is-abelian
CXₙ/Xₙ₋₁-diag-β : ⊙has-cells-with-choice 0 ⊙skel i
→ CXₙ/Xₙ₋₁ (ℕ-to-ℤ (S n)) ≃ᴳ Πᴳ (⊙cells-last ⊙skel) (λ _ → C2 0)
CXₙ/Xₙ₋₁-diag-β ac = C-Bouquet-diag (S n) (⊙cells-last ⊙skel) (⊙cells-last-has-choice ⊙skel ac)
∘eᴳ C-emap (ℕ-to-ℤ (S n)) Bouquet-⊙equiv-Xₙ/Xₙ₋₁
abstract
CXₙ/Xₙ₋₁-≠-is-trivial : ∀ {m} (m≠Sn : m ≠ ℕ-to-ℤ (S n))
→ ⊙has-cells-with-choice 0 ⊙skel i
→ is-trivialᴳ (CXₙ/Xₙ₋₁ m)
CXₙ/Xₙ₋₁-≠-is-trivial {m} m≠Sn ac =
iso-preserves'-trivial (C-emap m Bouquet-⊙equiv-Xₙ/Xₙ₋₁) $
C-Bouquet-≠-is-trivial m (⊙cells-last ⊙skel) (S n) m≠Sn (⊙cells-last-has-choice ⊙skel ac)
CXₙ/Xₙ₋₁-<-is-trivial : ∀ {m} (m<Sn : m < S n)
→ ⊙has-cells-with-choice 0 ⊙skel i
→ is-trivialᴳ (CXₙ/Xₙ₋₁ (ℕ-to-ℤ m))
CXₙ/Xₙ₋₁-<-is-trivial m<Sn = CXₙ/Xₙ₋₁-≠-is-trivial (ℕ-to-ℤ-≠ (<-to-≠ m<Sn))
CXₙ/Xₙ₋₁->-is-trivial : ∀ {m} (m>Sn : S n < m)
→ ⊙has-cells-with-choice 0 ⊙skel i
→ is-trivialᴳ (CXₙ/Xₙ₋₁ (ℕ-to-ℤ m))
CXₙ/Xₙ₋₁->-is-trivial m>Sn = CXₙ/Xₙ₋₁-≠-is-trivial (≠-inv (ℕ-to-ℤ-≠ (<-to-≠ m>Sn)))
|
algebraic-stack_agda0000_doc_5260 | {-# OPTIONS --safe --without-K #-}
module Literals.Number where
open import Agda.Builtin.FromNat public
open Number ⦃ ... ⦄ public
|
algebraic-stack_agda0000_doc_5261 | module StateSizedIO.Base where
open import Size
open import SizedIO.Base
open import Data.Product
record IOInterfaceˢ : Set₁ where
field
IOStateˢ : Set
Commandˢ : IOStateˢ → Set
Responseˢ : (s : IOStateˢ) → (m : Commandˢ s) → Set
IOnextˢ : (s : IOStateˢ) → (m : Commandˢ s) → (Responseˢ s m)
→ IOStateˢ
open IOInterfaceˢ public
record Interfaceˢ : Set₁ where
field
Stateˢ : Set
Methodˢ : Stateˢ → Set
Resultˢ : (s : Stateˢ) → (m : Methodˢ s) → Set
nextˢ : (s : Stateˢ) → (m : Methodˢ s) → (Resultˢ s m)
→ Stateˢ
open Interfaceˢ public
{-
module _
(ioinf : IOInterface) -- (let C = Command ioi) (let R = Response ioi)
(objinf : Interfaceˢ) {-(let S = Stateˢ oi)-} --(let M = Methodˢ objinf) (let Rt = Resultˢ objinf)
-- (let n = nextˢ objinf)
where
@BEGIN@IOObject
record IOObjectˢ (i : Size) (s : Stateˢ objinf) : Set where
coinductive
field
HIDE-END
method :
∀{j : Size< i}
(m : Methodˢ objinf s) →
IO ioinf ∞ ( Σ[ r ∈ objinf .Resultˢ s m ]
IOObjectˢ j (objinf .nextˢ s m r))
@END
-}
module _
(ioinf : IOInterface)
(oinf : Interfaceˢ)
where
record IOObjectˢ (i : Size) (s : oinf .Stateˢ) : Set where
coinductive
field
method :
∀{j : Size< i}
(m : oinf .Methodˢ s) →
IO ioinf ∞ (Σ[ r ∈ oinf .Resultˢ s m ]
IOObjectˢ j (oinf .nextˢ s m r))
module _
(ioi : IOInterface) (let C = Command ioi) (let R = Response ioi)
(oi : Interfaceˢ) (let S = Stateˢ oi) (let M = Methodˢ oi) (let Rt = Resultˢ oi)
(let n = nextˢ oi)
where
record IOObjectˢ- (i : Size) (s : S) : Set where
coinductive
field
method : ∀{j : Size< i} (m : M s) → IO ioi ∞ (Rt s m )
open IOObjectˢ public
open IOObjectˢ- public
module _ (I : IOInterfaceˢ )
(let S = IOStateˢ I) (let C = Commandˢ I)
(let R = Responseˢ I) (let n = IOnextˢ I)
where
mutual
record IOˢ (i : Size) (A : S → Set) (s : S) : Set where
coinductive
-- constructor delay
field
forceˢ : {j : Size< i} → IOˢ' j A s
data IOˢ' (i : Size) (A : S → Set) (s : S) : Set where
doˢ' : (c : C s) (f : (r : R s c) → IOˢ i A (n s c r)) → IOˢ' i A s
returnˢ' : (a : A s) → IOˢ' i A s
data IOˢ+ (i : Size) (A : S → Set) (s : S) : Set where
doˢ' : (c : C s) (f : (r : R s c) → IOˢ i A (n s c r)) → IOˢ+ i A s
open IOˢ public
delayˢ : {i : Size}{I : IOInterfaceˢ}{A : IOStateˢ I → Set}{s : IOStateˢ I} → IOˢ' I i A s → IOˢ I (↑ i) A s
delayˢ p .forceˢ = p
module _ {I : IOInterfaceˢ }
(let S = IOStateˢ I) (let C = Commandˢ I)
(let R = Responseˢ I) (let n = IOnextˢ I)
where
returnˢ : ∀{i}{A : S → Set} (s : S) (a : A s) → IOˢ I i A s
returnˢ s a .forceˢ = returnˢ' a
-- 2017-04-05: Argument s is hidden now.
doˢ : ∀{i}{A : S → Set} {s : S} (c : C s)
(f : (r : R s c) → IOˢ I i A (n s c r))
→ IOˢ I i A s
doˢ c f .forceˢ = doˢ' c f
mutual
fmapˢ : (i : Size) → {A B : S → Set} → (f : (s : S) → A s → B s)
→ (s : S)
→ IOˢ I i A s
→ IOˢ I i B s
fmapˢ i {A} {B} f s p .forceˢ {j} = fmapˢ' j {A} {B} f s (p .forceˢ {j})
fmapˢ' : (i : Size) → {A B : S → Set} → (f : (s : S) → A s → B s)
→ (s : S)
→ IOˢ' I i A s
→ IOˢ' I i B s
fmapˢ' i {A} {B} f s (doˢ' c f₁) = doˢ' c (λ r → fmapˢ i {A} {B} f (IOnextˢ I s c r) (f₁ r))
fmapˢ' i {A} {B} f s (returnˢ' a) = returnˢ' (f s a)
|
algebraic-stack_agda0000_doc_5262 | module Untyped.Abstract where
open import Function
open import Data.String
open import Data.Nat
open import Data.Unit
open import Data.Product
open import Data.List
open import Data.Sum as Sum
open import Data.Maybe
open import Strict
open import Debug.Trace
open import Category.Monad
open import Untyped.Monads
postulate fail : ∀ {a : Set} → a
willneverhappenipromise : ∀ {a : Set} → String → a
willneverhappenipromise m = trace m fail
module _ where
Var = ℕ
Chan = ℕ
mutual
record Closure : Set where
inductive
constructor ⟨_⊢_⟩
field
env : Env
body : Exp
data Val : Set where
tt : Val
nat : ℕ → Val
chan : Chan → Val
⟨_,_⟩ : Val → Val → Val -- pairs
clos : Closure → Val -- closures
Env = List Val
data Exp : Set where
-- the functional core
nat : ℕ → Exp
var : Var → Exp
ƛ : Exp → Exp
_·_ : Exp → Exp → Exp
-- products
pair : Exp → Exp → Exp
letp : Exp → Exp → Exp
-- communication
close : Exp → Exp
receive : Exp → Exp
send : (ch : Exp) → (v : Exp) → Exp
-- threading
fork : Exp → Exp
extend : Val → Env → Env
extend = _∷_
unsafeLookup : ∀ {a} → ℕ → List a → a
unsafeLookup _ [] = willneverhappenipromise "lookup fail"
unsafeLookup zero (x ∷ xs) = x
unsafeLookup (suc n) (x ∷ xs) = unsafeLookup n xs
unsafeUpdate : ∀ {a} → ℕ → List a → a → List a
unsafeUpdate n [] a = willneverhappenipromise "update fail"
unsafeUpdate zero (x ∷ xs) a = a ∷ xs
unsafeUpdate (suc n) (x ∷ xs) a = x ∷ unsafeUpdate n xs a
-- Ideally this should be two different dispatch sets
data Comm : Set where
-- communication
send : Chan → Val → Comm
recv : Chan → Comm
clos : Chan → Comm
data Threading : Set where
-- threading
fork : Closure → Threading
yield : Threading
Cmd = Comm ⊎ Threading
⟦_⟧-comm : Comm → Set
⟦ clos x ⟧-comm = ⊤
⟦ send x x₁ ⟧-comm = ⊤
⟦ recv x ⟧-comm = Val
⟦_⟧-thr : Threading → Set
⟦ fork x ⟧-thr = Chan
⟦ yield ⟧-thr = ⊤
⟦_⟧ : Cmd → Set
⟦ inj₁ x ⟧ = ⟦ x ⟧-comm
⟦ inj₂ y ⟧ = ⟦ y ⟧-thr
data Thread : Set where
thread : Free Cmd ⟦_⟧ Val → Thread
ThreadPool = List Thread
Links = Chan → Chan
data Blocked : Set where
blocked : Blocked
{- Free an expression from its earthly -}
module _ {m}
⦃ m-monad : RawMonad m ⦄
⦃ m-read : MonadReader m Env ⦄
⦃ m-res : MonadResumption m Closure Chan ⦄
⦃ m-comm : MonadComm m Chan Val ⦄
where
open M
{-# NON_TERMINATING #-}
eval : Exp → m Val
eval (nat n) = do
return (nat n)
eval (var x) = do
asks (unsafeLookup x)
eval (ƛ e) = do
asks (clos ∘ ⟨_⊢ e ⟩)
eval (f · e) = do
clos ⟨ env ⊢ body ⟩ ← eval f
where _ → willneverhappenipromise "not a closure"
v ← eval e
local (λ _ → extend v env) (eval body)
-- products
eval (pair e₁ e₂) = do
v₁ ← eval e₁
v₂ ← eval e₂
return ⟨ v₁ , v₂ ⟩
eval (letp b e) = do
⟨ v₁ , v₂ ⟩ ← eval b
where _ → willneverhappenipromise "not a pair"
local (extend v₂ ∘ extend v₁) $ eval e
-- communication
eval (close e) = do
chan c ← eval e
where _ → willneverhappenipromise "not a channel to close"
M.close c
return tt
eval (receive e) = do
chan c ← eval e
where _ → willneverhappenipromise "not a channel to receive on"
M.recv c
eval (send e₁ e₂) = do
chan c ← eval e₁
where _ → willneverhappenipromise "not a channel to send on"
v ← eval e₂
M.send c v
return tt
-- threading
eval (fork e) = do
clos cl ← eval e
where _ → willneverhappenipromise "not a closure to fork"
c ← M.fork cl
return (chan c)
{- Interpreting communication commands -}
module _ {com}
⦃ com-comm : MonadComm com Chan Val ⦄ where
communicate : (cmd : Comm) → com ⟦ cmd ⟧-comm
communicate (Comm.send c v) = M.send c v
communicate (Comm.recv x) = M.recv x
communicate (clos x) = M.close x
{- Interpreting threading commands -}
module _ {thr}
⦃ thr-res : MonadResumption thr Closure Chan ⦄ where
threading : (cmd : Threading) → thr ⟦ cmd ⟧-thr
threading (Threading.fork cl) = M.fork cl
threading Threading.yield = M.yield
module _ {cmd}
⦃ cmd-comm : MonadComm cmd Chan Val ⦄
⦃ cmd-res : MonadResumption cmd Closure Chan ⦄ where
handle : (c : Cmd) → cmd ⟦ c ⟧
handle = Sum.[ communicate , threading ]
{- Round robin scheduling -}
module _ {w : Set} {m}
⦃ monad : RawMonad m ⦄
⦃ read : MonadState m (List w) ⦄
(atomic : w → m ⊤) where
open M
{-# NON_TERMINATING #-}
robin : m ⊤
robin = do
(h ∷ tl) ← get
where [] → return tt
put tl
atomic h
robin
|
algebraic-stack_agda0000_doc_5263 | -- Andreas, 2011-05-09
-- {-# OPTIONS -v tc.inj:40 -v tc.meta:30 #-}
module Issue383b where
postulate
Σ : (A : Set) → (A → Set) → Set
U : Set
El : U → Set
mutual
data Ctxt : Set where
_▻_ : (Γ : Ctxt) → (Env Γ → U) → Ctxt
Env : Ctxt → Set
Env (Γ ▻ σ) = Σ (Env Γ) λ γ → El (σ γ)
postulate
Δ : Ctxt
σ : Env Δ → U
δ : U → Env (Δ ▻ σ)
data Foo : (Γ : Ctxt) → (U → Env Γ) → Set where
foo : Foo _ δ
-- WORKS NOW; OLD COMPLAINT:
-- Agda does not solve or simplify the following constraint. Why? Env
-- is constructor-headed.
--
-- _40 := δ if [(Σ (Env Δ) (λ γ → El (σ γ))) =< (Env _39) : Set]
|
algebraic-stack_agda0000_doc_6944 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Examples showing how the reflective ring solver may be used.
------------------------------------------------------------------------
module README.Tactic.RingSolver where
-- You can ignore this bit! We're just overloading the literals Agda uses for
-- numbers. This bit isn't necessary if you're just using Nats, or if you
-- construct your type directly. We only really do it here so that we can use
-- different numeric types in the same file.
open import Agda.Builtin.FromNat
open import Data.Nat using (ℕ)
open import Data.Integer using (ℤ)
import Data.Nat.Literals as ℕ
import Data.Integer.Literals as ℤ
instance
numberNat : Number ℕ
numberNat = ℕ.number
instance
numberInt : Number ℤ
numberInt = ℤ.number
------------------------------------------------------------------------------
-- Imports!
open import Data.List as List using (List; _∷_; [])
open import Function
open import Relation.Binary.PropositionalEquality as ≡
using (subst; _≡_; module ≡-Reasoning)
open import Data.Bool as Bool using (Bool; true; false; if_then_else_)
open import Data.Unit using (⊤; tt)
open import Tactic.RingSolver.Core.AlmostCommutativeRing using (AlmostCommutativeRing)
------------------------------------------------------------------------------
-- Integer examples
------------------------------------------------------------------------------
module IntegerExamples where
open import Data.Integer.Tactic.RingSolver
open AlmostCommutativeRing ring
-- Everything is automatic: you just ask Agda to solve it and it does!
lemma₁ : ∀ x y → x + y * 1 + 3 ≈ 3 + 1 + y + x + - 1
lemma₁ = solve-∀
lemma₂ : ∀ x y → (x + y) ^ 2 ≈ x ^ 2 + 2 * x * y + y ^ 2
lemma₂ = solve-∀
-- It can interact with manual proofs as well.
lemma₃ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x
lemma₃ x y = begin
x + y * 1 + 3 ≡⟨ +-comm x (y * 1) ⟨ +-cong ⟩ refl ⟩
y * 1 + x + 3 ≡⟨ solve (x ∷ y ∷ []) ⟩
3 + y + x ≡⟨⟩
2 + 1 + y + x ∎
where open ≡-Reasoning
------------------------------------------------------------------------------
-- Natural examples
------------------------------------------------------------------------------
module NaturalExamples where
open import Data.Nat.Tactic.RingSolver
open AlmostCommutativeRing ring
-- The solver is flexible enough to work with ℕ (even though it asks
-- for rings!)
lemma₁ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x
lemma₁ = solve-∀
------------------------------------------------------------------------------
-- Checking invariants
------------------------------------------------------------------------------
-- The solver makes it easy to prove invariants, without having to rewrite
-- proof code every time something changes in the data structure.
module _ {a} {A : Set a} (_≤_ : A → A → Bool) where
open import Data.Nat.Tactic.RingSolver
open AlmostCommutativeRing ring
-- A Skew Heap, indexed by its size.
data Tree : ℕ → Set a where
leaf : Tree 0
node : ∀ {n m} → A → Tree n → Tree m → Tree (1 + n + m)
-- A substitution operator, to clean things up.
infixr 1 _⇒_
_⇒_ : ∀ {n} → Tree n → ∀ {m} → n ≈ m → Tree m
x ⇒ n≈m = subst Tree n≈m x
open ≡-Reasoning
_∪_ : ∀ {n m} → Tree n → Tree m → Tree (n + m)
leaf ∪ ys = ys
node {a} {b} x xl xr ∪ leaf =
node x xl xr ⇒ solve (a ∷ b ∷ [])
node {a} {b} x xl xr ∪ node {c} {d} y yl yr =
if x ≤ y
then node x (node y yl yr ∪ xr) xl ⇒ begin
1 + (1 + c + d + b) + a ≡⟨ solve (a ∷ b ∷ c ∷ d ∷ []) ⟩
1 + a + b + (1 + c + d) ∎
else node y (node x xl xr ∪ yr) yl ⇒ begin
1 + (1 + a + b + d) + c ≡⟨ solve (a ∷ b ∷ c ∷ d ∷ []) ⟩
1 + a + b + (1 + c + d) ∎
|
algebraic-stack_agda0000_doc_6945 | {-# OPTIONS --sized-types #-}
-- {-# OPTIONS -v tc.size.solve:100 -v tc.meta.new:50 #-}
module CheckSizeMetaBounds where
open import Common.Size
postulate
Size< : (_ : Size) → Set
{-# BUILTIN SIZELT Size< #-}
data Nat {i : Size} : Set where
zero : Nat
suc : {j : Size< i} → Nat {j} → Nat
one : Nat
one = suc {i = ∞} zero
data ⊥ : Set where
record ⊤ : Set where
NonZero : Nat → Set
NonZero zero = ⊥
NonZero (suc n) = ⊤
-- magic conversion must of course fail
magic : {i : Size} → Nat {∞} → Nat {i}
magic zero = zero
magic (suc n) = suc (magic n)
lem : (n : Nat) → NonZero n → NonZero (magic n)
lem (zero) ()
lem (suc n) _ = _
-- otherwise, we exploit it for an infinite loop
loop : {i : Size} → (x : Nat {i}) → NonZero x → ⊥
loop zero ()
loop (suc {j} n) p = loop {j} (magic one) (lem one _)
bot : ⊥
bot = loop one _
|
algebraic-stack_agda0000_doc_6946 | -- The bug documented below was exposed by the fix to issue 274.
module Issue274 where
open import Common.Level
record Q a : Set (a ⊔ a) where
record R a : Set a where
field q : Q a
A : Set₁
A = Set
postulate
ℓ : Level
r : R (ℓ ⊔ ℓ)
foo : R ℓ
foo = r
-- Issue274.agda:32,7-8
-- ℓ ⊔ ℓ !=< ℓ of type Level
-- when checking that the expression r has type R ℓ
|
algebraic-stack_agda0000_doc_6947 | {-# OPTIONS --copatterns #-}
module SplitResult where
open import Common.Product
test : {A B : Set} (a : A) (b : B) → A × B
test a b = {!!}
-- expected:
-- proj₁ (test a b) = {!!}
-- proj₂ (test a b) = {!!}
testFun : {A B : Set} (a : A) (b : B) → A × B
testFun = {!!}
-- expected:
-- testFun a b = {!!}
record FunRec A : Set where
field funField : A → A
open FunRec
testFunRec : ∀{A} → FunRec A
testFunRec = {!!}
-- expected (since 2016-05-03):
-- funField testFunRec = {!!}
|
algebraic-stack_agda0000_doc_6948 | {-# OPTIONS --without-K --rewriting #-}
module lib.types.Suspension where
open import lib.types.Suspension.Core public
open import lib.types.Suspension.Flip public
open import lib.types.Suspension.Iterated public
open import lib.types.Suspension.IteratedFlip public
open import lib.types.Suspension.IteratedTrunc public
open import lib.types.Suspension.IteratedEquivs public
open import lib.types.Suspension.Trunc public
|
algebraic-stack_agda0000_doc_6949 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Rational numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Rational where
open import Data.Integer as ℤ using (ℤ; +_)
open import Data.String using (String; _++_)
------------------------------------------------------------------------
-- Publicly re-export contents of core module
open import Data.Rational.Base public
------------------------------------------------------------------------
-- Publicly re-export queries
open import Data.Nat.Properties public
using (_≟_; _≤?_)
------------------------------------------------------------------------
-- Method for displaying rationals
show : ℚ → String
show p = ℤ.show (↥ p) ++ "/" ++ ℤ.show (↧ p)
------------------------------------------------------------------------
-- Deprecated
-- Version 1.0
open import Data.Rational.Properties public
using (drop-*≤*; ≃⇒≡; ≡⇒≃)
|
algebraic-stack_agda0000_doc_6950 | module Data.Num.Redundant.Properties where
open import Data.Num.Bij
open import Data.Num.Redundant renaming (_+_ to _+R_)
open import Data.Nat renaming (_<_ to _<ℕ_)
open import Data.Nat.Etc
open import Data.Nat.Properties.Simple
open import Data.Sum
open import Data.List hiding ([_])
open import Relation.Nullary
open import Relation.Nullary.Negation using (contradiction; contraposition)
open import Relation.Binary
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong; cong₂; trans; sym; inspect)
open PropEq.≡-Reasoning
--------------------------------------------------------------------------------
-- Digits
--------------------------------------------------------------------------------
⊕-comm : (a b : Digit) → a ⊕ b ≡ b ⊕ a
⊕-comm zero zero = refl
⊕-comm zero one = refl
⊕-comm zero two = refl
⊕-comm one zero = refl
⊕-comm one one = refl
⊕-comm one two = refl
⊕-comm two zero = refl
⊕-comm two one = refl
⊕-comm two two = refl
⊕-assoc : (a b c : Digit) → (a ⊕ b) ⊕ c ≡ a ⊕ (b ⊕ c)
⊕-assoc zero b c = refl
⊕-assoc one zero c = refl
⊕-assoc one one zero = refl
⊕-assoc one one one = refl
⊕-assoc one one two = refl
⊕-assoc one two zero = refl
⊕-assoc one two one = refl
⊕-assoc one two two = refl
⊕-assoc two zero c = refl
⊕-assoc two one zero = refl
⊕-assoc two one one = refl
⊕-assoc two one two = refl
⊕-assoc two two zero = refl
⊕-assoc two two one = refl
⊕-assoc two two two = refl
⊕-right-identity : (a : Digit) → a ⊕ zero ≡ a
⊕-right-identity zero = refl
⊕-right-identity one = refl
⊕-right-identity two = refl
⊙-comm : (a b : Digit) → a ⊙ b ≡ b ⊙ a
⊙-comm zero zero = refl
⊙-comm zero one = refl
⊙-comm zero two = refl
⊙-comm one zero = refl
⊙-comm one one = refl
⊙-comm one two = refl
⊙-comm two zero = refl
⊙-comm two one = refl
⊙-comm two two = refl
--------------------------------------------------------------------------------
-- Sequence of Digits
--------------------------------------------------------------------------------
{-
[x∷xs≡0⇒xs≡0] : (d : Digit) → (xs : Redundant) → [ d ∷ xs ] ≡ [ zero ∷ [] ] → [ xs ] ≡ [ zero ∷ [] ]
[x∷xs≡0⇒xs≡0] d [] _ = refl
[x∷xs≡0⇒xs≡0] zero (zero ∷ xs) p = {! no-zero-divisor 2 (0 + 2 * [ xs ]) (λ ()) p !}
[x∷xs≡0⇒xs≡0] zero (one ∷ xs) p = {! !}
[x∷xs≡0⇒xs≡0] zero (two ∷ xs) p = {! !}
-- no-zero-divisor 2 ([ x ] + 2 * [ xs ]) (λ ()) p
[x∷xs≡0⇒xs≡0] one (x ∷ xs) p = contradiction p (λ ())
[x∷xs≡0⇒xs≡0] two (x ∷ xs) p = contradiction p (λ ())
[>>xs]≡2*[xs] : (xs : Redundant) → [ >> xs ] ≡ *2 [ xs ]
[>>xs]≡2*[xs] xs = refl
[n>>>xs]≡2^n*[xs] : (n : ℕ) → (xs : Redundant) → [ n >>> xs ] ≡ 2 ^ n *Bij [ xs ]
[n>>>xs]≡2^n*[xs] zero xs = sym (+-right-identity [ xs ])
[n>>>xs]≡2^n*[xs] (suc n) xs =
begin
[ n >>> (zero ∷ xs) ]
≡⟨ [n>>>xs]≡2^n*[xs] n (zero ∷ xs) ⟩
2 ^ n * [ zero ∷ xs ]
≡⟨ sym (*-assoc (2 ^ n) 2 [ xs ]) ⟩
2 ^ n * 2 * [ xs ]
≡⟨ cong (λ x → x * [ xs ]) (*-comm (2 ^ n) 2) ⟩
2 * 2 ^ n * [ xs ]
∎
-- >> 0 ≈ 0
>>-zero : (xs : Redundant) → xs ≈ zero ∷ [] → >> xs ≈ zero ∷ []
>>-zero [] _ = eq refl
>>-zero (x ∷ xs) (eq x∷xs≈0) = eq (begin
*2 [ x ∷ xs ]
≡⟨ cong (λ w → 2 * w) x∷xs≈0 ⟩
2 * 0
≡⟨ *-right-zero 2 ⟩
0
∎)
-- << 0 ≈ 0
<<-zero : (xs : Redundant) → xs ≈ zero ∷ [] → << xs ≈ zero ∷ []
<<-zero [] _ = eq refl
<<-zero (x ∷ xs) (eq x∷xs≡0) = eq ([x∷xs≡0⇒xs≡0] x xs x∷xs≡0)
-}
{-
>>>-zero : ∀ {n} (xs : Redundant) → {xs≈0 : xs ≈ zero ∷ []} → n >>> xs ≈ zero ∷ []
>>>-zero {n} xs {eq xs≡0} = eq (
begin
[ n >>> xs ]
≡⟨ [n>>>xs]≡2^n*[xs] n xs ⟩
2 ^ n * [ xs ]
≡⟨ cong (λ x → 2 ^ n * x) xs≡0 ⟩
2 ^ n * 0
≡⟨ *-right-zero (2 ^ n) ⟩
0
∎)
<<<-zero : (n : ℕ) (xs : Redundant) → {xs≈0 : xs ≈ zero ∷ []} → n <<< xs ≈ zero ∷ []
<<<-zero zero [] = eq refl
<<<-zero (suc n) [] = eq refl
<<<-zero zero (x ∷ xs) {x∷xs≈0} = x∷xs≈0
<<<-zero (suc n) (x ∷ xs) {eq x∷xs≡0} = <<<-zero n xs {eq ([x∷xs≡0⇒xs≡0] x xs x∷xs≡0)}
-}
--------------------------------------------------------------------------------
-- Properties of the relations on Redundant
--------------------------------------------------------------------------------
≈-Setoid : Setoid _ _
≈-Setoid = record
{ Carrier = Redundant
; _≈_ = _≈_
; isEquivalence = record
{ refl = ≈-refl
; sym = ≈-sym
; trans = ≈-trans
}
}
where
≈-refl : Reflexive _≈_
≈-refl = eq refl
≈-sym : Symmetric _≈_
≈-sym (eq a≈b) = eq (sym a≈b)
≈-trans : Transitive _≈_
≈-trans (eq a≈b) (eq b≈c) = eq (trans a≈b b≈c)
private
≤-isDecTotalOrder = DecTotalOrder.isDecTotalOrder decTotalOrder
≤-isTotalOrder = IsDecTotalOrder.isTotalOrder ≤-isDecTotalOrder
≤-total = IsTotalOrder.total ≤-isTotalOrder
≤-isPartialOrder = IsTotalOrder.isPartialOrder ≤-isTotalOrder
≤-antisym = IsPartialOrder.antisym ≤-isPartialOrder
≤-isPreorder = IsPartialOrder.isPreorder ≤-isPartialOrder
≤-isEquivalence = IsPreorder.isEquivalence ≤-isPreorder
≤-reflexive = IsPreorder.reflexive ≤-isPreorder
≤-trans = IsPreorder.trans ≤-isPreorder
≲-refl : _≈_ ⇒ _≲_
≲-refl (eq [x]≡[y]) = {! !} -- le (≤-reflexive [x]≡[y])
≲-trans : Transitive _≲_
≲-trans [a]≤[b] [b]≤[c] = {! !} -- le (≤-trans [a]≤[b] [b]≤[c])
≲-antisym : Antisymmetric _≈_ _≲_
≲-antisym [x]≤[y] [y]≤[x] = {! !} -- eq (≤-antisym [x]≤[y] [y]≤[x])
≲-isPreorder : IsPreorder _ _
≲-isPreorder = record
{ isEquivalence = Setoid.isEquivalence ≈-Setoid
; reflexive = ≲-refl
; trans = ≲-trans
}
≲-isPartialOrder : IsPartialOrder _ _
≲-isPartialOrder = record
{ isPreorder = ≲-isPreorder
; antisym = ≲-antisym
}
{-
≲-total : Total _≲_
≲-total x y with ≤-total [ x ] [ y ]
≲-total x y | inj₁ [x]≤[y] = inj₁ ? -- (le [x]≤[y])
≲-total x y | inj₂ [y]≤[x] = inj₂ ? -- (le [y]≤[x])
≲-isTotalOrder : IsTotalOrder _ _
≲-isTotalOrder = record
{ isPartialOrder = ≲-isPartialOrder
; total = ≲-total
}
≲-isDecTotalOrder : IsDecTotalOrder _ _
≲-isDecTotalOrder = record
{ isTotalOrder = ≲-isTotalOrder
; _≟_ = _≈?_
; _≤?_ = _≲?_
}
≲-decTotalOrder : DecTotalOrder _ _ _
≲-decTotalOrder = record
{ Carrier = Redundant
; _≈_ = _≈_
; _≤_ = _≲_
; isDecTotalOrder = ≲-isDecTotalOrder
}
a≲a+1 : (a : Redundant) → a ≲ incr one a
a≲a+1 [] = le z≤n
a≲a+1 (x ∷ xs) = le {! !}
<-asym : Asymmetric _<_
<-asym {[]} {[]} (le ()) (le [y]<[[]])
<-asym {[]} {y ∷ ys} (le [x]<[y]) (le [y]<[[]]) = {! !}
<-asym {x ∷ xs} {[]} (le [x]<[y]) (le [y]<[x∷xs]) = {! !}
<-asym {x ∷ xs} {y ∷ ys} (le [x]<[y]) (le [y]<[x∷xs]) = {! !}
<-irr : Irreflexive _≈_ _<_ -- goal: ¬ (x < y)
<-irr {a} {b} (eq [a]≡[b]) (le [a]<[b]) = {! !}
trichotomous : Trichotomous _≈_ _<_
trichotomous x y with x ≈? y
trichotomous x y | yes p = tri≈ {! !} p {! !}
trichotomous x y | no ¬p with incr one x ≲? y
trichotomous x y | no ¬p | yes q = tri< q ¬p {! !}
trichotomous x y | no ¬p | no ¬q = tri> ¬q ¬p {! !}
-}
{-
begin
{! !}
≡⟨ {! !} ⟩
{! !}
≡⟨ {! !} ⟩
{! !}
≡⟨ {! !} ⟩
{! !}
≡⟨ {! !} ⟩
{! !}
∎
-}
|
algebraic-stack_agda0000_doc_6951 | -- Andreas, 2018-03-03, issue #2989
-- Internal error, fixable with additional 'reduce'.
-- {-# OPTIONS --show-implicit --show-irrelevant #-}
-- {-# OPTIONS -v tc.rec:70 -v tc:10 #-}
postulate
N : Set
P : N → Set
record Σ (A : Set) (B : A → Set) : Set where
constructor pair
field
fst : A
snd : B fst
Σ' : (A : Set) → (A → Set) → Set
Σ' = Σ
record R : Set where
constructor mkR
field
.p : Σ' N P
f : R → Set
f x = let mkR (pair k p) = x in N
-- WAS:
-- Internal error in Agda.TypeChecking.Records.getRecordTypeFields
-- Error goes away if Σ' is replaced by Σ
-- or field is made relevant
-- SAME Problem:
-- f x = let record { p = pair k p } = x in N
-- f x = let record { p = record { fst = k ; snd = p }} = x in N
|
algebraic-stack_agda0000_doc_6952 |
module Derivative where
open import Sets
open import Functor
import Isomorphism
∂ : U -> U
∂ (K A) = K [0]
∂ Id = K [1]
∂ (F + G) = ∂ F + ∂ G
∂ (F × G) = ∂ F × G + F × ∂ G
open Semantics
-- Plugging a hole
plug-∂ : {X : Set}(F : U) -> ⟦ ∂ F ⟧ X -> X -> ⟦ F ⟧ X
plug-∂ (K _) () x
plug-∂ Id <> x = x
plug-∂ (F + G) (inl c) x = inl (plug-∂ F c x)
plug-∂ (F + G) (inr c) x = inr (plug-∂ G c x)
plug-∂ (F × G) (inl < c , g >) x = < plug-∂ F c x , g >
plug-∂ (F × G) (inr < f , c >) x = < f , plug-∂ G c x >
|
algebraic-stack_agda0000_doc_6953 | {-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra where
open import Cubical.Algebra.CommAlgebra.Base public
open import Cubical.Algebra.CommAlgebra.Properties public
|
algebraic-stack_agda0000_doc_6954 | -- Andreas, 2012-01-12
module Common.Irrelevance where
open import Common.Level
postulate
.irrAxiom : ∀ {a}{A : Set a} → .A → A
{-# BUILTIN IRRAXIOM irrAxiom #-}
record Squash {a}(A : Set a) : Set a where
constructor squash
field
.unsquash : A
open Squash public
|
algebraic-stack_agda0000_doc_6955 | -- define ∑ and ∏ as the bigOps of a Ring when interpreted
-- as an additive/multiplicative monoid
{-# OPTIONS --safe #-}
module Cubical.Algebra.Ring.BigOps where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Data.Bool
open import Cubical.Data.Nat using (ℕ ; zero ; suc)
open import Cubical.Data.Sigma
open import Cubical.Data.FinData
open import Cubical.Algebra.Monoid.BigOp
open import Cubical.Algebra.Ring.Base
open import Cubical.Algebra.Ring.Properties
private
variable
ℓ ℓ' : Level
module KroneckerDelta (R' : Ring ℓ) where
private
R = fst R'
open RingStr (snd R')
δ : {n : ℕ} (i j : Fin n) → R
δ i j = if i == j then 1r else 0r
module Sum (R' : Ring ℓ) where
private
R = fst R'
open RingStr (snd R')
open MonoidBigOp (Ring→AddMonoid R')
open RingTheory R'
open KroneckerDelta R'
∑ = bigOp
∑Ext = bigOpExt
∑0r = bigOpε
∑Last = bigOpLast
∑Split : ∀ {n} → (V W : FinVec R n) → ∑ (λ i → V i + W i) ≡ ∑ V + ∑ W
∑Split = bigOpSplit +Comm
∑Split++ : ∀ {n m : ℕ} (V : FinVec R n) (W : FinVec R m)
→ ∑ (V ++Fin W) ≡ ∑ V + ∑ W
∑Split++ = bigOpSplit++ +Comm
∑Mulrdist : ∀ {n} → (x : R) → (V : FinVec R n)
→ x · ∑ V ≡ ∑ λ i → x · V i
∑Mulrdist {n = zero} x _ = 0RightAnnihilates x
∑Mulrdist {n = suc n} x V =
x · (V zero + ∑ (V ∘ suc)) ≡⟨ ·DistR+ _ _ _ ⟩
x · V zero + x · ∑ (V ∘ suc) ≡⟨ (λ i → x · V zero + ∑Mulrdist x (V ∘ suc) i) ⟩
x · V zero + ∑ (λ i → x · V (suc i)) ∎
∑Mulldist : ∀ {n} → (x : R) → (V : FinVec R n)
→ (∑ V) · x ≡ ∑ λ i → V i · x
∑Mulldist {n = zero} x _ = 0LeftAnnihilates x
∑Mulldist {n = suc n} x V =
(V zero + ∑ (V ∘ suc)) · x ≡⟨ ·DistL+ _ _ _ ⟩
V zero · x + (∑ (V ∘ suc)) · x ≡⟨ (λ i → V zero · x + ∑Mulldist x (V ∘ suc) i) ⟩
V zero · x + ∑ (λ i → V (suc i) · x) ∎
∑Mulr0 : ∀ {n} → (V : FinVec R n) → ∑ (λ i → V i · 0r) ≡ 0r
∑Mulr0 V = sym (∑Mulldist 0r V) ∙ 0RightAnnihilates _
∑Mul0r : ∀ {n} → (V : FinVec R n) → ∑ (λ i → 0r · V i) ≡ 0r
∑Mul0r V = sym (∑Mulrdist 0r V) ∙ 0LeftAnnihilates _
∑Mulr1 : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → V i · δ i j) ≡ V j
∑Mulr1 (suc n) V zero = (λ k → ·IdR (V zero) k + ∑Mulr0 (V ∘ suc) k) ∙ +IdR (V zero)
∑Mulr1 (suc n) V (suc j) =
(λ i → 0RightAnnihilates (V zero) i + ∑ (λ x → V (suc x) · δ x j))
∙∙ +IdL _ ∙∙ ∑Mulr1 n (V ∘ suc) j
∑Mul1r : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → (δ j i) · V i) ≡ V j
∑Mul1r (suc n) V zero = (λ k → ·IdL (V zero) k + ∑Mul0r (V ∘ suc) k) ∙ +IdR (V zero)
∑Mul1r (suc n) V (suc j) =
(λ i → 0LeftAnnihilates (V zero) i + ∑ (λ i → (δ j i) · V (suc i)))
∙∙ +IdL _ ∙∙ ∑Mul1r n (V ∘ suc) j
∑Dist- : ∀ {n : ℕ} (V : FinVec R n) → ∑ (λ i → - V i) ≡ - ∑ V
∑Dist- V = ∑Ext (λ i → -IsMult-1 (V i)) ∙ sym (∑Mulrdist _ V) ∙ sym (-IsMult-1 _)
module SumMap
(Ar@(A , Astr) : Ring ℓ)
(Br@(B , Bstr) : Ring ℓ')
(f'@(f , fstr) : RingHom Ar Br)
where
open IsRingHom fstr
open RingStr Astr using ()
renaming
( _+_ to _+A_ )
open RingStr Bstr using ()
renaming
( _+_ to _+B_ )
∑Map : {n : ℕ} → (V : FinVec A n) → f (Sum.∑ Ar V) ≡ Sum.∑ Br (λ k → f (V k))
∑Map {n = zero} V = pres0
∑Map {n = suc n} V =
f ((V zero) +A helper) ≡⟨ pres+ (V zero) helper ⟩
((f (V zero)) +B (f helper)) ≡⟨ cong (λ X → f (V zero) +B X) (∑Map (λ k → (V ∘ suc) k)) ⟩
Sum.∑ Br (λ k → f (V k)) ∎
where
helper : _
helper = foldrFin _+A_ (RingStr.0r (snd Ar)) (λ x → V (suc x))
-- anything interesting to prove here?
module Product (R' : Ring ℓ) where
private
R = fst R'
open RingStr (snd R')
open RingTheory R'
open MonoidBigOp (Ring→MultMonoid R')
∏ = bigOp
∏Ext = bigOpExt
∏0r = bigOpε
∏Last = bigOpLast
-- only holds in CommRings!
-- ∏Split : ∀ {n} → (V W : FinVec R n) → ∏ (λ i → V i · W i) ≡ ∏ V · ∏ W
-- ∏Split = bigOpSplit MultR' ·-comm
|
algebraic-stack_agda0000_doc_6956 | module UpTo where
open import Level
open import Relation.Binary using (Rel; IsEquivalence)
open import Data.Product
open import Categories.Support.Equivalence
open import Categories.Category
open import Categories.2-Category
open import Categories.Functor
open import Categories.NaturalTransformation
renaming (id to natId; _≡_ to _≡N_; setoid to natSetoid)
hiding (_∘ˡ_; _∘ʳ_)
open import Categories.Support.EqReasoning
open import NaturalTransFacts
Cat₀ = Category zero zero zero
EndoFunctor : Cat₀ → Set zero
EndoFunctor C = Functor C C
record Endo⇒ (C₁ : Cat₀) (F₁ : EndoFunctor C₁)
(C₂ : Cat₀) (F₂ : EndoFunctor C₂)
: Set zero where
field
T : Functor C₁ C₂
ρ : NaturalTransformation (T ∘ F₁) (F₂ ∘ T)
record UpTo⇒ {C₁ : Cat₀} {F : EndoFunctor C₁}
{C₂ : Cat₀} {G : EndoFunctor C₂}
(S₁ S₂ : Endo⇒ C₁ F C₂ G)
: Set zero where
module S₁ = Endo⇒ S₁
module S₂ = Endo⇒ S₂
field
γ : NaturalTransformation S₁.T S₂.T
-- The following diagram must commute
-- T₁F - ρ₁ -> GT₁
-- | |
-- γF Gγ
-- | |
-- v v
-- T₂G - ρ₂ -> GT₂
.square : S₂.ρ ∘₁ (γ ∘ʳ F) ≡N (G ∘ˡ γ) ∘₁ S₁.ρ
record _≡U_ {C₁ : Cat₀} {C₂ : Cat₀}
{F : EndoFunctor C₁} {G : EndoFunctor C₂}
{T₁ T₂ : Endo⇒ C₁ F C₂ G}
(A : UpTo⇒ T₁ T₂) (B : UpTo⇒ T₁ T₂) : Set where
field
≡U-proof : UpTo⇒.γ A ≡N UpTo⇒.γ B
open _≡U_
infix 4 _≡U_
.≡U-equiv : {C₁ : Cat₀} {C₂ : Cat₀}
{F : EndoFunctor C₁} {G : EndoFunctor C₂} →
{A B : Endo⇒ C₁ F C₂ G} →
IsEquivalence {A = UpTo⇒ A B} (_≡U_ {C₁} {C₂} {F} {G})
≡U-equiv =
record
{ refl = λ {A} → record { ≡U-proof = Setoid.refl natSetoid {UpTo⇒.γ A} }
; sym = λ {A} {B} p → record {
≡U-proof = Setoid.sym natSetoid {UpTo⇒.γ A} {UpTo⇒.γ B} (≡U-proof p) }
; trans = λ {A} {B} {C} p₁ p₂ → record {
≡U-proof = Setoid.trans natSetoid {UpTo⇒.γ A} {UpTo⇒.γ B} {UpTo⇒.γ C}
(≡U-proof p₁) (≡U-proof p₂) }
}
id-UpTo⇒ : {C₁ : Cat₀} {F : EndoFunctor C₁}
{C₂ : Cat₀} {G : EndoFunctor C₂}
{A : Endo⇒ C₁ F C₂ G} → UpTo⇒ A A
id-UpTo⇒ {C₁} {F} {C₂} {G} {A} =
record
{ γ = natId
; square =
begin
Endo⇒.ρ A ∘₁ (natId {F = Endo⇒.T A} ∘ʳ F)
↓⟨ ∘₁-resp-≡
{f = Endo⇒.ρ A} {h = Endo⇒.ρ A}
{g = natId {F = Endo⇒.T A} ∘ʳ F}
{i = natId {F = Endo⇒.T A ∘ F}}
(Setoid.refl natSetoid {Endo⇒.ρ A})
(identityNatʳ {F = Endo⇒.T A} F)
⟩
Endo⇒.ρ A ∘₁ (natId {F = Endo⇒.T A ∘ F})
↓⟨ identity₁ʳ {X = Endo⇒.ρ A} ⟩
Endo⇒.ρ A
↑⟨ identity₁ˡ {X = Endo⇒.ρ A} ⟩
natId {F = G ∘ Endo⇒.T A} ∘₁ Endo⇒.ρ A
↑⟨ ∘₁-resp-≡
{f = G ∘ˡ natId {F = Endo⇒.T A}}
{h = natId {F = G ∘ Endo⇒.T A}}
{g = Endo⇒.ρ A} {i = Endo⇒.ρ A}
(identityNatˡ {F = Endo⇒.T A} G)
(Setoid.refl natSetoid {Endo⇒.ρ A})
⟩
(G ∘ˡ natId {F = Endo⇒.T A}) ∘₁ Endo⇒.ρ A
∎
}
where
open SetoidReasoning (natSetoid {F = Endo⇒.T A ∘ F} {G ∘ Endo⇒.T A})
_•_ : {C₁ : Cat₀} {F : EndoFunctor C₁}
{C₂ : Cat₀} {G : EndoFunctor C₂}
{A B C : Endo⇒ C₁ F C₂ G} →
UpTo⇒ B C → UpTo⇒ A B → UpTo⇒ A C
_•_ {F = F} {G = G} {A = A} {B} {C} g f =
record
{ γ = γ ∘₁ φ
; square =
-- AF - A.ρ -> GA
-- | |
-- φF Gφ
-- | |
-- v v
-- BF - B.ρ -> GB
-- | |
-- γF Gγ
-- | |
-- v v
-- CF - C.ρ -> GC
begin
C.ρ ∘₁ ((γ ∘₁ φ) ∘ʳ F)
↓⟨ ∘₁-resp-≡ʳ
{f = C.ρ} {(γ ∘₁ φ) ∘ʳ F} {(γ ∘ʳ F) ∘₁ (φ ∘ʳ F)}
(∘ʳ-distr-∘₁ γ φ F)
⟩
C.ρ ∘₁ ((γ ∘ʳ F) ∘₁ (φ ∘ʳ F))
↑⟨ assoc₁ {X = (φ ∘ʳ F)} {(γ ∘ʳ F)} {C.ρ} ⟩
(C.ρ ∘₁ (γ ∘ʳ F)) ∘₁ (φ ∘ʳ F)
↓⟨ ∘₁-resp-≡ˡ
{f = C.ρ ∘₁ (γ ∘ʳ F)} {G ∘ˡ γ ∘₁ B.ρ} {φ ∘ʳ F}
(UpTo⇒.square g)
⟩
(G ∘ˡ γ ∘₁ B.ρ) ∘₁ (φ ∘ʳ F)
↓⟨ assoc₁ {X = (φ ∘ʳ F)} {B.ρ} {G ∘ˡ γ} ⟩
(G ∘ˡ γ) ∘₁ (B.ρ ∘₁ (φ ∘ʳ F))
↓⟨ ∘₁-resp-≡ʳ
{f = G ∘ˡ γ} {B.ρ ∘₁ (φ ∘ʳ F)} {(G ∘ˡ φ) ∘₁ A.ρ}
(UpTo⇒.square f)
⟩
(G ∘ˡ γ) ∘₁ ((G ∘ˡ φ) ∘₁ A.ρ)
↑⟨ assoc₁ {X = A.ρ} {G ∘ˡ φ} {G ∘ˡ γ} ⟩
((G ∘ˡ γ) ∘₁ (G ∘ˡ φ)) ∘₁ A.ρ
↑⟨ ∘₁-resp-≡ˡ
{f = G ∘ˡ (γ ∘₁ φ)} {(G ∘ˡ γ) ∘₁ (G ∘ˡ φ)} {A.ρ}
(∘ˡ-distr-∘₁ G γ φ)
⟩
(G ∘ˡ (γ ∘₁ φ)) ∘₁ A.ρ
∎
}
where
module A = Endo⇒ A
module B = Endo⇒ B
module C = Endo⇒ C
open SetoidReasoning (natSetoid {F = A.T ∘ F} {G ∘ C.T})
φ : A.T ⇒ B.T
φ = UpTo⇒.γ f
γ : B.T ⇒ C.T
γ = UpTo⇒.γ g
-- | Category of morphisms between endofunctors, where the morphisms
-- are certain natural transformations (see UpTo⇒).
-- This category will be the the setting in which we can talk about
-- properties of up-to techniques.
EndoMor : Σ Cat₀ (λ C → Functor C C) →
Σ Cat₀ (λ C → Functor C C) →
Cat₀
EndoMor (C₁ , F) (C₂ , G) =
record
{ Obj = Endo⇒ C₁ F C₂ G
; _⇒_ = UpTo⇒
; _≡_ = _≡U_
; id = id-UpTo⇒
; _∘_ = _•_
; assoc = λ {_} {_} {_} {_} {f} {g} {h} →
record { ≡U-proof = assoc₁ {X = UpTo⇒.γ f} {UpTo⇒.γ g} {UpTo⇒.γ h} }
; identityˡ = λ {_} {_} {f} →
record { ≡U-proof = identity₁ˡ {X = UpTo⇒.γ f} }
; identityʳ = λ {_} {_} {f} →
record { ≡U-proof = identity₁ʳ {X = UpTo⇒.γ f} }
; equiv = ≡U-equiv
; ∘-resp-≡ = λ {_} {_} {_} {f} {h} {g} {i} f≡h g≡i → record {
≡U-proof = ∘₁-resp-≡ {f = UpTo⇒.γ f} {UpTo⇒.γ h}
{UpTo⇒.γ g} {UpTo⇒.γ i}
(≡U-proof f≡h) (≡U-proof g≡i) }
}
-- | The 2-category of endofunctors, their morphisms and UpTo⇒ as 2-cells.
-- This is the 2-category of endofunctors defined by Lenisa, Power and Watanabe.
{-
Endo : 2-Category (suc zero) zero zero zero
Endo = record
{ Obj = Σ Cat₀ (λ C → Functor C C)
; _⇒_ = EndoMor
; id = record
{ F₀ = λ _ → record { T = id ; ρ = natId }
; F₁ = λ _ → id-UpTo⇒
; identity = IsEquivalence.refl ≡U-equiv
; homomorphism = λ {_} {_} {_} {_} {F} → {!!}
; F-resp-≡ = {!!}
}
; —∘— = {!!}
; assoc = {!!}
; identityˡ = {!!}
; identityʳ = {!!}
}
-}
|
algebraic-stack_agda0000_doc_6957 |
open import Oscar.Prelude
open import Oscar.Class.IsDecidable
open import Oscar.Data.Fin
open import Oscar.Data.Decidable
open import Oscar.Data.Proposequality
module Oscar.Class.IsDecidable.Fin where
instance
IsDecidableFin : ∀ {n} → IsDecidable (Fin n)
IsDecidableFin .IsDecidable._≟_ ∅ ∅ = ↑ ∅
IsDecidableFin .IsDecidable._≟_ ∅ (↑ _) = ↓ λ ()
IsDecidableFin .IsDecidable._≟_ (↑ _) ∅ = ↓ λ ()
IsDecidableFin .IsDecidable._≟_ (↑ x) (↑ y) with x ≟ y
… | ↑ ∅ = ↑ ∅
… | ↓ x≢y = ↓ λ {∅ → x≢y ∅}
|
algebraic-stack_agda0000_doc_6958 | ------------------------------------------------------------------------------
-- Even predicate
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Even where
open import FOTC.Base
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
data Even : D → Set where
ezero : Even zero
enext : ∀ {n} → Even n → Even (succ₁ (succ₁ n))
Even-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ₁ (succ₁ n))) →
∀ {n} → Even n → A n
Even-ind A A0 h ezero = A0
Even-ind A A0 h (enext En) = h (Even-ind A A0 h En)
Even→N : ∀ {n} → Even n → N n
Even→N ezero = nzero
Even→N (enext En) = nsucc (nsucc (Even→N En))
|
algebraic-stack_agda0000_doc_6959 | {-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.LawvereTheories where
-- Category of Lawvere Theories
open import Level
open import Categories.Category.Core using (Category)
open import Categories.Functor.Cartesian using (CartesianF)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (_≃_; associator; sym-associator; unitorˡ; unitorʳ; unitor²; refl; sym; trans; _ⓘₕ_)
open import Categories.Theory.Lawvere using (LawvereTheory; LT-Hom; LT-id; LT-∘)
LawvereTheories : (ℓ e : Level) → Category (suc (ℓ ⊔ e)) (ℓ ⊔ e) (ℓ ⊔ e)
LawvereTheories ℓ e = record
{ Obj = LawvereTheory ℓ e
; _⇒_ = LT-Hom
; _≈_ = λ H₁ H₂ → cartF.F H₁ ≃ cartF.F H₂
; id = LT-id
; _∘_ = LT-∘
; assoc = λ { {f = f} {g} {h} → associator (cartF.F f) (cartF.F g) (cartF.F h) }
; sym-assoc = λ { {f = f} {g} {h} → sym-associator (cartF.F f) (cartF.F g) (cartF.F h) }
; identityˡ = unitorˡ
; identityʳ = unitorʳ
; identity² = unitor²
; equiv = record { refl = refl ; sym = sym ; trans = trans }
; ∘-resp-≈ = _ⓘₕ_
}
where open LT-Hom
|
algebraic-stack_agda0000_doc_6768 | ------------------------------------------------------------------------------
-- Testing the η-expansion
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Eta5 where
postulate
D : Set
_≈_ : D → D → Set
data ∃ (A : D → Set) : Set where
_,_ : (t : D) → A t → ∃ A
P : D → Set
P ws = ∃ (λ zs → ws ≈ zs)
{-# ATP definition P #-}
postulate foo : ∀ ws → P ws → ∃ (λ zs → ws ≈ zs)
{-# ATP prove foo #-}
|
algebraic-stack_agda0000_doc_6769 | module Text.Greek.SBLGNT.Mark where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΚΑΤΑ-ΜΑΡΚΟΝ : List (Word)
ΚΑΤΑ-ΜΑΡΚΟΝ =
word (Ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Mark.1.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.1"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.1.1"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.1"
∷ word (Κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.1.2"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.2"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.2"
∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ ᾳ ∷ []) "Mark.1.2"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.2"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ῃ ∷ []) "Mark.1.2"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.1.2"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Mark.1.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.2"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.1.2"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.2"
∷ word (π ∷ ρ ∷ ὸ ∷ []) "Mark.1.2"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.1.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.2"
∷ word (ὃ ∷ ς ∷ []) "Mark.1.2"
∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.2"
∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.1.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.1.3"
∷ word (β ∷ ο ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.1.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.3"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.3"
∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.3"
∷ word (Ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.1.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.3"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.1.3"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.3"
∷ word (ε ∷ ὐ ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.3"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.1.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.3"
∷ word (τ ∷ ρ ∷ ί ∷ β ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.3"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.4"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.4"
∷ word (ὁ ∷ []) "Mark.1.4"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.1.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.4"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.4"
∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.4"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.4"
∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.1.4"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.4"
∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.4"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.5"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.5"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Mark.1.5"
∷ word (ἡ ∷ []) "Mark.1.5"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ []) "Mark.1.5"
∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ []) "Mark.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.1.5"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ υ ∷ μ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5"
∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.5"
∷ word (ὑ ∷ π ∷ []) "Mark.1.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.5"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.5"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.5"
∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ῃ ∷ []) "Mark.1.5"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῷ ∷ []) "Mark.1.5"
∷ word (ἐ ∷ ξ ∷ ο ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.1.5"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.5"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.6"
∷ word (ὁ ∷ []) "Mark.1.6"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.6"
∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.6"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ μ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6"
∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.6"
∷ word (δ ∷ ε ∷ ρ ∷ μ ∷ α ∷ τ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.6"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.6"
∷ word (ὀ ∷ σ ∷ φ ∷ ὺ ∷ ν ∷ []) "Mark.1.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6"
∷ word (ἔ ∷ σ ∷ θ ∷ ω ∷ ν ∷ []) "Mark.1.6"
∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ α ∷ ς ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6"
∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Mark.1.6"
∷ word (ἄ ∷ γ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.7"
∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ σ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.7"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.7"
∷ word (ὁ ∷ []) "Mark.1.7"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.1.7"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.7"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.7"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.7"
∷ word (ο ∷ ὗ ∷ []) "Mark.1.7"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.1.7"
∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "Mark.1.7"
∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.1.7"
∷ word (κ ∷ ύ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.1.7"
∷ word (∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.7"
∷ word (ἱ ∷ μ ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.1.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.7"
∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.7"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.1.8"
∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "Mark.1.8"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.8"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.1.8"
∷ word (δ ∷ ὲ ∷ []) "Mark.1.8"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.8"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.8"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.8"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.8"
∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Mark.1.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.9"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.9"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.9"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.9"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.1.9"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.9"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.9"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.9"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.1.9"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ ὲ ∷ τ ∷ []) "Mark.1.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.9"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.9"
∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.1.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.9"
∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.9"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.1.9"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.10"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.10"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.1.10"
∷ word (ἐ ∷ κ ∷ []) "Mark.1.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.10"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.1.10"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.10"
∷ word (σ ∷ χ ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.10"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.10"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.10"
∷ word (ὡ ∷ ς ∷ []) "Mark.1.10"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ὰ ∷ ν ∷ []) "Mark.1.10"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.1.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.10"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.11"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.1.11"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.11"
∷ word (ἐ ∷ κ ∷ []) "Mark.1.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.1.11"
∷ word (Σ ∷ ὺ ∷ []) "Mark.1.11"
∷ word (ε ∷ ἶ ∷ []) "Mark.1.11"
∷ word (ὁ ∷ []) "Mark.1.11"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.1.11"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.11"
∷ word (ὁ ∷ []) "Mark.1.11"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.1.11"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.11"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.1.11"
∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ α ∷ []) "Mark.1.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.12"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.12"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.12"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.12"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.1.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.12"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.13"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.13"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.13"
∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.13"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.1.13"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.1.13"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.13"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.1.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.13"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Mark.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.13"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.13"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13"
∷ word (ο ∷ ἱ ∷ []) "Mark.1.13"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.1.13"
∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.1.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.14"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.14"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.1.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.14"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.14"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.14"
∷ word (ὁ ∷ []) "Mark.1.14"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.14"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.14"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.14"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.15"
∷ word (Π ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.15"
∷ word (ὁ ∷ []) "Mark.1.15"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15"
∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.15"
∷ word (ἡ ∷ []) "Mark.1.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.1.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.15"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.1.15"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.15"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.15"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Mark.1.15"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.16"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.16"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.1.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.16"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.16"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.16"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.16"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.16"
∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ν ∷ []) "Mark.1.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.16"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.1.16"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.16"
∷ word (ἀ ∷ μ ∷ φ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.16"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.16"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.16"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.1.16"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.16"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.16"
∷ word (ἁ ∷ ∙λ ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.17"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.1.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.17"
∷ word (ὁ ∷ []) "Mark.1.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.17"
∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.1.17"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.17"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.1.17"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.17"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.1.17"
∷ word (ἁ ∷ ∙λ ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.17"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.18"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.18"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.18"
∷ word (τ ∷ ὰ ∷ []) "Mark.1.18"
∷ word (δ ∷ ί ∷ κ ∷ τ ∷ υ ∷ α ∷ []) "Mark.1.18"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19"
∷ word (π ∷ ρ ∷ ο ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.1.19"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Mark.1.19"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.19"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.1.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.19"
∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.19"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.1.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.19"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.19"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.19"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.1.19"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.19"
∷ word (τ ∷ ὰ ∷ []) "Mark.1.19"
∷ word (δ ∷ ί ∷ κ ∷ τ ∷ υ ∷ α ∷ []) "Mark.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.20"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.20"
∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.1.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.20"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.20"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.1.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20"
∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.1.20"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.20"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.20"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.1.20"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ω ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.20"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.21"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.21"
∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ύ ∷ μ ∷ []) "Mark.1.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.21"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.21"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.21"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.21"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ή ∷ ν ∷ []) "Mark.1.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.22"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.22"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.1.22"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.22"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.1.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.22"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.22"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.22"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.1.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.22"
∷ word (ὡ ∷ ς ∷ []) "Mark.1.22"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.22"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.1.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.22"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.1.22"
∷ word (ὡ ∷ ς ∷ []) "Mark.1.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.1.22"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.23"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.23"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.23"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.23"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῇ ∷ []) "Mark.1.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.23"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.1.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.23"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.23"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.1.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.23"
∷ word (ἀ ∷ ν ∷ έ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.23"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.24"
∷ word (Τ ∷ ί ∷ []) "Mark.1.24"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.1.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.24"
∷ word (σ ∷ ο ∷ ί ∷ []) "Mark.1.24"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.1.24"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ έ ∷ []) "Mark.1.24"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ς ∷ []) "Mark.1.24"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.24"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.24"
∷ word (ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Mark.1.24"
∷ word (σ ∷ ε ∷ []) "Mark.1.24"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.1.24"
∷ word (ε ∷ ἶ ∷ []) "Mark.1.24"
∷ word (ὁ ∷ []) "Mark.1.24"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.1.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.24"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.25"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.25"
∷ word (ὁ ∷ []) "Mark.1.25"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.25"
∷ word (Φ ∷ ι ∷ μ ∷ ώ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.25"
∷ word (ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.1.25"
∷ word (ἐ ∷ ξ ∷ []) "Mark.1.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.26"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ν ∷ []) "Mark.1.26"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.26"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.26"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.1.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.26"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.26"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.1.26"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.1.26"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.26"
∷ word (ἐ ∷ ξ ∷ []) "Mark.1.26"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27"
∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.27"
∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.27"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.1.27"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.27"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.27"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.27"
∷ word (Τ ∷ ί ∷ []) "Mark.1.27"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.1.27"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.1.27"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ή ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.1.27"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.27"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ σ ∷ ι ∷ []) "Mark.1.27"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.27"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.27"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27"
∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.27"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.28"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.28"
∷ word (ἡ ∷ []) "Mark.1.28"
∷ word (ἀ ∷ κ ∷ ο ∷ ὴ ∷ []) "Mark.1.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.28"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.28"
∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.1.28"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.28"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.1.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.28"
∷ word (π ∷ ε ∷ ρ ∷ ί ∷ χ ∷ ω ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.28"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.28"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.28"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.29"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.29"
∷ word (ἐ ∷ κ ∷ []) "Mark.1.29"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.29"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "Mark.1.29"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.29"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.29"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.29"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.29"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.29"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.29"
∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ ο ∷ υ ∷ []) "Mark.1.29"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.29"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.1.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.29"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.1.29"
∷ word (ἡ ∷ []) "Mark.1.30"
∷ word (δ ∷ ὲ ∷ []) "Mark.1.30"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ε ∷ ρ ∷ ὰ ∷ []) "Mark.1.30"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.30"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Mark.1.30"
∷ word (π ∷ υ ∷ ρ ∷ έ ∷ σ ∷ σ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.1.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.30"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.30"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.1.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.1.31"
∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.1.31"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.1.31"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.1.31"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.31"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.1.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.31"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.1.31"
∷ word (ὁ ∷ []) "Mark.1.31"
∷ word (π ∷ υ ∷ ρ ∷ ε ∷ τ ∷ ό ∷ ς ∷ []) "Mark.1.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31"
∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ε ∷ ι ∷ []) "Mark.1.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.31"
∷ word (Ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.1.32"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.32"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.1.32"
∷ word (ἔ ∷ δ ∷ υ ∷ []) "Mark.1.32"
∷ word (ὁ ∷ []) "Mark.1.32"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.1.32"
∷ word (ἔ ∷ φ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.32"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.32"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.32"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.32"
∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.1.32"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.32"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.32"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.33"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Mark.1.33"
∷ word (ἡ ∷ []) "Mark.1.33"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Mark.1.33"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ η ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.1.33"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.33"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.33"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.1.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.34"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.34"
∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.1.34"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.34"
∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.34"
∷ word (ν ∷ ό ∷ σ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.34"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.34"
∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.1.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.1.34"
∷ word (ἤ ∷ φ ∷ ι ∷ ε ∷ ν ∷ []) "Mark.1.34"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.34"
∷ word (τ ∷ ὰ ∷ []) "Mark.1.34"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.34"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.34"
∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.34"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.35"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.1.35"
∷ word (ἔ ∷ ν ∷ ν ∷ υ ∷ χ ∷ α ∷ []) "Mark.1.35"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.35"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.1.35"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.35"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.35"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.35"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.1.35"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.1.35"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.1.35"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.36"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ δ ∷ ί ∷ ω ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.36"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.1.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.36"
∷ word (ο ∷ ἱ ∷ []) "Mark.1.36"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.1.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.37"
∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.37"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.37"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.37"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.37"
∷ word (Π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.37"
∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.1.37"
∷ word (σ ∷ ε ∷ []) "Mark.1.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.38"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.38"
∷ word (Ἄ ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.1.38"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.1.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.38"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.38"
∷ word (ἐ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Mark.1.38"
∷ word (κ ∷ ω ∷ μ ∷ ο ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.1.38"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.1.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.38"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.1.38"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ ω ∷ []) "Mark.1.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.38"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.1.38"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.38"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.39"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.39"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.39"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.39"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.39"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὰ ∷ ς ∷ []) "Mark.1.39"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.39"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.39"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.1.39"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.39"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.39"
∷ word (τ ∷ ὰ ∷ []) "Mark.1.39"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.39"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.1.39"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.40"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.40"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.40"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.40"
∷ word (∙λ ∷ ε ∷ π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.40"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.1.40"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.40"
∷ word (γ ∷ ο ∷ ν ∷ υ ∷ π ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.40"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.40"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.40"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.40"
∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.1.40"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "Mark.1.40"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ α ∷ ί ∷ []) "Mark.1.40"
∷ word (μ ∷ ε ∷ []) "Mark.1.40"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.41"
∷ word (ὀ ∷ ρ ∷ γ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.1.41"
∷ word (ἐ ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Mark.1.41"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.41"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.1.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.41"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.1.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.41"
∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.1.41"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.1.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.42"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.42"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.42"
∷ word (ἀ ∷ π ∷ []) "Mark.1.42"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.42"
∷ word (ἡ ∷ []) "Mark.1.42"
∷ word (∙λ ∷ έ ∷ π ∷ ρ ∷ α ∷ []) "Mark.1.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.42"
∷ word (ἐ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.1.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.43"
∷ word (ἐ ∷ μ ∷ β ∷ ρ ∷ ι ∷ μ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.43"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.43"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.43"
∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.1.43"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.44"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.44"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.44"
∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Mark.1.44"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.1.44"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.1.44"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ ς ∷ []) "Mark.1.44"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.44"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.1.44"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.44"
∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ ο ∷ ν ∷ []) "Mark.1.44"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.44"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.1.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.44"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ []) "Mark.1.44"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.44"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.44"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.1.44"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.44"
∷ word (ἃ ∷ []) "Mark.1.44"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.44"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.1.44"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.44"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.44"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.44"
∷ word (ὁ ∷ []) "Mark.1.45"
∷ word (δ ∷ ὲ ∷ []) "Mark.1.45"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.1.45"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.1.45"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.1.45"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.45"
∷ word (δ ∷ ι ∷ α ∷ φ ∷ η ∷ μ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.1.45"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.1.45"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.1.45"
∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.1.45"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.1.45"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ῶ ∷ ς ∷ []) "Mark.1.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.45"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.1.45"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.45"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.45"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.1.45"
∷ word (ἐ ∷ π ∷ []) "Mark.1.45"
∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.45"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.45"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.45"
∷ word (ἤ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.45"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.45"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.45"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.1"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.2.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.2.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.1"
∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ὺ ∷ μ ∷ []) "Mark.2.1"
∷ word (δ ∷ ι ∷ []) "Mark.2.1"
∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.2.1"
∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ θ ∷ η ∷ []) "Mark.2.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.1"
∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "Mark.2.1"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.2.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.2"
∷ word (σ ∷ υ ∷ ν ∷ ή ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.2"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.2"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.2"
∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.2.2"
∷ word (χ ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.2"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.2.2"
∷ word (τ ∷ ὰ ∷ []) "Mark.2.2"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.2"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.2"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.2.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.2"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.3"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.3"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.3"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.3"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "Mark.2.3"
∷ word (α ∷ ἰ ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.3"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.2.3"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.2.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.4"
∷ word (μ ∷ ὴ ∷ []) "Mark.2.4"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ι ∷ []) "Mark.2.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.4"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.4"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.2.4"
∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ έ ∷ γ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.4"
∷ word (σ ∷ τ ∷ έ ∷ γ ∷ η ∷ ν ∷ []) "Mark.2.4"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.4"
∷ word (ἦ ∷ ν ∷ []) "Mark.2.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.4"
∷ word (ἐ ∷ ξ ∷ ο ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.4"
∷ word (χ ∷ α ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ []) "Mark.2.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.4"
∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.4"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.4"
∷ word (ὁ ∷ []) "Mark.2.4"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Mark.2.4"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Mark.2.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.5"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.2.5"
∷ word (ὁ ∷ []) "Mark.2.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.5"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.5"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.5"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.5"
∷ word (Τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.5"
∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.2.5"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.5"
∷ word (α ∷ ἱ ∷ []) "Mark.2.5"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Mark.2.5"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.6"
∷ word (δ ∷ έ ∷ []) "Mark.2.6"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.2.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.6"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.2.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.2.6"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.6"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.6"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.6"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.6"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Mark.2.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.6"
∷ word (Τ ∷ ί ∷ []) "Mark.2.7"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.2.7"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.7"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.2.7"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ []) "Mark.2.7"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.2.7"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.7"
∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.7"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.2.7"
∷ word (ε ∷ ἰ ∷ []) "Mark.2.7"
∷ word (μ ∷ ὴ ∷ []) "Mark.2.7"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.2.7"
∷ word (ὁ ∷ []) "Mark.2.7"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.2.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.8"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.2.8"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.8"
∷ word (ὁ ∷ []) "Mark.2.8"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.8"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.8"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.2.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.8"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.8"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.8"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.8"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.8"
∷ word (Τ ∷ ί ∷ []) "Mark.2.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.2.8"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.2.8"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.8"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.8"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Mark.2.8"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.2.8"
∷ word (τ ∷ ί ∷ []) "Mark.2.9"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.9"
∷ word (ε ∷ ὐ ∷ κ ∷ ο ∷ π ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.9"
∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.9"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.9"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.9"
∷ word (Ἀ ∷ φ ∷ ί ∷ ε ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.2.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.9"
∷ word (α ∷ ἱ ∷ []) "Mark.2.9"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Mark.2.9"
∷ word (ἢ ∷ []) "Mark.2.9"
∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.9"
∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.9"
∷ word (ἆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.9"
∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.9"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Mark.2.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.2.10"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.10"
∷ word (ε ∷ ἰ ∷ δ ∷ ῆ ∷ τ ∷ ε ∷ []) "Mark.2.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.10"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.10"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.2.10"
∷ word (ὁ ∷ []) "Mark.2.10"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.2.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.10"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.2.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.2.10"
∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.10"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.2.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.10"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.10"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.10"
∷ word (Σ ∷ ο ∷ ὶ ∷ []) "Mark.2.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.2.11"
∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.2.11"
∷ word (ἆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.11"
∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.11"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.11"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.2.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.11"
∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.2.11"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12"
∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.2.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.2.12"
∷ word (ἄ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.2.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.12"
∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.12"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.12"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.12"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.2.12"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.12"
∷ word (ἐ ∷ ξ ∷ ί ∷ σ ∷ τ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.12"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.2.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12"
∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.12"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Mark.2.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.2.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.12"
∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.12"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.2.12"
∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.2.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.13"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.13"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.2.13"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.2.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.13"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.13"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.2.13"
∷ word (ὁ ∷ []) "Mark.2.13"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.2.13"
∷ word (ἤ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.13"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.13"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.2.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.2.14"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.2.14"
∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ ν ∷ []) "Mark.2.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.14"
∷ word (Ἁ ∷ ∙λ ∷ φ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.2.14"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.2.14"
∷ word (τ ∷ ε ∷ ∙λ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.2.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.14"
∷ word (Ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.2.14"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.2.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.2.14"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.15"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.15"
∷ word (τ ∷ ῇ ∷ []) "Mark.2.15"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.2.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15"
∷ word (τ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ έ ∷ κ ∷ ε ∷ ι ∷ ν ∷ τ ∷ ο ∷ []) "Mark.2.15"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.15"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.15"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.15"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.15"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.2.15"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.2.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.16"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.2.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.2.16"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.16"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Mark.2.16"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.2.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16"
∷ word (τ ∷ ε ∷ ∙λ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.16"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.16"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.16"
∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.2.16"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.2.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (τ ∷ ε ∷ ∙λ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Mark.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.17"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.2.17"
∷ word (ὁ ∷ []) "Mark.2.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.17"
∷ word (Ο ∷ ὐ ∷ []) "Mark.2.17"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.17"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.17"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.17"
∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.17"
∷ word (ἰ ∷ α ∷ τ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.2.17"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.2.17"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.17"
∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.2.17"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.17"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.17"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.2.17"
∷ word (κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Mark.2.17"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.17"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.2.17"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.2.18"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.18"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.2.18"
∷ word (τ ∷ ί ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.18"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.2.18"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.18"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.2.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.2.18"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.19"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.2.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.19"
∷ word (ὁ ∷ []) "Mark.2.19"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.2.19"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.19"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.19"
∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.2.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.19"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.19"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.19"
∷ word (ᾧ ∷ []) "Mark.2.19"
∷ word (ὁ ∷ []) "Mark.2.19"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.2.19"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.19"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.19"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.19"
∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.2.19"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.19"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.19"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.2.19"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.19"
∷ word (ο ∷ ὐ ∷ []) "Mark.2.19"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.19"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.19"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.20"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.2.20"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.2.20"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ θ ∷ ῇ ∷ []) "Mark.2.20"
∷ word (ἀ ∷ π ∷ []) "Mark.2.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.20"
∷ word (ὁ ∷ []) "Mark.2.20"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.20"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.2.20"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.20"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.20"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.2.20"
∷ word (τ ∷ ῇ ∷ []) "Mark.2.20"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.2.20"
∷ word (Ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.2.21"
∷ word (ἐ ∷ π ∷ ί ∷ β ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Mark.2.21"
∷ word (ῥ ∷ ά ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.21"
∷ word (ἀ ∷ γ ∷ ν ∷ ά ∷ φ ∷ ο ∷ υ ∷ []) "Mark.2.21"
∷ word (ἐ ∷ π ∷ ι ∷ ρ ∷ ά ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Mark.2.21"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.21"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.2.21"
∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ό ∷ ν ∷ []) "Mark.2.21"
∷ word (ε ∷ ἰ ∷ []) "Mark.2.21"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.21"
∷ word (μ ∷ ή ∷ []) "Mark.2.21"
∷ word (α ∷ ἴ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.2.21"
∷ word (τ ∷ ὸ ∷ []) "Mark.2.21"
∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "Mark.2.21"
∷ word (ἀ ∷ π ∷ []) "Mark.2.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.21"
∷ word (τ ∷ ὸ ∷ []) "Mark.2.21"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.2.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.21"
∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ []) "Mark.2.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.21"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.21"
∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "Mark.2.21"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.2.22"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.2.22"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.22"
∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "Mark.2.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.22"
∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22"
∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22"
∷ word (ε ∷ ἰ ∷ []) "Mark.2.22"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.22"
∷ word (μ ∷ ή ∷ []) "Mark.2.22"
∷ word (ῥ ∷ ή ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.2.22"
∷ word (ὁ ∷ []) "Mark.2.22"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.22"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22"
∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22"
∷ word (ὁ ∷ []) "Mark.2.22"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.22"
∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ ∙λ ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.22"
∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ί ∷ []) "Mark.2.22"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.2.22"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.22"
∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "Mark.2.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.22"
∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.23"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.23"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.23"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.23"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.23"
∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.23"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.23"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.23"
∷ word (σ ∷ π ∷ ο ∷ ρ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.23"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.23"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.23"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.2.23"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.2.23"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.23"
∷ word (τ ∷ ί ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.23"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.23"
∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ α ∷ ς ∷ []) "Mark.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.24"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.24"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.2.24"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.24"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.2.24"
∷ word (τ ∷ ί ∷ []) "Mark.2.24"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.24"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.24"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.24"
∷ word (ὃ ∷ []) "Mark.2.24"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.24"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.25"
∷ word (Ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.2.25"
∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.2.25"
∷ word (τ ∷ ί ∷ []) "Mark.2.25"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.25"
∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.2.25"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.2.25"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.25"
∷ word (ἔ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25"
∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.25"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.25"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.25"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.2.26"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.26"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.26"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.2.26"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.26"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.2.26"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.26"
∷ word (Ἀ ∷ β ∷ ι ∷ α ∷ θ ∷ ὰ ∷ ρ ∷ []) "Mark.2.26"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.26"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.2.26"
∷ word (π ∷ ρ ∷ ο ∷ θ ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.2.26"
∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Mark.2.26"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.2.26"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.26"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.26"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.26"
∷ word (ε ∷ ἰ ∷ []) "Mark.2.26"
∷ word (μ ∷ ὴ ∷ []) "Mark.2.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.26"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.26"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.2.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.26"
∷ word (ο ∷ ὖ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.27"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.2.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.27"
∷ word (Τ ∷ ὸ ∷ []) "Mark.2.27"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.27"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.27"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.27"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.2.27"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.27"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.2.27"
∷ word (ὁ ∷ []) "Mark.2.27"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.2.27"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.27"
∷ word (τ ∷ ὸ ∷ []) "Mark.2.27"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.27"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.28"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "Mark.2.28"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.28"
∷ word (ὁ ∷ []) "Mark.2.28"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.2.28"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.28"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.28"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.28"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.2.28"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.1"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.3.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.3.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.1"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ή ∷ ν ∷ []) "Mark.3.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.1"
∷ word (ἦ ∷ ν ∷ []) "Mark.3.1"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.3.1"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.3.1"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.3.1"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.3.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.1"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.2"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.2"
∷ word (ε ∷ ἰ ∷ []) "Mark.3.2"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.2"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.2"
∷ word (θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.2"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.2"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.2"
∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.3"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.3"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.3"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.3.3"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.3"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.3"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.3.3"
∷ word (ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ []) "Mark.3.3"
∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.3.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.3"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.3"
∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.4"
∷ word (Ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.4"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.4"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.4"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4"
∷ word (ἢ ∷ []) "Mark.3.4"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.3.4"
∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4"
∷ word (ἢ ∷ []) "Mark.3.4"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.4"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.4"
∷ word (δ ∷ ὲ ∷ []) "Mark.3.4"
∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.3.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.5"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.3.5"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Mark.3.5"
∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.3.5"
∷ word (τ ∷ ῇ ∷ []) "Mark.3.5"
∷ word (π ∷ ω ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.5"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.3.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.5"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.5"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.3.5"
∷ word (Ἔ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Mark.3.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.5"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5"
∷ word (ἐ ∷ ξ ∷ έ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Mark.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ τ ∷ ε ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Mark.3.5"
∷ word (ἡ ∷ []) "Mark.3.5"
∷ word (χ ∷ ε ∷ ὶ ∷ ρ ∷ []) "Mark.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.6"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.6"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.6"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.3.6"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.3.6"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.3.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.6"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.3.6"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.6"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.6"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.3.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.6"
∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "Mark.3.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.6"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.7"
∷ word (ὁ ∷ []) "Mark.3.7"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.3.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.3.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.7"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.3.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.7"
∷ word (ἀ ∷ ν ∷ ε ∷ χ ∷ ώ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.7"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.7"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.7"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Mark.3.7"
∷ word (π ∷ ∙λ ∷ ῆ ∷ θ ∷ ο ∷ ς ∷ []) "Mark.3.7"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.7"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.7"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.7"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.7"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.8"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.8"
∷ word (Ἰ ∷ δ ∷ ο ∷ υ ∷ μ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.3.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.8"
∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ο ∷ υ ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.8"
∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (Σ ∷ ι ∷ δ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.3.8"
∷ word (π ∷ ∙λ ∷ ῆ ∷ θ ∷ ο ∷ ς ∷ []) "Mark.3.8"
∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ []) "Mark.3.8"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.8"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.3.8"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ ε ∷ ι ∷ []) "Mark.3.8"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.8"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.8"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.9"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.3.9"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.9"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.9"
∷ word (π ∷ ∙λ ∷ ο ∷ ι ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.9"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ρ ∷ ῇ ∷ []) "Mark.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.3.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.9"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.3.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.9"
∷ word (μ ∷ ὴ ∷ []) "Mark.3.9"
∷ word (θ ∷ ∙λ ∷ ί ∷ β ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.9"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.10"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.10"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.3.10"
∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.10"
∷ word (ἅ ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.10"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Mark.3.10"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.3.10"
∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ α ∷ ς ∷ []) "Mark.3.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.11"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.11"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.11"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.11"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Mark.3.11"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.3.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.11"
∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.11"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ι ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.11"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.3.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.3.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.11"
∷ word (Σ ∷ ὺ ∷ []) "Mark.3.11"
∷ word (ε ∷ ἶ ∷ []) "Mark.3.11"
∷ word (ὁ ∷ []) "Mark.3.11"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.3.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.3.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.12"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.12"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.12"
∷ word (μ ∷ ὴ ∷ []) "Mark.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.12"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.3.12"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.13"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Mark.3.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.13"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.13"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.3.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.13"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.13"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.3.13"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.3.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.3.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.13"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.13"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.14"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.14"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.3.14"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.14"
∷ word (ὦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.14"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.3.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.14"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.14"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Mark.3.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.14"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.15"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.15"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.15"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.15"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.15"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.3.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.16"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.16"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.3.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.16"
∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.16"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.3.16"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.16"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ι ∷ []) "Mark.3.16"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.3.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.3.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.17"
∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.3.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.17"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.3.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.17"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17"
∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.17"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.17"
∷ word (Β ∷ ο ∷ α ∷ ν ∷ η ∷ ρ ∷ γ ∷ έ ∷ ς ∷ []) "Mark.3.17"
∷ word (ὅ ∷ []) "Mark.3.17"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.17"
∷ word (Υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.3.17"
∷ word (Β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Φ ∷ ί ∷ ∙λ ∷ ι ∷ π ∷ π ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Β ∷ α ∷ ρ ∷ θ ∷ ο ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Μ ∷ α ∷ θ ∷ θ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Θ ∷ ω ∷ μ ∷ ᾶ ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.18"
∷ word (Ἁ ∷ ∙λ ∷ φ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Θ ∷ α ∷ δ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.3.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.18"
∷ word (Κ ∷ α ∷ ν ∷ α ∷ ν ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.19"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ν ∷ []) "Mark.3.19"
∷ word (Ἰ ∷ σ ∷ κ ∷ α ∷ ρ ∷ ι ∷ ώ ∷ θ ∷ []) "Mark.3.19"
∷ word (ὃ ∷ ς ∷ []) "Mark.3.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.19"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.19"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.19"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.20"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.20"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.20"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.20"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.3.20"
∷ word (ὁ ∷ []) "Mark.3.20"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.20"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.3.20"
∷ word (μ ∷ ὴ ∷ []) "Mark.3.20"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.3.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.20"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.3.20"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.20"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.21"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.21"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.21"
∷ word (π ∷ α ∷ ρ ∷ []) "Mark.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.21"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.21"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.21"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.21"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.21"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.21"
∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.3.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.22"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.3.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.22"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.22"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.3.22"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.22"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.22"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.22"
∷ word (Β ∷ ε ∷ ε ∷ ∙λ ∷ ζ ∷ ε ∷ β ∷ ο ∷ ὺ ∷ ∙λ ∷ []) "Mark.3.22"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.22"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.22"
∷ word (ἐ ∷ ν ∷ []) "Mark.3.22"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.22"
∷ word (ἄ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.3.22"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.22"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Mark.3.22"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.3.22"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.22"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.3.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.23"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.3.23"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.3.23"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.3.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.23"
∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.3.23"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.23"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.3.23"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ν ∷ []) "Mark.3.23"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.24"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.24"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.3.24"
∷ word (ἐ ∷ φ ∷ []) "Mark.3.24"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.3.24"
∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Mark.3.24"
∷ word (ο ∷ ὐ ∷ []) "Mark.3.24"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.24"
∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.24"
∷ word (ἡ ∷ []) "Mark.3.24"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.3.24"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.3.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.25"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.25"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ []) "Mark.3.25"
∷ word (ἐ ∷ φ ∷ []) "Mark.3.25"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.3.25"
∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Mark.3.25"
∷ word (ο ∷ ὐ ∷ []) "Mark.3.25"
∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.25"
∷ word (ἡ ∷ []) "Mark.3.25"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ []) "Mark.3.25"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.3.25"
∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.26"
∷ word (ε ∷ ἰ ∷ []) "Mark.3.26"
∷ word (ὁ ∷ []) "Mark.3.26"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.3.26"
∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.3.26"
∷ word (ἐ ∷ φ ∷ []) "Mark.3.26"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.26"
∷ word (ἐ ∷ μ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.3.26"
∷ word (ο ∷ ὐ ∷ []) "Mark.3.26"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.26"
∷ word (σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.26"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.26"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.26"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.26"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.3.27"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.3.27"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.27"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.27"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.27"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.3.27"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.3.27"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.27"
∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Mark.3.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27"
∷ word (δ ∷ ι ∷ α ∷ ρ ∷ π ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.27"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.27"
∷ word (μ ∷ ὴ ∷ []) "Mark.3.27"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.27"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.27"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.3.27"
∷ word (δ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.27"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.3.27"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.27"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27"
∷ word (δ ∷ ι ∷ α ∷ ρ ∷ π ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.27"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.3.28"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.3.28"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.3.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.28"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.3.28"
∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.28"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.28"
∷ word (υ ∷ ἱ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.28"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.3.28"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.28"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.28"
∷ word (α ∷ ἱ ∷ []) "Mark.3.28"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "Mark.3.28"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.3.28"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.28"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.28"
∷ word (ὃ ∷ ς ∷ []) "Mark.3.29"
∷ word (δ ∷ []) "Mark.3.29"
∷ word (ἂ ∷ ν ∷ []) "Mark.3.29"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.29"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.29"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.3.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.29"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.29"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.3.29"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.29"
∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.29"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.29"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.29"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.3.29"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.29"
∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ό ∷ ς ∷ []) "Mark.3.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.29"
∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.29"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.3.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.30"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.30"
∷ word (Π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.3.30"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.30"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.30"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.31"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.31"
∷ word (ἡ ∷ []) "Mark.3.31"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.31"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Mark.3.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.31"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.3.31"
∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.31"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.3.31"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.31"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.31"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.31"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ η ∷ τ ∷ ο ∷ []) "Mark.3.32"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.32"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.32"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.3.32"
∷ word (ἡ ∷ []) "Mark.3.32"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.32"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.3.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.32"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.32"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.3.32"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.3.32"
∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.3.32"
∷ word (σ ∷ ε ∷ []) "Mark.3.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.33"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.3.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.33"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.3.33"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.33"
∷ word (ἡ ∷ []) "Mark.3.33"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.33"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.33"
∷ word (ἢ ∷ []) "Mark.3.33"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.33"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.33"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.34"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.34"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.34"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.34"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.34"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.3.34"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.3.34"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.34"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.3.34"
∷ word (ἡ ∷ []) "Mark.3.34"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.34"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.34"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.34"
∷ word (ὃ ∷ ς ∷ []) "Mark.3.35"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.35"
∷ word (ἂ ∷ ν ∷ []) "Mark.3.35"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.35"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.35"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Mark.3.35"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.35"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.3.35"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.3.35"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ς ∷ []) "Mark.3.35"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.35"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ []) "Mark.3.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.35"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.35"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.3.35"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.4.1"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.4.1"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.1"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.1"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.1"
∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.4.1"
∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.4.1"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.1"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.1"
∷ word (ἐ ∷ μ ∷ β ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.1"
∷ word (κ ∷ α ∷ θ ∷ ῆ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.1"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.1"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.1"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.4.1"
∷ word (ὁ ∷ []) "Mark.4.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.4.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.1"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.1"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.1"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.2"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.4.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.2"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.2"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.2"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.2"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.2"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.4.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.2"
∷ word (Ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.3"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.4.3"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.4.3"
∷ word (ὁ ∷ []) "Mark.4.3"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.4.3"
∷ word (σ ∷ π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.4"
∷ word (τ ∷ ῷ ∷ []) "Mark.4.4"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.4"
∷ word (ὃ ∷ []) "Mark.4.4"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.4.4"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.4"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.4"
∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.4.4"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.4"
∷ word (π ∷ ε ∷ τ ∷ ε ∷ ι ∷ ν ∷ ὰ ∷ []) "Mark.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.4"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.5"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Mark.4.5"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.5"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.5"
∷ word (π ∷ ε ∷ τ ∷ ρ ∷ ῶ ∷ δ ∷ ε ∷ ς ∷ []) "Mark.4.5"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.4.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.5"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.4.5"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.5"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.5"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.5"
∷ word (ἐ ∷ ξ ∷ α ∷ ν ∷ έ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.5"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.5"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.5"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.5"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.5"
∷ word (β ∷ ά ∷ θ ∷ ο ∷ ς ∷ []) "Mark.4.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.6"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.4.6"
∷ word (ἀ ∷ ν ∷ έ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.6"
∷ word (ὁ ∷ []) "Mark.4.6"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.4.6"
∷ word (ἐ ∷ κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.6"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.6"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.6"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.6"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.6"
∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ ν ∷ []) "Mark.4.6"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Mark.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Mark.4.7"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.7"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.7"
∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ α ∷ ς ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.7"
∷ word (α ∷ ἱ ∷ []) "Mark.4.7"
∷ word (ἄ ∷ κ ∷ α ∷ ν ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ π ∷ ν ∷ ι ∷ ξ ∷ α ∷ ν ∷ []) "Mark.4.7"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.4.7"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.7"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.4.8"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.8"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.4.8"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (α ∷ ὐ ∷ ξ ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἔ ∷ φ ∷ ε ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.4.8"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.8"
∷ word (τ ∷ ρ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.8"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.8"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.9"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.9"
∷ word (Ὃ ∷ ς ∷ []) "Mark.4.9"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.9"
∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.4.9"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.9"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.4.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.10"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.4.10"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.10"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.4.10"
∷ word (μ ∷ ό ∷ ν ∷ α ∷ ς ∷ []) "Mark.4.10"
∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.10"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.4.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.10"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.4.10"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.10"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.4.10"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.10"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ά ∷ ς ∷ []) "Mark.4.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.11"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.11"
∷ word (Ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.11"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.11"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.11"
∷ word (δ ∷ έ ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.11"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.4.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.11"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.4.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.4.11"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.11"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.4.11"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.11"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.11"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.11"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.11"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.11"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.12"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.12"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ []) "Mark.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.12"
∷ word (ἴ ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.12"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ σ ∷ ι ∷ []) "Mark.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.12"
∷ word (σ ∷ υ ∷ ν ∷ ι ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12"
∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.4.12"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12"
∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.4.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.13"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.4.13"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.4.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.13"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.4.13"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.4.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.13"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.4.13"
∷ word (π ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.4.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.13"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.4.13"
∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.4.13"
∷ word (ὁ ∷ []) "Mark.4.14"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.4.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.14"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.14"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.4.14"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.4.15"
∷ word (δ ∷ έ ∷ []) "Mark.4.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.15"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.15"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.15"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.4.15"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.4.15"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.15"
∷ word (ὁ ∷ []) "Mark.4.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Mark.4.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.15"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.15"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.15"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.15"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.15"
∷ word (ὁ ∷ []) "Mark.4.15"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.4.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.15"
∷ word (α ∷ ἴ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.4.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.15"
∷ word (ἐ ∷ σ ∷ π ∷ α ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.4.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.4.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.16"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.4.16"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Mark.4.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.16"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.16"
∷ word (π ∷ ε ∷ τ ∷ ρ ∷ ώ ∷ δ ∷ η ∷ []) "Mark.4.16"
∷ word (σ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.4.16"
∷ word (ο ∷ ἳ ∷ []) "Mark.4.16"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.16"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.16"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.16"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.16"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.4.16"
∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Mark.4.16"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.17"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.17"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.17"
∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ ν ∷ []) "Mark.4.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.17"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.17"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.4.17"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ί ∷ []) "Mark.4.17"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.17"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.17"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.4.17"
∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.4.17"
∷ word (ἢ ∷ []) "Mark.4.17"
∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.4.17"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.17"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.17"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.17"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.18"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.4.18"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.4.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.18"
∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ α ∷ ς ∷ []) "Mark.4.18"
∷ word (σ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.4.18"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.4.18"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.18"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.18"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19"
∷ word (α ∷ ἱ ∷ []) "Mark.4.19"
∷ word (μ ∷ έ ∷ ρ ∷ ι ∷ μ ∷ ν ∷ α ∷ ι ∷ []) "Mark.4.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.19"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19"
∷ word (ἡ ∷ []) "Mark.4.19"
∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ η ∷ []) "Mark.4.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.19"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19"
∷ word (α ∷ ἱ ∷ []) "Mark.4.19"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.4.19"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.19"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "Mark.4.19"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "Mark.4.19"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Mark.4.19"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ ν ∷ ί ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.19"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19"
∷ word (ἄ ∷ κ ∷ α ∷ ρ ∷ π ∷ ο ∷ ς ∷ []) "Mark.4.19"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ί ∷ []) "Mark.4.20"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.20"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.20"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.4.20"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.20"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.4.20"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.20"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.20"
∷ word (τ ∷ ρ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.20"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.20"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.21"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.21"
∷ word (Μ ∷ ή ∷ τ ∷ ι ∷ []) "Mark.4.21"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.21"
∷ word (ὁ ∷ []) "Mark.4.21"
∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.4.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.21"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.21"
∷ word (μ ∷ ό ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.21"
∷ word (τ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.21"
∷ word (ἢ ∷ []) "Mark.4.21"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.21"
∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.4.21"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.4.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.21"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.21"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.21"
∷ word (τ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.21"
∷ word (ο ∷ ὐ ∷ []) "Mark.4.22"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.4.22"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.22"
∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.22"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.4.22"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.22"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.22"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.4.22"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.4.22"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.22"
∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ρ ∷ υ ∷ φ ∷ ο ∷ ν ∷ []) "Mark.4.22"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.4.22"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.22"
∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.4.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.22"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.4.22"
∷ word (ε ∷ ἴ ∷ []) "Mark.4.23"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.4.23"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.23"
∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.4.23"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.23"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.4.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.24"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.24"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.24"
∷ word (τ ∷ ί ∷ []) "Mark.4.24"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.24"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.24"
∷ word (ᾧ ∷ []) "Mark.4.24"
∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.4.24"
∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.4.24"
∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.24"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.24"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ε ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.24"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.24"
∷ word (ὃ ∷ ς ∷ []) "Mark.4.25"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.4.25"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25"
∷ word (δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.25"
∷ word (ὃ ∷ ς ∷ []) "Mark.4.25"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.25"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.25"
∷ word (ὃ ∷ []) "Mark.4.25"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25"
∷ word (ἀ ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.25"
∷ word (ἀ ∷ π ∷ []) "Mark.4.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.25"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.26"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.26"
∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.4.26"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.4.26"
∷ word (ἡ ∷ []) "Mark.4.26"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.4.26"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.26"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.26"
∷ word (ὡ ∷ ς ∷ []) "Mark.4.26"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.4.26"
∷ word (β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.4.26"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.26"
∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.4.26"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.26"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ῃ ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.27"
∷ word (ν ∷ ύ ∷ κ ∷ τ ∷ α ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (ὁ ∷ []) "Mark.4.27"
∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.4.27"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ τ ∷ ᾷ ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (μ ∷ η ∷ κ ∷ ύ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.27"
∷ word (ὡ ∷ ς ∷ []) "Mark.4.27"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.27"
∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.4.27"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.4.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ η ∷ []) "Mark.4.28"
∷ word (ἡ ∷ []) "Mark.4.28"
∷ word (γ ∷ ῆ ∷ []) "Mark.4.28"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.4.28"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.28"
∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ ν ∷ []) "Mark.4.28"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.28"
∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ η ∷ ς ∷ []) "Mark.4.28"
∷ word (σ ∷ ῖ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.28"
∷ word (τ ∷ ῷ ∷ []) "Mark.4.28"
∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ ϊ ∷ []) "Mark.4.28"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.29"
∷ word (δ ∷ ὲ ∷ []) "Mark.4.29"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.4.29"
∷ word (ὁ ∷ []) "Mark.4.29"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ό ∷ ς ∷ []) "Mark.4.29"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.29"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.29"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Mark.4.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.29"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.29"
∷ word (ὁ ∷ []) "Mark.4.29"
∷ word (θ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ό ∷ ς ∷ []) "Mark.4.29"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.30"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.30"
∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.4.30"
∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.30"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.30"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.30"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.30"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.30"
∷ word (ἢ ∷ []) "Mark.4.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.30"
∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "Mark.4.30"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.4.30"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "Mark.4.30"
∷ word (θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.30"
∷ word (ὡ ∷ ς ∷ []) "Mark.4.31"
∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ῳ ∷ []) "Mark.4.31"
∷ word (σ ∷ ι ∷ ν ∷ ά ∷ π ∷ ε ∷ ω ∷ ς ∷ []) "Mark.4.31"
∷ word (ὃ ∷ ς ∷ []) "Mark.4.31"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.31"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ ῇ ∷ []) "Mark.4.31"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.31"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.31"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.31"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.4.31"
∷ word (ὂ ∷ ν ∷ []) "Mark.4.31"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.31"
∷ word (σ ∷ π ∷ ε ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.31"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.31"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.31"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.32"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ ῇ ∷ []) "Mark.4.32"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Mark.4.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.32"
∷ word (μ ∷ ε ∷ ῖ ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.4.32"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.32"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.32"
∷ word (∙λ ∷ α ∷ χ ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "Mark.4.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Mark.4.32"
∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.32"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.32"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.32"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.32"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.32"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.32"
∷ word (σ ∷ κ ∷ ι ∷ ὰ ∷ ν ∷ []) "Mark.4.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.32"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.32"
∷ word (π ∷ ε ∷ τ ∷ ε ∷ ι ∷ ν ∷ ὰ ∷ []) "Mark.4.32"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.32"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.4.32"
∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.4.32"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.33"
∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Mark.4.33"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.33"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.33"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.33"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.33"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.33"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.4.33"
∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.4.33"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.33"
∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Mark.4.34"
∷ word (δ ∷ ὲ ∷ []) "Mark.4.34"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.4.34"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.34"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.34"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.4.34"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.34"
∷ word (δ ∷ ὲ ∷ []) "Mark.4.34"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.34"
∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.4.34"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.34"
∷ word (ἐ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.4.34"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.4.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.35"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.35"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.4.35"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.35"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.4.35"
∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.4.35"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.4.35"
∷ word (Δ ∷ ι ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.35"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.35"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.35"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.4.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.36"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.36"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.36"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.4.36"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.36"
∷ word (ὡ ∷ ς ∷ []) "Mark.4.36"
∷ word (ἦ ∷ ν ∷ []) "Mark.4.36"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.4.36"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.4.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.36"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.4.36"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ α ∷ []) "Mark.4.36"
∷ word (ἦ ∷ ν ∷ []) "Mark.4.36"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.4.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.37"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.37"
∷ word (∙λ ∷ α ∷ ῖ ∷ ∙λ ∷ α ∷ ψ ∷ []) "Mark.4.37"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.4.37"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ []) "Mark.4.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.37"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.37"
∷ word (κ ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.4.37"
∷ word (ἐ ∷ π ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.37"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.37"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.37"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.37"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.37"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.4.37"
∷ word (γ ∷ ε ∷ μ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.37"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.37"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.4.38"
∷ word (ἦ ∷ ν ∷ []) "Mark.4.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.38"
∷ word (π ∷ ρ ∷ ύ ∷ μ ∷ ν ∷ ῃ ∷ []) "Mark.4.38"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.38"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.38"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ω ∷ ν ∷ []) "Mark.4.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.38"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.38"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.38"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.4.38"
∷ word (ο ∷ ὐ ∷ []) "Mark.4.38"
∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.38"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.4.38"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.38"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Mark.4.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39"
∷ word (δ ∷ ι ∷ ε ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.4.39"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.39"
∷ word (τ ∷ ῷ ∷ []) "Mark.4.39"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ῳ ∷ []) "Mark.4.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.4.39"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.39"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.4.39"
∷ word (Σ ∷ ι ∷ ώ ∷ π ∷ α ∷ []) "Mark.4.39"
∷ word (π ∷ ε ∷ φ ∷ ί ∷ μ ∷ ω ∷ σ ∷ ο ∷ []) "Mark.4.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39"
∷ word (ἐ ∷ κ ∷ ό ∷ π ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.39"
∷ word (ὁ ∷ []) "Mark.4.39"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.4.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.39"
∷ word (γ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Mark.4.39"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.4.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.40"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.4.40"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.40"
∷ word (Τ ∷ ί ∷ []) "Mark.4.40"
∷ word (δ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.4.40"
∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.40"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.4.40"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.40"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.41"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Mark.4.41"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Mark.4.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.41"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.41"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.41"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.4.41"
∷ word (ἄ ∷ ρ ∷ α ∷ []) "Mark.4.41"
∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.4.41"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.41"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41"
∷ word (ὁ ∷ []) "Mark.4.41"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.4.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41"
∷ word (ἡ ∷ []) "Mark.4.41"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Mark.4.41"
∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ []) "Mark.4.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.41"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.1"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.1"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.1"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.1"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.5.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.1"
∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.1"
∷ word (Γ ∷ ε ∷ ρ ∷ α ∷ σ ∷ η ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.5.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.2"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.2"
∷ word (ἐ ∷ κ ∷ []) "Mark.5.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.2"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.2"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.2"
∷ word (ὑ ∷ π ∷ ή ∷ ν ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.2"
∷ word (ἐ ∷ κ ∷ []) "Mark.5.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.2"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.2"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.5.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.2"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.2"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.5.2"
∷ word (ὃ ∷ ς ∷ []) "Mark.5.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.3"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.3"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.5.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.3"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.3"
∷ word (μ ∷ ν ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.5.3"
∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.3"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.3"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.3"
∷ word (δ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.3"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.5.4"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.4"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Mark.5.4"
∷ word (π ∷ έ ∷ δ ∷ α ∷ ι ∷ ς ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4"
∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ σ ∷ ι ∷ []) "Mark.5.4"
∷ word (δ ∷ ε ∷ δ ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ π ∷ ά ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4"
∷ word (ὑ ∷ π ∷ []) "Mark.5.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.4"
∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.4"
∷ word (π ∷ έ ∷ δ ∷ α ∷ ς ∷ []) "Mark.5.4"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ τ ∷ ρ ∷ ῖ ∷ φ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.4"
∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.5.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.4"
∷ word (δ ∷ α ∷ μ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.5.5"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.5"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.5"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.5"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.5"
∷ word (μ ∷ ν ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.5"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.5"
∷ word (ὄ ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.5"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.5"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ό ∷ π ∷ τ ∷ ω ∷ ν ∷ []) "Mark.5.5"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.5"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.6"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.5.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.5.6"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.6"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.6"
∷ word (ἔ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.6"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.6"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.7"
∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.5.7"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.5.7"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.7"
∷ word (Τ ∷ ί ∷ []) "Mark.5.7"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.5.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.7"
∷ word (σ ∷ ο ∷ ί ∷ []) "Mark.5.7"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.7"
∷ word (υ ∷ ἱ ∷ ὲ ∷ []) "Mark.5.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.7"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.5.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.7"
∷ word (ὑ ∷ ψ ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.5.7"
∷ word (ὁ ∷ ρ ∷ κ ∷ ί ∷ ζ ∷ ω ∷ []) "Mark.5.7"
∷ word (σ ∷ ε ∷ []) "Mark.5.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.7"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Mark.5.7"
∷ word (μ ∷ ή ∷ []) "Mark.5.7"
∷ word (μ ∷ ε ∷ []) "Mark.5.7"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ί ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.5.7"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.8"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.8"
∷ word (Ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.5.8"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.8"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.5.8"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.8"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.5.8"
∷ word (ἐ ∷ κ ∷ []) "Mark.5.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.8"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.9"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.5.9"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.9"
∷ word (Τ ∷ ί ∷ []) "Mark.5.9"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.5.9"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.9"
∷ word (Λ ∷ ε ∷ γ ∷ ι ∷ ὼ ∷ ν ∷ []) "Mark.5.9"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.5.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.5.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.9"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.5.9"
∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.10"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.10"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.10"
∷ word (μ ∷ ὴ ∷ []) "Mark.5.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.5.10"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.10"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.5.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.10"
∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.10"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.11"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.5.11"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.11"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.11"
∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.5.11"
∷ word (ἀ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.5.11"
∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.5.11"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.5.11"
∷ word (β ∷ ο ∷ σ ∷ κ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.12"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.12"
∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.5.12"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.5.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.12"
∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.5.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.12"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13"
∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.5.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.13"
∷ word (τ ∷ ὰ ∷ []) "Mark.5.13"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.5.13"
∷ word (τ ∷ ὰ ∷ []) "Mark.5.13"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Mark.5.13"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.13"
∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13"
∷ word (ὥ ∷ ρ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.13"
∷ word (ἡ ∷ []) "Mark.5.13"
∷ word (ἀ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.5.13"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.5.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.13"
∷ word (κ ∷ ρ ∷ η ∷ μ ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.5.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.13"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.13"
∷ word (ὡ ∷ ς ∷ []) "Mark.5.13"
∷ word (δ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13"
∷ word (ἐ ∷ π ∷ ν ∷ ί ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.13"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.13"
∷ word (τ ∷ ῇ ∷ []) "Mark.5.13"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.5.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.14"
∷ word (ο ∷ ἱ ∷ []) "Mark.5.14"
∷ word (β ∷ ό ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.14"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.5.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.14"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.14"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.14"
∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.14"
∷ word (τ ∷ ί ∷ []) "Mark.5.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.5.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.14"
∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ ό ∷ ς ∷ []) "Mark.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.15"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15"
∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15"
∷ word (ἐ ∷ σ ∷ χ ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Mark.5.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15"
∷ word (∙λ ∷ ε ∷ γ ∷ ι ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.16"
∷ word (δ ∷ ι ∷ η ∷ γ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.5.16"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.16"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.5.16"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.5.16"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.16"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Mark.5.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.16"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.5.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.16"
∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.5.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.17"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.17"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.17"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.17"
∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.5.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.18"
∷ word (ἐ ∷ μ ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.18"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.18"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.5.18"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.18"
∷ word (ὁ ∷ []) "Mark.5.18"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.18"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.18"
∷ word (ᾖ ∷ []) "Mark.5.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.19"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.19"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.19"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.19"
∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.5.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.19"
∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.5.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.19"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.19"
∷ word (σ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.5.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19"
∷ word (ἀ ∷ π ∷ ά ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.19"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.5.19"
∷ word (ὁ ∷ []) "Mark.5.19"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "Mark.5.19"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.5.19"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19"
∷ word (ἠ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ έ ∷ ν ∷ []) "Mark.5.19"
∷ word (σ ∷ ε ∷ []) "Mark.5.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.20"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.5.20"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.20"
∷ word (τ ∷ ῇ ∷ []) "Mark.5.20"
∷ word (Δ ∷ ε ∷ κ ∷ α ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.20"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.5.20"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.20"
∷ word (ὁ ∷ []) "Mark.5.20"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.20"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.5.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.21"
∷ word (δ ∷ ι ∷ α ∷ π ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.21"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.21"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.21"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.5.21"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.5.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.21"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.21"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.21"
∷ word (σ ∷ υ ∷ ν ∷ ή ∷ χ ∷ θ ∷ η ∷ []) "Mark.5.21"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.5.21"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ς ∷ []) "Mark.5.21"
∷ word (ἐ ∷ π ∷ []) "Mark.5.21"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.21"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.21"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.5.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.21"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.22"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.22"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.5.22"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.22"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.5.22"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.22"
∷ word (Ἰ ∷ ά ∷ ϊ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.5.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.22"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.5.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.22"
∷ word (π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Mark.5.22"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.22"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.22"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.5.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.23"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.5.23"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.23"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.23"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.5.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.23"
∷ word (Τ ∷ ὸ ∷ []) "Mark.5.23"
∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ ρ ∷ ι ∷ ό ∷ ν ∷ []) "Mark.5.23"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.23"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ω ∷ ς ∷ []) "Mark.5.23"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.5.23"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.23"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.5.23"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ ς ∷ []) "Mark.5.23"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.23"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.23"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.23"
∷ word (σ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.5.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.23"
∷ word (ζ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.5.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.24"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.24"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.24"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.24"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.5.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.24"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.5.24"
∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ ς ∷ []) "Mark.5.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.24"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ θ ∷ ∙λ ∷ ι ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.24"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.25"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.5.25"
∷ word (ο ∷ ὖ ∷ σ ∷ α ∷ []) "Mark.5.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.25"
∷ word (ῥ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.25"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.25"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.5.25"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Mark.5.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.26"
∷ word (π ∷ α ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.26"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.5.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.5.26"
∷ word (ἰ ∷ α ∷ τ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.5.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26"
∷ word (δ ∷ α ∷ π ∷ α ∷ ν ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.5.26"
∷ word (τ ∷ ὰ ∷ []) "Mark.5.26"
∷ word (π ∷ α ∷ ρ ∷ []) "Mark.5.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.5.26"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.5.26"
∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.5.26"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.26"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.26"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.5.26"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.26"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.5.27"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.5.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.27"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.27"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.27"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.27"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.5.27"
∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.27"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.28"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.28"
∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.5.28"
∷ word (ἅ ∷ ψ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.5.28"
∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.5.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.28"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.28"
∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.5.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.29"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.29"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Mark.5.29"
∷ word (ἡ ∷ []) "Mark.5.29"
∷ word (π ∷ η ∷ γ ∷ ὴ ∷ []) "Mark.5.29"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.29"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.5.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.29"
∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "Mark.5.29"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.29"
∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.29"
∷ word (ἴ ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.29"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.29"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.29"
∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ ο ∷ ς ∷ []) "Mark.5.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.30"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.30"
∷ word (ὁ ∷ []) "Mark.5.30"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.30"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.30"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Mark.5.30"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.5.30"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.30"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.5.30"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.30"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ α ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.30"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.30"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.5.30"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.30"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.5.30"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.30"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.30"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.30"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.31"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.31"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.5.31"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.5.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.31"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.31"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.31"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.31"
∷ word (σ ∷ υ ∷ ν ∷ θ ∷ ∙λ ∷ ί ∷ β ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "Mark.5.31"
∷ word (σ ∷ ε ∷ []) "Mark.5.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.31"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.31"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.5.31"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.31"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.32"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ο ∷ []) "Mark.5.32"
∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.32"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.32"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.5.32"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.32"
∷ word (ἡ ∷ []) "Mark.5.33"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.33"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.5.33"
∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.5.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33"
∷ word (τ ∷ ρ ∷ έ ∷ μ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.5.33"
∷ word (ε ∷ ἰ ∷ δ ∷ υ ∷ ῖ ∷ α ∷ []) "Mark.5.33"
∷ word (ὃ ∷ []) "Mark.5.33"
∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.33"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.33"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.33"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.33"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.33"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.33"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.33"
∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Mark.5.33"
∷ word (ὁ ∷ []) "Mark.5.34"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.34"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.34"
∷ word (Θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ η ∷ ρ ∷ []) "Mark.5.34"
∷ word (ἡ ∷ []) "Mark.5.34"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Mark.5.34"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.34"
∷ word (σ ∷ έ ∷ σ ∷ ω ∷ κ ∷ έ ∷ ν ∷ []) "Mark.5.34"
∷ word (σ ∷ ε ∷ []) "Mark.5.34"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.5.34"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.34"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Mark.5.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.34"
∷ word (ἴ ∷ σ ∷ θ ∷ ι ∷ []) "Mark.5.34"
∷ word (ὑ ∷ γ ∷ ι ∷ ὴ ∷ ς ∷ []) "Mark.5.34"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.34"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.34"
∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ ό ∷ ς ∷ []) "Mark.5.34"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.34"
∷ word (Ἔ ∷ τ ∷ ι ∷ []) "Mark.5.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.35"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.35"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.35"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.35"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.35"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ο ∷ υ ∷ []) "Mark.5.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.35"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.35"
∷ word (Ἡ ∷ []) "Mark.5.35"
∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ η ∷ ρ ∷ []) "Mark.5.35"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.35"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.35"
∷ word (τ ∷ ί ∷ []) "Mark.5.35"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.5.35"
∷ word (σ ∷ κ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.35"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.35"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.35"
∷ word (ὁ ∷ []) "Mark.5.36"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.36"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.36"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.5.36"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.36"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.36"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.36"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.36"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ῳ ∷ []) "Mark.5.36"
∷ word (Μ ∷ ὴ ∷ []) "Mark.5.36"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Mark.5.36"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.36"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ ε ∷ []) "Mark.5.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.37"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.37"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.5.37"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.37"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.37"
∷ word (ε ∷ ἰ ∷ []) "Mark.5.37"
∷ word (μ ∷ ὴ ∷ []) "Mark.5.37"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.37"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.5.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.5.37"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.37"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.5.37"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.5.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.38"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.38"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.5.38"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.38"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ο ∷ υ ∷ []) "Mark.5.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.5.38"
∷ word (θ ∷ ό ∷ ρ ∷ υ ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38"
∷ word (ἀ ∷ ∙λ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.38"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.5.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.39"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.5.39"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.39"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.39"
∷ word (Τ ∷ ί ∷ []) "Mark.5.39"
∷ word (θ ∷ ο ∷ ρ ∷ υ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.5.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.39"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.5.39"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.39"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.5.39"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.39"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.39"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.39"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ []) "Mark.5.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.5.40"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.40"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.40"
∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.5.40"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.40"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.5.40"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.40"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.5.40"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.40"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.40"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.40"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.40"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.5.40"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.40"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.40"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.41"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.5.41"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.41"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.41"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.41"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.41"
∷ word (Τ ∷ α ∷ ∙λ ∷ ι ∷ θ ∷ α ∷ []) "Mark.5.41"
∷ word (κ ∷ ο ∷ υ ∷ μ ∷ []) "Mark.5.41"
∷ word (ὅ ∷ []) "Mark.5.41"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.5.41"
∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.41"
∷ word (Τ ∷ ὸ ∷ []) "Mark.5.41"
∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.5.41"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.5.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.5.41"
∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.5.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.42"
∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.5.42"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.42"
∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.5.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ π ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Mark.5.42"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.42"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.42"
∷ word (ἐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.5.42"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.5.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42"
∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.42"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.42"
∷ word (ἐ ∷ κ ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.42"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.43"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.43"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.43"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.43"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.43"
∷ word (γ ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.5.43"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.5.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.43"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.43"
∷ word (δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.5.43"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.43"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.43"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.1"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.1"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.1"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.1"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ δ ∷ α ∷ []) "Mark.6.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.1"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.1"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.2"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.6.2"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.2"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.2"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.2"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῇ ∷ []) "Mark.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.2"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.6.2"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.2"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.2"
∷ word (Π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.2"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.6.2"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.6.2"
∷ word (ἡ ∷ []) "Mark.6.2"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Mark.6.2"
∷ word (ἡ ∷ []) "Mark.6.2"
∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.6.2"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2"
∷ word (α ∷ ἱ ∷ []) "Mark.6.2"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.2"
∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.2"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.2"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.6.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.2"
∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.2"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.6.3"
∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.6.3"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.3"
∷ word (ὁ ∷ []) "Mark.6.3"
∷ word (τ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.3"
∷ word (ὁ ∷ []) "Mark.6.3"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.6.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.3"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.6.3"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.3"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.6.3"
∷ word (α ∷ ἱ ∷ []) "Mark.6.3"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.3"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.6.3"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.3"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (ἐ ∷ σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.4"
∷ word (ὁ ∷ []) "Mark.6.4"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.6.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.4"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.6.4"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.4"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.6.4"
∷ word (ἄ ∷ τ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.4"
∷ word (ε ∷ ἰ ∷ []) "Mark.6.4"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.4"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.4"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ δ ∷ ι ∷ []) "Mark.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.4"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.4"
∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ε ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.4"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.4"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.5"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.5"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.5"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.6.5"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.5"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.6.5"
∷ word (ε ∷ ἰ ∷ []) "Mark.6.5"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.5"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.5"
∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.5"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.6.5"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.6.5"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.5"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.6"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.6.6"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.6"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.6"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ῆ ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.6.6"
∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.6"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.6.6"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.6.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.7"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.6.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.7"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.7"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.7"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.7"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.7"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.7"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.8"
∷ word (π ∷ α ∷ ρ ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.8"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.8"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.6.8"
∷ word (α ∷ ἴ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.8"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.6.8"
∷ word (ε ∷ ἰ ∷ []) "Mark.6.8"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.8"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.8"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.6.8"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.8"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.6.8"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.8"
∷ word (π ∷ ή ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.8"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.8"
∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.8"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.6.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.9"
∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.9"
∷ word (σ ∷ α ∷ ν ∷ δ ∷ ά ∷ ∙λ ∷ ι ∷ α ∷ []) "Mark.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.9"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.9"
∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.9"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.9"
∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Mark.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.10"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.10"
∷ word (Ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.10"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.6.10"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.6.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.10"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.10"
∷ word (μ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.10"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.10"
∷ word (ἂ ∷ ν ∷ []) "Mark.6.10"
∷ word (ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.6.10"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.11"
∷ word (ὃ ∷ ς ∷ []) "Mark.6.11"
∷ word (ἂ ∷ ν ∷ []) "Mark.6.11"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.11"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.11"
∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.11"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.6.11"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.6.11"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.11"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.6.11"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.6.11"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.11"
∷ word (ἐ ∷ κ ∷ τ ∷ ι ∷ ν ∷ ά ∷ ξ ∷ α ∷ τ ∷ ε ∷ []) "Mark.6.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.11"
∷ word (χ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.6.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.11"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.6.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.11"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Mark.6.11"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.6.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.11"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.12"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.12"
∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.12"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.6.13"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.13"
∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13"
∷ word (ἤ ∷ ∙λ ∷ ε ∷ ι ∷ φ ∷ ο ∷ ν ∷ []) "Mark.6.13"
∷ word (ἐ ∷ ∙λ ∷ α ∷ ί ∷ ῳ ∷ []) "Mark.6.13"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.13"
∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ ο ∷ ν ∷ []) "Mark.6.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.14"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.14"
∷ word (ὁ ∷ []) "Mark.6.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.14"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.14"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.6.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.14"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.6.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.14"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.6.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.14"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.14"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.14"
∷ word (ὁ ∷ []) "Mark.6.14"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.6.14"
∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.14"
∷ word (ἐ ∷ κ ∷ []) "Mark.6.14"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.14"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.14"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.6.14"
∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.14"
∷ word (α ∷ ἱ ∷ []) "Mark.6.14"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.14"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.14"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.15"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.15"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.15"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.15"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.15"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.15"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.15"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.6.15"
∷ word (ὡ ∷ ς ∷ []) "Mark.6.15"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.6.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.15"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.15"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.6.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.16"
∷ word (ὁ ∷ []) "Mark.6.16"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.16"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.16"
∷ word (Ὃ ∷ ν ∷ []) "Mark.6.16"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.6.16"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ α ∷ []) "Mark.6.16"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.16"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.16"
∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.6.16"
∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.17"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.17"
∷ word (ὁ ∷ []) "Mark.6.17"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.17"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.6.17"
∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.17"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.17"
∷ word (ἔ ∷ δ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.17"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῇ ∷ []) "Mark.6.17"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.17"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ά ∷ δ ∷ α ∷ []) "Mark.6.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.17"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.6.17"
∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.17"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "Mark.6.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.17"
∷ word (ἐ ∷ γ ∷ ά ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.18"
∷ word (ὁ ∷ []) "Mark.6.18"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.18"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.18"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ῃ ∷ []) "Mark.6.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.18"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.6.18"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.18"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.18"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.18"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.6.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.18"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "Mark.6.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.6.18"
∷ word (ἡ ∷ []) "Mark.6.19"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.19"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ὰ ∷ ς ∷ []) "Mark.6.19"
∷ word (ἐ ∷ ν ∷ ε ∷ ῖ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.6.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.19"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.19"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.19"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.19"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.19"
∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.19"
∷ word (ὁ ∷ []) "Mark.6.20"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.20"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.20"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Mark.6.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.20"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.20"
∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Mark.6.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.20"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.6.20"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.6.20"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.6.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.6.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.20"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.20"
∷ word (ἠ ∷ π ∷ ό ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.6.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20"
∷ word (ἡ ∷ δ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.6.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.20"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ε ∷ ν ∷ []) "Mark.6.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.21"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.21"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.21"
∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.6.21"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.6.21"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.21"
∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Mark.6.21"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21"
∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ ρ ∷ χ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.21"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.22"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22"
∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ά ∷ δ ∷ ο ∷ ς ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (ὀ ∷ ρ ∷ χ ∷ η ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (ἀ ∷ ρ ∷ ε ∷ σ ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.22"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.22"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ῃ ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.22"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.22"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.22"
∷ word (ὁ ∷ []) "Mark.6.22"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.22"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.22"
∷ word (κ ∷ ο ∷ ρ ∷ α ∷ σ ∷ ί ∷ ῳ ∷ []) "Mark.6.22"
∷ word (Α ∷ ἴ ∷ τ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.6.22"
∷ word (μ ∷ ε ∷ []) "Mark.6.22"
∷ word (ὃ ∷ []) "Mark.6.22"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.6.22"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Mark.6.22"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.23"
∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.6.23"
∷ word (Ὅ ∷ []) "Mark.6.23"
∷ word (τ ∷ ι ∷ []) "Mark.6.23"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.6.23"
∷ word (μ ∷ ε ∷ []) "Mark.6.23"
∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.6.23"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Mark.6.23"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.23"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.23"
∷ word (ἡ ∷ μ ∷ ί ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.23"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.23"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.6.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.24"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.6.24"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.24"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.24"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.6.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.24"
∷ word (Τ ∷ ί ∷ []) "Mark.6.24"
∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.6.24"
∷ word (ἡ ∷ []) "Mark.6.24"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.24"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.24"
∷ word (Τ ∷ ὴ ∷ ν ∷ []) "Mark.6.24"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.24"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.24"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.25"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.6.25"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.25"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.6.25"
∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ῆ ∷ ς ∷ []) "Mark.6.25"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.25"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.25"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.6.25"
∷ word (ᾐ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.6.25"
∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.6.25"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.25"
∷ word (ἐ ∷ ξ ∷ α ∷ υ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.25"
∷ word (δ ∷ ῷ ∷ ς ∷ []) "Mark.6.25"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.6.25"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.25"
∷ word (π ∷ ί ∷ ν ∷ α ∷ κ ∷ ι ∷ []) "Mark.6.25"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.25"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.25"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.25"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.26"
∷ word (π ∷ ε ∷ ρ ∷ ί ∷ ∙λ ∷ υ ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.26"
∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.26"
∷ word (ὁ ∷ []) "Mark.6.26"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.26"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.26"
∷ word (ὅ ∷ ρ ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.26"
∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.26"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.26"
∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.26"
∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.6.26"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.6.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.27"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.27"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.6.27"
∷ word (ὁ ∷ []) "Mark.6.27"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.27"
∷ word (σ ∷ π ∷ ε ∷ κ ∷ ο ∷ υ ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.6.27"
∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.6.27"
∷ word (ἐ ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ι ∷ []) "Mark.6.27"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.27"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.27"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.6.27"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.27"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.27"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.27"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.27"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῇ ∷ []) "Mark.6.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28"
∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.28"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.28"
∷ word (π ∷ ί ∷ ν ∷ α ∷ κ ∷ ι ∷ []) "Mark.6.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.28"
∷ word (κ ∷ ο ∷ ρ ∷ α ∷ σ ∷ ί ∷ ῳ ∷ []) "Mark.6.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.28"
∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.28"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.28"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.6.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.29"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.29"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.29"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29"
∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.29"
∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.6.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.6.29"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.6.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.29"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ῳ ∷ []) "Mark.6.29"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.30"
∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.30"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.30"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.30"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.30"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.30"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.6.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.30"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.6.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.30"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.30"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.6.30"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.30"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.6.30"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.31"
∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.6.31"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.6.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.6.31"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.31"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.31"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.31"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.31"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.31"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.31"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.31"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.31"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.31"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.6.31"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.31"
∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.32"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.32"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.32"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.32"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.6.32"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.32"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.32"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.6.32"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.6.32"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.33"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33"
∷ word (ἐ ∷ π ∷ έ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.33"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.6.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33"
∷ word (π ∷ ε ∷ ζ ∷ ῇ ∷ []) "Mark.6.33"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.6.33"
∷ word (π ∷ α ∷ σ ∷ ῶ ∷ ν ∷ []) "Mark.6.33"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.33"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ν ∷ []) "Mark.6.33"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.33"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33"
∷ word (π ∷ ρ ∷ ο ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.6.34"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.6.34"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ν ∷ []) "Mark.6.34"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34"
∷ word (ἐ ∷ σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.6.34"
∷ word (ἐ ∷ π ∷ []) "Mark.6.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.34"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.34"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.34"
∷ word (ὡ ∷ ς ∷ []) "Mark.6.34"
∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Mark.6.34"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.34"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.34"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.6.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.34"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.34"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.6.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.35"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.6.35"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.35"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.6.35"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.35"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.35"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.35"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.35"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.35"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.35"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.35"
∷ word (Ἔ ∷ ρ ∷ η ∷ μ ∷ ό ∷ ς ∷ []) "Mark.6.35"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.35"
∷ word (ὁ ∷ []) "Mark.6.35"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.35"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.6.35"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.6.35"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ []) "Mark.6.35"
∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ υ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.6.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.36"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.36"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.36"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.36"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.36"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.6.36"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.36"
∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.36"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.36"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.36"
∷ word (τ ∷ ί ∷ []) "Mark.6.36"
∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.36"
∷ word (ὁ ∷ []) "Mark.6.37"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.37"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.6.37"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37"
∷ word (Δ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.6.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.6.37"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.37"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.37"
∷ word (Ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.37"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.6.37"
∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.6.37"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.6.37"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.37"
∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.6.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.37"
∷ word (ὁ ∷ []) "Mark.6.38"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.38"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.38"
∷ word (Π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.38"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.38"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38"
∷ word (ἴ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.38"
∷ word (γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.38"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.38"
∷ word (Π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.6.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.38"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.38"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.39"
∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.6.39"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.39"
∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ∙λ ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.39"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.39"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ ό ∷ σ ∷ ι ∷ α ∷ []) "Mark.6.39"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ ό ∷ σ ∷ ι ∷ α ∷ []) "Mark.6.39"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.39"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.39"
∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ῷ ∷ []) "Mark.6.39"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.6.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.40"
∷ word (ἀ ∷ ν ∷ έ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.40"
∷ word (π ∷ ρ ∷ α ∷ σ ∷ ι ∷ α ∷ ὶ ∷ []) "Mark.6.40"
∷ word (π ∷ ρ ∷ α ∷ σ ∷ ι ∷ α ∷ ὶ ∷ []) "Mark.6.40"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.6.40"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.40"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.6.40"
∷ word (π ∷ ε ∷ ν ∷ τ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.6.41"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.41"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.41"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.6.41"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.41"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.41"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.6.41"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.41"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.41"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.41"
∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.41"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.41"
∷ word (ἐ ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.42"
∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.42"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.42"
∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.43"
∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.43"
∷ word (κ ∷ ∙λ ∷ ά ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.6.43"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.6.43"
∷ word (κ ∷ ο ∷ φ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.6.43"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.6.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.43"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.6.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.43"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ ω ∷ ν ∷ []) "Mark.6.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.44"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.44"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.44"
∷ word (φ ∷ α ∷ γ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.44"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.44"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.44"
∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.6.44"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ ε ∷ ς ∷ []) "Mark.6.44"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.45"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.45"
∷ word (ἠ ∷ ν ∷ ά ∷ γ ∷ κ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.45"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.45"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.6.45"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.45"
∷ word (ἐ ∷ μ ∷ β ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.45"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.45"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.45"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.45"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.45"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.45"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.45"
∷ word (Β ∷ η ∷ θ ∷ σ ∷ α ∷ ϊ ∷ δ ∷ ά ∷ ν ∷ []) "Mark.6.45"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.45"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.45"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ ε ∷ ι ∷ []) "Mark.6.45"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.45"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.46"
∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ α ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.46"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.46"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.46"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.46"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.46"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.6.46"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.6.46"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.47"
∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.47"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.47"
∷ word (ἦ ∷ ν ∷ []) "Mark.6.47"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.47"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.47"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.47"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Mark.6.47"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.47"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.47"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.47"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.47"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.47"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.47"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.6.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.48"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.6.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.48"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.48"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.48"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.48"
∷ word (ἐ ∷ ∙λ ∷ α ∷ ύ ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.48"
∷ word (ἦ ∷ ν ∷ []) "Mark.6.48"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.48"
∷ word (ὁ ∷ []) "Mark.6.48"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.48"
∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.6.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.48"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.6.48"
∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ η ∷ ν ∷ []) "Mark.6.48"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ ν ∷ []) "Mark.6.48"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.48"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.48"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.48"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.48"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.48"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.48"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.48"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.48"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.48"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.48"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.48"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.49"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.49"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.49"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.49"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.49"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.49"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.49"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.49"
∷ word (ἔ ∷ δ ∷ ο ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.49"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.49"
∷ word (φ ∷ ά ∷ ν ∷ τ ∷ α ∷ σ ∷ μ ∷ ά ∷ []) "Mark.6.49"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.49"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.49"
∷ word (ἀ ∷ ν ∷ έ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.49"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.50"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.50"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.50"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.50"
∷ word (ἐ ∷ τ ∷ α ∷ ρ ∷ ά ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.50"
∷ word (ὁ ∷ []) "Mark.6.50"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.50"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.50"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.50"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.6.50"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.50"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.50"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.50"
∷ word (Θ ∷ α ∷ ρ ∷ σ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.6.50"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.6.50"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.6.50"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.50"
∷ word (φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Mark.6.51"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.51"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.51"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.51"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.51"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.51"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51"
∷ word (ἐ ∷ κ ∷ ό ∷ π ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.51"
∷ word (ὁ ∷ []) "Mark.6.51"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.51"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.51"
∷ word (ἐ ∷ κ ∷ []) "Mark.6.51"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.6.51"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.51"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.51"
∷ word (ἐ ∷ ξ ∷ ί ∷ σ ∷ τ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.51"
∷ word (ο ∷ ὐ ∷ []) "Mark.6.52"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.52"
∷ word (σ ∷ υ ∷ ν ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.6.52"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.52"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.52"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.52"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.6.52"
∷ word (ἦ ∷ ν ∷ []) "Mark.6.52"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.52"
∷ word (ἡ ∷ []) "Mark.6.52"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Mark.6.52"
∷ word (π ∷ ε ∷ π ∷ ω ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.6.52"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.53"
∷ word (δ ∷ ι ∷ α ∷ π ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.53"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.53"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.53"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.6.53"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.53"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.53"
∷ word (Γ ∷ ε ∷ ν ∷ ν ∷ η ∷ σ ∷ α ∷ ρ ∷ ὲ ∷ τ ∷ []) "Mark.6.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.53"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ω ∷ ρ ∷ μ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.54"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.54"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.54"
∷ word (ἐ ∷ κ ∷ []) "Mark.6.54"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.54"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ο ∷ υ ∷ []) "Mark.6.54"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.54"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.54"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.54"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.55"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.6.55"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.55"
∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.55"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.55"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.55"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.55"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.55"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.55"
∷ word (κ ∷ ρ ∷ α ∷ β ∷ ά ∷ τ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.55"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.55"
∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.6.55"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.55"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.55"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.55"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ο ∷ ν ∷ []) "Mark.6.55"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.55"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.55"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.56"
∷ word (ἂ ∷ ν ∷ []) "Mark.6.56"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.6.56"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56"
∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.56"
∷ word (ἢ ∷ []) "Mark.6.56"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.56"
∷ word (ἢ ∷ []) "Mark.6.56"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.56"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἐ ∷ τ ∷ ί ∷ θ ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.56"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.56"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.6.56"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.56"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.56"
∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.6.56"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56"
∷ word (κ ∷ ρ ∷ α ∷ σ ∷ π ∷ έ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.56"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.6.56"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56"
∷ word (ἅ ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.56"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Mark.6.56"
∷ word (ἂ ∷ ν ∷ []) "Mark.6.56"
∷ word (ἥ ∷ ψ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.56"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56"
∷ word (ἐ ∷ σ ∷ ῴ ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.56"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.1"
∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.1"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.1"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.7.1"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.7.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.1"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.7.1"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.1"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.1"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.7.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.2"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.2"
∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ ς ∷ []) "Mark.7.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.2"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.2"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.7.2"
∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.7.2"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Mark.7.2"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.2"
∷ word (ἀ ∷ ν ∷ ί ∷ π ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.7.2"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.2"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.2"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.3"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.3"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.3"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.3"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.3"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.3"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.3"
∷ word (μ ∷ ὴ ∷ []) "Mark.7.3"
∷ word (π ∷ υ ∷ γ ∷ μ ∷ ῇ ∷ []) "Mark.7.3"
∷ word (ν ∷ ί ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.7.3"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.7.3"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.3"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.3"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.3"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.3"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.7.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (ἀ ∷ π ∷ []) "Mark.7.4"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Mark.7.4"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.4"
∷ word (μ ∷ ὴ ∷ []) "Mark.7.4"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.4"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.7.4"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.7.4"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.4"
∷ word (ἃ ∷ []) "Mark.7.4"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.4"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.4"
∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (ξ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (κ ∷ ∙λ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.5"
∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.5"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.5"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.5"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.7.5"
∷ word (τ ∷ ί ∷ []) "Mark.7.5"
∷ word (ο ∷ ὐ ∷ []) "Mark.7.5"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.5"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "Mark.7.5"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.5"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.7.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.5"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.5"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.7.5"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.5"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.7.5"
∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.7.5"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.5"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.5"
∷ word (ὁ ∷ []) "Mark.7.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.6"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.6"
∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.6"
∷ word (ἐ ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.7.6"
∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "Mark.7.6"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.7.6"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6"
∷ word (ὡ ∷ ς ∷ []) "Mark.7.6"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.6"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.7.6"
∷ word (ὁ ∷ []) "Mark.7.6"
∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "Mark.7.6"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.6"
∷ word (χ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "Mark.7.6"
∷ word (μ ∷ ε ∷ []) "Mark.7.6"
∷ word (τ ∷ ι ∷ μ ∷ ᾷ ∷ []) "Mark.7.6"
∷ word (ἡ ∷ []) "Mark.7.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.6"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Mark.7.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6"
∷ word (π ∷ ό ∷ ρ ∷ ρ ∷ ω ∷ []) "Mark.7.6"
∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.7.6"
∷ word (ἀ ∷ π ∷ []) "Mark.7.6"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.7.6"
∷ word (μ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Mark.7.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.7"
∷ word (σ ∷ έ ∷ β ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.7.7"
∷ word (μ ∷ ε ∷ []) "Mark.7.7"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.7"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.7"
∷ word (ἐ ∷ ν ∷ τ ∷ ά ∷ ∙λ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.7.7"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.7"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.8"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.7.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.8"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.8"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.8"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.8"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.9"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.9"
∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.9"
∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.9"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.7.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.9"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.9"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.9"
∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.7.9"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.7.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.10"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.10"
∷ word (Τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.7.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.10"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.10"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.10"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.7.10"
∷ word (Ὁ ∷ []) "Mark.7.10"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ῶ ∷ ν ∷ []) "Mark.7.10"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10"
∷ word (ἢ ∷ []) "Mark.7.10"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.7.10"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.7.10"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.11"
∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.11"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.7.11"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.7.11"
∷ word (τ ∷ ῷ ∷ []) "Mark.7.11"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.7.11"
∷ word (ἢ ∷ []) "Mark.7.11"
∷ word (τ ∷ ῇ ∷ []) "Mark.7.11"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ []) "Mark.7.11"
∷ word (Κ ∷ ο ∷ ρ ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.7.11"
∷ word (ὅ ∷ []) "Mark.7.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.11"
∷ word (Δ ∷ ῶ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.7.11"
∷ word (ὃ ∷ []) "Mark.7.11"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.11"
∷ word (ἐ ∷ ξ ∷ []) "Mark.7.11"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.7.11"
∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ η ∷ θ ∷ ῇ ∷ ς ∷ []) "Mark.7.11"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.7.12"
∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.12"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.7.12"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.12"
∷ word (τ ∷ ῷ ∷ []) "Mark.7.12"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.7.12"
∷ word (ἢ ∷ []) "Mark.7.12"
∷ word (τ ∷ ῇ ∷ []) "Mark.7.12"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ []) "Mark.7.12"
∷ word (ἀ ∷ κ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.13"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.13"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.7.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.13"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.13"
∷ word (τ ∷ ῇ ∷ []) "Mark.7.13"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ό ∷ σ ∷ ε ∷ ι ∷ []) "Mark.7.13"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.13"
∷ word (ᾗ ∷ []) "Mark.7.13"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "Mark.7.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.13"
∷ word (π ∷ α ∷ ρ ∷ ό ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Mark.7.13"
∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.7.13"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.13"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.14"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.14"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.7.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.14"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.14"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.14"
∷ word (Ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ έ ∷ []) "Mark.7.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.7.14"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.14"
∷ word (σ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.14"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.7.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.15"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.15"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.15"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.15"
∷ word (ὃ ∷ []) "Mark.7.15"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.15"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.7.15"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.15"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.15"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.15"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.15"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ά ∷ []) "Mark.7.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.15"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.15"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.15"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.15"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.17"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.7.17"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.17"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.7.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.17"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.7.17"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.17"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.17"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.17"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.7.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.18"
∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.7.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.18"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.18"
∷ word (ἀ ∷ σ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ο ∷ ί ∷ []) "Mark.7.18"
∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.7.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.7.18"
∷ word (ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.18"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Mark.7.18"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.18"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.18"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.18"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.7.18"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.18"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.19"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.19"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.19"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.19"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.7.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.19"
∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.19"
∷ word (ἀ ∷ φ ∷ ε ∷ δ ∷ ρ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.7.19"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.19"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.7.19"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.19"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.19"
∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.7.19"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.20"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.20"
∷ word (Τ ∷ ὸ ∷ []) "Mark.7.20"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.20"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.20"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.20"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.20"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ []) "Mark.7.20"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.7.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.20"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.20"
∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.21"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.21"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.21"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.21"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.21"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.7.21"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.21"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ὶ ∷ []) "Mark.7.21"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.21"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "Mark.7.21"
∷ word (κ ∷ ∙λ ∷ ο ∷ π ∷ α ∷ ί ∷ []) "Mark.7.21"
∷ word (φ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "Mark.7.21"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "Mark.7.22"
∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ α ∷ ι ∷ []) "Mark.7.22"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ί ∷ α ∷ ι ∷ []) "Mark.7.22"
∷ word (δ ∷ ό ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.7.22"
∷ word (ἀ ∷ σ ∷ έ ∷ ∙λ ∷ γ ∷ ε ∷ ι ∷ α ∷ []) "Mark.7.22"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "Mark.7.22"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.7.22"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ []) "Mark.7.22"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ η ∷ φ ∷ α ∷ ν ∷ ί ∷ α ∷ []) "Mark.7.22"
∷ word (ἀ ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Mark.7.22"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.23"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.7.23"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.23"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὰ ∷ []) "Mark.7.23"
∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.23"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.23"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.7.23"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.23"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.23"
∷ word (Ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.24"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.24"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.7.24"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.24"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.24"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.24"
∷ word (ὅ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.7.24"
∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.7.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.24"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.7.24"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.24"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.24"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.7.24"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.7.24"
∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.7.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.24"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.24"
∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.7.24"
∷ word (∙λ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.24"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.7.25"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.7.25"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.7.25"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.7.25"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.7.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.25"
∷ word (ἧ ∷ ς ∷ []) "Mark.7.25"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.7.25"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.25"
∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.25"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.7.25"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.25"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.7.25"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.7.25"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.25"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.25"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.7.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.25"
∷ word (ἡ ∷ []) "Mark.7.26"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.26"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.7.26"
∷ word (ἦ ∷ ν ∷ []) "Mark.7.26"
∷ word (Ἑ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ί ∷ ς ∷ []) "Mark.7.26"
∷ word (Σ ∷ υ ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ι ∷ ν ∷ ί ∷ κ ∷ ι ∷ σ ∷ σ ∷ α ∷ []) "Mark.7.26"
∷ word (τ ∷ ῷ ∷ []) "Mark.7.26"
∷ word (γ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "Mark.7.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.26"
∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.7.26"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.26"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.26"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.26"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.7.26"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.26"
∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.27"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.27"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.7.27"
∷ word (Ἄ ∷ φ ∷ ε ∷ ς ∷ []) "Mark.7.27"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.27"
∷ word (χ ∷ ο ∷ ρ ∷ τ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.7.27"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.27"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.7.27"
∷ word (ο ∷ ὐ ∷ []) "Mark.7.27"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.7.27"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.7.27"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.27"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.27"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.27"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.27"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.27"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ω ∷ ν ∷ []) "Mark.7.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.27"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.27"
∷ word (κ ∷ υ ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.7.27"
∷ word (β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.27"
∷ word (ἡ ∷ []) "Mark.7.28"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.28"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.7.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.28"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.28"
∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Mark.7.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.28"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.28"
∷ word (κ ∷ υ ∷ ν ∷ ά ∷ ρ ∷ ι ∷ α ∷ []) "Mark.7.28"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.7.28"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.28"
∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ η ∷ ς ∷ []) "Mark.7.28"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.28"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.28"
∷ word (ψ ∷ ι ∷ χ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.28"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.29"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.7.29"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.7.29"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.29"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.29"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.7.29"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.7.29"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.29"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.29"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.29"
∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.7.29"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.29"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.30"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.7.30"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.30"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.30"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.7.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.30"
∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.7.30"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.30"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.7.30"
∷ word (β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.30"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.7.30"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.30"
∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.7.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.30"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.30"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.30"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ ό ∷ ς ∷ []) "Mark.7.30"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.31"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.7.31"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.7.31"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.31"
∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.31"
∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.7.31"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.31"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.7.31"
∷ word (Σ ∷ ι ∷ δ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.31"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.31"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.31"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.7.31"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.31"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.31"
∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Mark.7.31"
∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.31"
∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.31"
∷ word (Δ ∷ ε ∷ κ ∷ α ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.7.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.32"
∷ word (κ ∷ ω ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.7.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32"
∷ word (μ ∷ ο ∷ γ ∷ ι ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.32"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.32"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.7.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.32"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.32"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.7.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.33"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.33"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.33"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.33"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.7.33"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.7.33"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.33"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.7.33"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.33"
∷ word (δ ∷ α ∷ κ ∷ τ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.33"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.33"
∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.7.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.33"
∷ word (π ∷ τ ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.7.33"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.7.33"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.33"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.7.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.34"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.7.34"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.34"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.34"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.7.34"
∷ word (ἐ ∷ σ ∷ τ ∷ έ ∷ ν ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.7.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.34"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.34"
∷ word (Ε ∷ φ ∷ φ ∷ α ∷ θ ∷ α ∷ []) "Mark.7.34"
∷ word (ὅ ∷ []) "Mark.7.34"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.34"
∷ word (Δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.7.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.7.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.35"
∷ word (α ∷ ἱ ∷ []) "Mark.7.35"
∷ word (ἀ ∷ κ ∷ ο ∷ α ∷ ί ∷ []) "Mark.7.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35"
∷ word (ἐ ∷ ∙λ ∷ ύ ∷ θ ∷ η ∷ []) "Mark.7.35"
∷ word (ὁ ∷ []) "Mark.7.35"
∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Mark.7.35"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.35"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.7.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.7.35"
∷ word (ὀ ∷ ρ ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.7.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.36"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.7.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.36"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.36"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.7.36"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.36"
∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.36"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.36"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.7.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Mark.7.36"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.36"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.7.36"
∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.7.37"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.7.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.37"
∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.37"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.37"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.7.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.37"
∷ word (κ ∷ ω ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.37"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Mark.7.37"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.7.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37"
∷ word (ἀ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.37"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.37"
∷ word (Ἐ ∷ ν ∷ []) "Mark.8.1"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.8.1"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.1"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.8.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.1"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Mark.8.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.8.1"
∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.8.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.1"
∷ word (μ ∷ ὴ ∷ []) "Mark.8.1"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.1"
∷ word (τ ∷ ί ∷ []) "Mark.8.1"
∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.1"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.1"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.1"
∷ word (Σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.8.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.2"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.2"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.8.2"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.8.2"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.2"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.8.2"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.8.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.2"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.2"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.2"
∷ word (τ ∷ ί ∷ []) "Mark.8.2"
∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.3"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.3"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.8.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.3"
∷ word (ν ∷ ή ∷ σ ∷ τ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.3"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.8.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.3"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.3"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.3"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.8.3"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.8.3"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.8.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.3"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.3"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.3"
∷ word (ἥ ∷ κ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.4"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.4"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.4"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.8.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.4"
∷ word (Π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.4"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.4"
∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ί ∷ []) "Mark.8.4"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.8.4"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.8.4"
∷ word (χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.4"
∷ word (ἄ ∷ ρ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.4"
∷ word (ἐ ∷ π ∷ []) "Mark.8.4"
∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Mark.8.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.5"
∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.5"
∷ word (Π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.5"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.5"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.5"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.8.5"
∷ word (Ἑ ∷ π ∷ τ ∷ ά ∷ []) "Mark.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6"
∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.6"
∷ word (τ ∷ ῷ ∷ []) "Mark.8.6"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.8.6"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ε ∷ σ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.6"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.8.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.8.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.6"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.6"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.6"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.8.6"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.6"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.6"
∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.8.6"
∷ word (τ ∷ ῷ ∷ []) "Mark.8.6"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.8.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.8.7"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ δ ∷ ι ∷ α ∷ []) "Mark.8.7"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Mark.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.8.7"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.8.7"
∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8"
∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8"
∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8"
∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.8.8"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.8"
∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.8"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.8"
∷ word (σ ∷ π ∷ υ ∷ ρ ∷ ί ∷ δ ∷ α ∷ ς ∷ []) "Mark.8.8"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.9"
∷ word (ὡ ∷ ς ∷ []) "Mark.8.9"
∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.8.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.9"
∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.10"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.8.10"
∷ word (ἐ ∷ μ ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.8.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.10"
∷ word (τ ∷ ὸ ∷ []) "Mark.8.10"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.10"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.10"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.10"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.10"
∷ word (τ ∷ ὰ ∷ []) "Mark.8.10"
∷ word (μ ∷ έ ∷ ρ ∷ η ∷ []) "Mark.8.10"
∷ word (Δ ∷ α ∷ ∙λ ∷ μ ∷ α ∷ ν ∷ ο ∷ υ ∷ θ ∷ ά ∷ []) "Mark.8.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.11"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.8.11"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.11"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.8.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.11"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.11"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.11"
∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.11"
∷ word (π ∷ α ∷ ρ ∷ []) "Mark.8.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.11"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.11"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.8.11"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.11"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.8.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.12"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ε ∷ ν ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.8.12"
∷ word (τ ∷ ῷ ∷ []) "Mark.8.12"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.8.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.12"
∷ word (Τ ∷ ί ∷ []) "Mark.8.12"
∷ word (ἡ ∷ []) "Mark.8.12"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.8.12"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.8.12"
∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ []) "Mark.8.12"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.12"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.8.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.8.12"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.8.12"
∷ word (ε ∷ ἰ ∷ []) "Mark.8.12"
∷ word (δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.12"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.12"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾷ ∷ []) "Mark.8.12"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.8.12"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.13"
∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.13"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.13"
∷ word (ἐ ∷ μ ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.8.13"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.13"
∷ word (τ ∷ ὸ ∷ []) "Mark.8.13"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.8.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.14"
∷ word (ἐ ∷ π ∷ ε ∷ ∙λ ∷ ά ∷ θ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.14"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.14"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.14"
∷ word (ε ∷ ἰ ∷ []) "Mark.8.14"
∷ word (μ ∷ ὴ ∷ []) "Mark.8.14"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.8.14"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.8.14"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.14"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.8.14"
∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.8.14"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.14"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.14"
∷ word (τ ∷ ῷ ∷ []) "Mark.8.14"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.8.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.15"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.8.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.15"
∷ word (Ὁ ∷ ρ ∷ ᾶ ∷ τ ∷ ε ∷ []) "Mark.8.15"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.15"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.15"
∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.15"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.8.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.15"
∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.15"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.8.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.16"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.16"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.16"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.16"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.16"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.16"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.17"
∷ word (γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.17"
∷ word (Τ ∷ ί ∷ []) "Mark.8.17"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.8.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.17"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.17"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.17"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.8.17"
∷ word (ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.8.17"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.8.17"
∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17"
∷ word (π ∷ ε ∷ π ∷ ω ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.8.17"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.17"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.8.17"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.8.17"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.18"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.8.18"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.18"
∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.8.18"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.18"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.18"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.8.18"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.8.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.19"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.8.19"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ α ∷ []) "Mark.8.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.19"
∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ι ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19"
∷ word (π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19"
∷ word (κ ∷ ο ∷ φ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19"
∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.19"
∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.19"
∷ word (ἤ ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "Mark.8.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.19"
∷ word (Δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.8.19"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.8.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.20"
∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ι ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.20"
∷ word (π ∷ ό ∷ σ ∷ ω ∷ ν ∷ []) "Mark.8.20"
∷ word (σ ∷ π ∷ υ ∷ ρ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Mark.8.20"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.20"
∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.20"
∷ word (ἤ ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "Mark.8.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.20"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.20"
∷ word (Ἑ ∷ π ∷ τ ∷ ά ∷ []) "Mark.8.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.21"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.8.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.21"
∷ word (Ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.8.21"
∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.22"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.22"
∷ word (Β ∷ η ∷ θ ∷ σ ∷ α ∷ ϊ ∷ δ ∷ ά ∷ ν ∷ []) "Mark.8.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.22"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.22"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.8.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.22"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.22"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.22"
∷ word (ἅ ∷ ψ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.23"
∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.23"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.23"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Mark.8.23"
∷ word (ἐ ∷ ξ ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.23"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.23"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.8.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.23"
∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.23"
∷ word (π ∷ τ ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.23"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.23"
∷ word (τ ∷ ὰ ∷ []) "Mark.8.23"
∷ word (ὄ ∷ μ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.23"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.23"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.23"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.23"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.23"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.8.23"
∷ word (Ε ∷ ἴ ∷ []) "Mark.8.23"
∷ word (τ ∷ ι ∷ []) "Mark.8.23"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.24"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.8.24"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.8.24"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ []) "Mark.8.24"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.24"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.24"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.24"
∷ word (ὡ ∷ ς ∷ []) "Mark.8.24"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.8.24"
∷ word (ὁ ∷ ρ ∷ ῶ ∷ []) "Mark.8.24"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.8.24"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.8.25"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.25"
∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.25"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.25"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.25"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.25"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.25"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25"
∷ word (δ ∷ ι ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.8.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ τ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.8.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25"
∷ word (ἐ ∷ ν ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.25"
∷ word (τ ∷ η ∷ ∙λ ∷ α ∷ υ ∷ γ ∷ ῶ ∷ ς ∷ []) "Mark.8.25"
∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Mark.8.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.26"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.8.26"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.26"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.8.26"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.26"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.26"
∷ word (Μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.8.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.26"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.26"
∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Mark.8.26"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ ς ∷ []) "Mark.8.26"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.27"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.27"
∷ word (ὁ ∷ []) "Mark.8.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.8.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.27"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.8.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.27"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.27"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.27"
∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.8.27"
∷ word (Κ ∷ α ∷ ι ∷ σ ∷ α ∷ ρ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.8.27"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.27"
∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.27"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.27"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.27"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.8.27"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.27"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.27"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.27"
∷ word (Τ ∷ ί ∷ ν ∷ α ∷ []) "Mark.8.27"
∷ word (μ ∷ ε ∷ []) "Mark.8.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.27"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Mark.8.27"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.28"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.28"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.8.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.28"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.28"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.8.28"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.28"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.28"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.8.28"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.8.28"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.8.28"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.28"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.8.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.28"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.29"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.8.29"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.29"
∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.29"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.29"
∷ word (τ ∷ ί ∷ ν ∷ α ∷ []) "Mark.8.29"
∷ word (μ ∷ ε ∷ []) "Mark.8.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.29"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.29"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.29"
∷ word (ὁ ∷ []) "Mark.8.29"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.8.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.29"
∷ word (Σ ∷ ὺ ∷ []) "Mark.8.29"
∷ word (ε ∷ ἶ ∷ []) "Mark.8.29"
∷ word (ὁ ∷ []) "Mark.8.29"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.8.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.30"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.30"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.30"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.30"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.8.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.30"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.8.30"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.30"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.8.31"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.8.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.31"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.31"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.8.31"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.31"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.8.31"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.31"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.31"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.8.31"
∷ word (π ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.8.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.31"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.31"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.31"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.32"
∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.8.32"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.32"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.8.32"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.32"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.32"
∷ word (ὁ ∷ []) "Mark.8.32"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.8.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.32"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.8.32"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ι ∷ μ ∷ ᾶ ∷ ν ∷ []) "Mark.8.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.32"
∷ word (ὁ ∷ []) "Mark.8.33"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.33"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ α ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.33"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.8.33"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.33"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.33"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.33"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.8.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.33"
∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.8.33"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.8.33"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.8.33"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Mark.8.33"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.33"
∷ word (ο ∷ ὐ ∷ []) "Mark.8.33"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.33"
∷ word (τ ∷ ὰ ∷ []) "Mark.8.33"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.33"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.8.33"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.8.33"
∷ word (τ ∷ ὰ ∷ []) "Mark.8.33"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.33"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.8.33"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.34"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.34"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.34"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.8.34"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.34"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.34"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.34"
∷ word (Ε ∷ ἴ ∷ []) "Mark.8.34"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.8.34"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.34"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.8.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.8.34"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.34"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ η ∷ σ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "Mark.8.34"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.34"
∷ word (ἀ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.8.34"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.8.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.34"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Mark.8.34"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.8.34"
∷ word (ὃ ∷ ς ∷ []) "Mark.8.35"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.35"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.35"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.8.35"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.35"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35"
∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.35"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.35"
∷ word (ὃ ∷ ς ∷ []) "Mark.8.35"
∷ word (δ ∷ []) "Mark.8.35"
∷ word (ἂ ∷ ν ∷ []) "Mark.8.35"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.35"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.35"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.8.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.35"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.8.35"
∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.35"
∷ word (τ ∷ ί ∷ []) "Mark.8.36"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.36"
∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.8.36"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.8.36"
∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.36"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.36"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.8.36"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.36"
∷ word (ζ ∷ η ∷ μ ∷ ι ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.36"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.36"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.36"
∷ word (τ ∷ ί ∷ []) "Mark.8.37"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.37"
∷ word (δ ∷ ο ∷ ῖ ∷ []) "Mark.8.37"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.8.37"
∷ word (ἀ ∷ ν ∷ τ ∷ ά ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Mark.8.37"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.37"
∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.8.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.37"
∷ word (ὃ ∷ ς ∷ []) "Mark.8.38"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.38"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.38"
∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ῇ ∷ []) "Mark.8.38"
∷ word (μ ∷ ε ∷ []) "Mark.8.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.38"
∷ word (ἐ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.38"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.38"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾷ ∷ []) "Mark.8.38"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.8.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.38"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ α ∷ ∙λ ∷ ί ∷ δ ∷ ι ∷ []) "Mark.8.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῷ ∷ []) "Mark.8.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38"
∷ word (ὁ ∷ []) "Mark.8.38"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.8.38"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.38"
∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.38"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.38"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.8.38"
∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.8.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.38"
∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Mark.8.38"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.38"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.38"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.8.38"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.38"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.8.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.1"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.1"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.9.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.1"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.1"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.9.1"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.9.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.1"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.9.1"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.1"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.9.1"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.1"
∷ word (μ ∷ ὴ ∷ []) "Mark.9.1"
∷ word (γ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.1"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.9.1"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.1"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.1"
∷ word (ἴ ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.1"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.9.1"
∷ word (ἐ ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ υ ∷ ῖ ∷ α ∷ ν ∷ []) "Mark.9.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.1"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Mark.9.1"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.9.2"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.2"
∷ word (ἓ ∷ ξ ∷ []) "Mark.9.2"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.9.2"
∷ word (ὁ ∷ []) "Mark.9.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.2"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.2"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (ἀ ∷ ν ∷ α ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.9.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.2"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.9.2"
∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.9.2"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.2"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ μ ∷ ο ∷ ρ ∷ φ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.9.2"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.3"
∷ word (τ ∷ ὰ ∷ []) "Mark.9.3"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.9.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.3"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.3"
∷ word (σ ∷ τ ∷ ί ∷ ∙λ ∷ β ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.3"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ []) "Mark.9.3"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.3"
∷ word (ο ∷ ἷ ∷ α ∷ []) "Mark.9.3"
∷ word (γ ∷ ν ∷ α ∷ φ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.9.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.9.3"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.3"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.3"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.9.3"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ᾶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.4"
∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Mark.9.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.4"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.4"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.9.4"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "Mark.9.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.4"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.4"
∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.4"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.4"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.9.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.5"
∷ word (ὁ ∷ []) "Mark.9.5"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.9.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.5"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.9.5"
∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.9.5"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.5"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.5"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.5"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.9.5"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.5"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.5"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ά ∷ ς ∷ []) "Mark.9.5"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.9.5"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "Mark.9.5"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Mark.9.5"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.6"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.6"
∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ []) "Mark.9.6"
∷ word (τ ∷ ί ∷ []) "Mark.9.6"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.9.6"
∷ word (ἔ ∷ κ ∷ φ ∷ ο ∷ β ∷ ο ∷ ι ∷ []) "Mark.9.6"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.6"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.7"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.7"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.9.7"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ι ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.9.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.7"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.7"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.9.7"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.7"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.9.7"
∷ word (Ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.9.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.7"
∷ word (ὁ ∷ []) "Mark.9.7"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.9.7"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.7"
∷ word (ὁ ∷ []) "Mark.9.7"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.9.7"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.8"
∷ word (ἐ ∷ ξ ∷ ά ∷ π ∷ ι ∷ ν ∷ α ∷ []) "Mark.9.8"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.9.8"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.9.8"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.9.8"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.8"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.9.8"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.9.8"
∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.9.8"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.9"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ι ∷ ν ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.9"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.9"
∷ word (ὄ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.9"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.9.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.9"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.9.9"
∷ word (ἃ ∷ []) "Mark.9.9"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.9"
∷ word (δ ∷ ι ∷ η ∷ γ ∷ ή ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.9"
∷ word (ε ∷ ἰ ∷ []) "Mark.9.9"
∷ word (μ ∷ ὴ ∷ []) "Mark.9.9"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.9.9"
∷ word (ὁ ∷ []) "Mark.9.9"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.9.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.9"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.9"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.9"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.9"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῇ ∷ []) "Mark.9.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.10"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.9.10"
∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.10"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.10"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.10"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.10"
∷ word (τ ∷ ί ∷ []) "Mark.9.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.10"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.10"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.10"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.10"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.11"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.11"
∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.9.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.11"
∷ word (ο ∷ ἱ ∷ []) "Mark.9.11"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.11"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.11"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.9.11"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.11"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.11"
∷ word (ὁ ∷ []) "Mark.9.12"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.12"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.9.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.12"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.12"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.9.12"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.9.12"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.12"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ θ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.9.12"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.12"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.9.12"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.12"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.9.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.12"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.12"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.12"
∷ word (π ∷ ά ∷ θ ∷ ῃ ∷ []) "Mark.9.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.12"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ δ ∷ ε ∷ ν ∷ η ∷ θ ∷ ῇ ∷ []) "Mark.9.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.13"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.13"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.13"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.13"
∷ word (ἐ ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.13"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.13"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.9.13"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.13"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.9.13"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.13"
∷ word (ἐ ∷ π ∷ []) "Mark.9.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.14"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.14"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.14"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.9.14"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.14"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.14"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ν ∷ []) "Mark.9.14"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.9.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.14"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.14"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.9.14"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.15"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.15"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.9.15"
∷ word (ὁ ∷ []) "Mark.9.15"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.15"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.15"
∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.15"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.15"
∷ word (ἠ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.15"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.16"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.16"
∷ word (Τ ∷ ί ∷ []) "Mark.9.16"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.9.16"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.16"
∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.17"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.9.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.17"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.9.17"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.17"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.9.17"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.17"
∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ []) "Mark.9.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.17"
∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Mark.9.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.17"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.17"
∷ word (σ ∷ έ ∷ []) "Mark.9.17"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.17"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.17"
∷ word (ἄ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.18"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.9.18"
∷ word (ῥ ∷ ή ∷ σ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.9.18"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ἀ ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (τ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.9.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.18"
∷ word (ὀ ∷ δ ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ξ ∷ η ∷ ρ ∷ α ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ []) "Mark.9.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.9.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.18"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.18"
∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.18"
∷ word (ὁ ∷ []) "Mark.9.19"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.19"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.19"
∷ word (Ὦ ∷ []) "Mark.9.19"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.9.19"
∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.19"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.19"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.9.19"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.19"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.19"
∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.9.19"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.19"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.9.19"
∷ word (ἀ ∷ ν ∷ έ ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.9.19"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.19"
∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.19"
∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.9.19"
∷ word (μ ∷ ε ∷ []) "Mark.9.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20"
∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.20"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.20"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.20"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.20"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.20"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ π ∷ ά ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20"
∷ word (π ∷ ε ∷ σ ∷ ὼ ∷ ν ∷ []) "Mark.9.20"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.20"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.9.20"
∷ word (ἐ ∷ κ ∷ υ ∷ ∙λ ∷ ί ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.20"
∷ word (ἀ ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.21"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.21"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.21"
∷ word (Π ∷ ό ∷ σ ∷ ο ∷ ς ∷ []) "Mark.9.21"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.21"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.9.21"
∷ word (ὡ ∷ ς ∷ []) "Mark.9.21"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.9.21"
∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.21"
∷ word (ὁ ∷ []) "Mark.9.21"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.21"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.21"
∷ word (Ἐ ∷ κ ∷ []) "Mark.9.21"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ι ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Mark.9.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.22"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.22"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.9.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.22"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ α ∷ []) "Mark.9.22"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.22"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "Mark.9.22"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.22"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.9.22"
∷ word (ε ∷ ἴ ∷ []) "Mark.9.22"
∷ word (τ ∷ ι ∷ []) "Mark.9.22"
∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Mark.9.22"
∷ word (β ∷ ο ∷ ή ∷ θ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Mark.9.22"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.22"
∷ word (σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.22"
∷ word (ἐ ∷ φ ∷ []) "Mark.9.22"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.22"
∷ word (ὁ ∷ []) "Mark.9.23"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.23"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.23"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.23"
∷ word (Τ ∷ ὸ ∷ []) "Mark.9.23"
∷ word (Ε ∷ ἰ ∷ []) "Mark.9.23"
∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Mark.9.23"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.23"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.9.23"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.23"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.9.23"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.24"
∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.24"
∷ word (ὁ ∷ []) "Mark.9.24"
∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.9.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.24"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.9.24"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.24"
∷ word (Π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ []) "Mark.9.24"
∷ word (β ∷ ο ∷ ή ∷ θ ∷ ε ∷ ι ∷ []) "Mark.9.24"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.24"
∷ word (τ ∷ ῇ ∷ []) "Mark.9.24"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Mark.9.24"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.9.25"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.25"
∷ word (ὁ ∷ []) "Mark.9.25"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.25"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.25"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.9.25"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.25"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.25"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.25"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.9.25"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.25"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.9.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.9.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.25"
∷ word (Τ ∷ ὸ ∷ []) "Mark.9.25"
∷ word (ἄ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.25"
∷ word (κ ∷ ω ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.9.25"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.25"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.9.25"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ά ∷ σ ∷ σ ∷ ω ∷ []) "Mark.9.25"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.9.25"
∷ word (ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.9.25"
∷ word (ἐ ∷ ξ ∷ []) "Mark.9.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.25"
∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.9.25"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ ς ∷ []) "Mark.9.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.25"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26"
∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.26"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.26"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.26"
∷ word (ὡ ∷ σ ∷ ε ∷ ὶ ∷ []) "Mark.9.26"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.26"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.9.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.26"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.9.26"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.26"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.9.26"
∷ word (ὁ ∷ []) "Mark.9.27"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.27"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.9.27"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.27"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.27"
∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.9.27"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.27"
∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.9.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.28"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.28"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.28"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.9.28"
∷ word (ο ∷ ἱ ∷ []) "Mark.9.28"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.9.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.28"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.9.28"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.28"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.28"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.28"
∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.9.28"
∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.28"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.28"
∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.28"
∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.28"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.9.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.29"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.29"
∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.9.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.29"
∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.29"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.9.29"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.29"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.29"
∷ word (ε ∷ ἰ ∷ []) "Mark.9.29"
∷ word (μ ∷ ὴ ∷ []) "Mark.9.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.29"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῇ ∷ []) "Mark.9.29"
∷ word (Κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.30"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.30"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.30"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.9.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.30"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.30"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.30"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.9.30"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.30"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.9.30"
∷ word (γ ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.9.30"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.9.31"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.31"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.31"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.9.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.31"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.31"
∷ word (Ὁ ∷ []) "Mark.9.31"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.9.31"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.31"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.31"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.31"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.31"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.31"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.9.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.31"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.31"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.9.31"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.31"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.31"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.9.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.32"
∷ word (ἠ ∷ γ ∷ ν ∷ ό ∷ ο ∷ υ ∷ ν ∷ []) "Mark.9.32"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.32"
∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Mark.9.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.32"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.32"
∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.9.32"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.33"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.9.33"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.33"
∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ύ ∷ μ ∷ []) "Mark.9.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.33"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.33"
∷ word (τ ∷ ῇ ∷ []) "Mark.9.33"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.9.33"
∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.33"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.9.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.33"
∷ word (Τ ∷ ί ∷ []) "Mark.9.33"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.33"
∷ word (τ ∷ ῇ ∷ []) "Mark.9.33"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.9.33"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.9.33"
∷ word (ο ∷ ἱ ∷ []) "Mark.9.34"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.34"
∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.9.34"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.34"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.34"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.34"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ έ ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.34"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.34"
∷ word (τ ∷ ῇ ∷ []) "Mark.9.34"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.9.34"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.9.34"
∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.9.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.9.35"
∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.35"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.35"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.9.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.35"
∷ word (Ε ∷ ἴ ∷ []) "Mark.9.35"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.9.35"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.9.35"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.35"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.35"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.35"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.35"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.35"
∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.36"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.9.36"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.9.36"
∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.36"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.36"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Mark.9.36"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.36"
∷ word (ἐ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.36"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.36"
∷ word (Ὃ ∷ ς ∷ []) "Mark.9.37"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.37"
∷ word (ἓ ∷ ν ∷ []) "Mark.9.37"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.37"
∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.37"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.9.37"
∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.37"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.37"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.37"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.37"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37"
∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.37"
∷ word (ὃ ∷ ς ∷ []) "Mark.9.37"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.37"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37"
∷ word (δ ∷ έ ∷ χ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.37"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37"
∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.37"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.37"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ά ∷ []) "Mark.9.37"
∷ word (μ ∷ ε ∷ []) "Mark.9.37"
∷ word (Ἔ ∷ φ ∷ η ∷ []) "Mark.9.38"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.38"
∷ word (ὁ ∷ []) "Mark.9.38"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.9.38"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.38"
∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ μ ∷ έ ∷ ν ∷ []) "Mark.9.38"
∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "Mark.9.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.38"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.38"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.38"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.38"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.38"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.9.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.38"
∷ word (ἐ ∷ κ ∷ ω ∷ ∙λ ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.38"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.38"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.38"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.38"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.9.38"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.38"
∷ word (ὁ ∷ []) "Mark.9.39"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.39"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.39"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.39"
∷ word (Μ ∷ ὴ ∷ []) "Mark.9.39"
∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.39"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.39"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.39"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.9.39"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.39"
∷ word (ὃ ∷ ς ∷ []) "Mark.9.39"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.9.39"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.9.39"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.39"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.39"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.39"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.39"
∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.39"
∷ word (τ ∷ α ∷ χ ∷ ὺ ∷ []) "Mark.9.39"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ῆ ∷ σ ∷ α ∷ ί ∷ []) "Mark.9.39"
∷ word (μ ∷ ε ∷ []) "Mark.9.39"
∷ word (ὃ ∷ ς ∷ []) "Mark.9.40"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.40"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.40"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.40"
∷ word (κ ∷ α ∷ θ ∷ []) "Mark.9.40"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.40"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Mark.9.40"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.40"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.40"
∷ word (Ὃ ∷ ς ∷ []) "Mark.9.41"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.41"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.41"
∷ word (π ∷ ο ∷ τ ∷ ί ∷ σ ∷ ῃ ∷ []) "Mark.9.41"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.41"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.9.41"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.41"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.41"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.9.41"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.41"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.41"
∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.9.41"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.9.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.41"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.41"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.41"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.41"
∷ word (μ ∷ ὴ ∷ []) "Mark.9.41"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "Mark.9.41"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.41"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "Mark.9.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.41"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.42"
∷ word (ὃ ∷ ς ∷ []) "Mark.9.42"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.42"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ σ ∷ ῃ ∷ []) "Mark.9.42"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.9.42"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.42"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.42"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.42"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.42"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.42"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.42"
∷ word (ἐ ∷ μ ∷ έ ∷ []) "Mark.9.42"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.42"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.42"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.42"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.42"
∷ word (ε ∷ ἰ ∷ []) "Mark.9.42"
∷ word (π ∷ ε ∷ ρ ∷ ί ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.42"
∷ word (μ ∷ ύ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.42"
∷ word (ὀ ∷ ν ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Mark.9.42"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.9.42"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.42"
∷ word (τ ∷ ρ ∷ ά ∷ χ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.42"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.42"
∷ word (β ∷ έ ∷ β ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.42"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.42"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.42"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.42"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.43"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.43"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.43"
∷ word (σ ∷ ε ∷ []) "Mark.9.43"
∷ word (ἡ ∷ []) "Mark.9.43"
∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ []) "Mark.9.43"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.43"
∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ο ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.9.43"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.9.43"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.43"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.9.43"
∷ word (σ ∷ ε ∷ []) "Mark.9.43"
∷ word (κ ∷ υ ∷ ∙λ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.43"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.43"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.43"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.9.43"
∷ word (ἢ ∷ []) "Mark.9.43"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.9.43"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.43"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.43"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.43"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.43"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.43"
∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.43"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.43"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.43"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.43"
∷ word (ἄ ∷ σ ∷ β ∷ ε ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.45"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.45"
∷ word (ὁ ∷ []) "Mark.9.45"
∷ word (π ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.45"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.45"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.45"
∷ word (σ ∷ ε ∷ []) "Mark.9.45"
∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ο ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.9.45"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.45"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.45"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.9.45"
∷ word (σ ∷ ε ∷ []) "Mark.9.45"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.45"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.45"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.9.45"
∷ word (χ ∷ ω ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.45"
∷ word (ἢ ∷ []) "Mark.9.45"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.45"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.45"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.9.45"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.45"
∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.45"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.45"
∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.47"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.47"
∷ word (ὁ ∷ []) "Mark.9.47"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ό ∷ ς ∷ []) "Mark.9.47"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.47"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.47"
∷ word (σ ∷ ε ∷ []) "Mark.9.47"
∷ word (ἔ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.47"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.47"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.47"
∷ word (σ ∷ έ ∷ []) "Mark.9.47"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.47"
∷ word (μ ∷ ο ∷ ν ∷ ό ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.9.47"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.47"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.47"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.47"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.47"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.47"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.9.47"
∷ word (ἢ ∷ []) "Mark.9.47"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.47"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.47"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.47"
∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.47"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.47"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.47"
∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.47"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.48"
∷ word (ὁ ∷ []) "Mark.9.48"
∷ word (σ ∷ κ ∷ ώ ∷ ∙λ ∷ η ∷ ξ ∷ []) "Mark.9.48"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.48"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.48"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ᾷ ∷ []) "Mark.9.48"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.48"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.48"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.48"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.48"
∷ word (σ ∷ β ∷ έ ∷ ν ∷ ν ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.48"
∷ word (Π ∷ ᾶ ∷ ς ∷ []) "Mark.9.49"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.49"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Mark.9.49"
∷ word (ἁ ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.49"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.50"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.50"
∷ word (ἅ ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.9.50"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.50"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.50"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.50"
∷ word (ἅ ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.9.50"
∷ word (ἄ ∷ ν ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.50"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.50"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.50"
∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "Mark.9.50"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.50"
∷ word (ἀ ∷ ρ ∷ τ ∷ ύ ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.50"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.50"
∷ word (ἅ ∷ ∙λ ∷ α ∷ []) "Mark.9.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.50"
∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.50"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.9.50"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.1"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.1"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.10.1"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.1"
∷ word (τ ∷ ὰ ∷ []) "Mark.10.1"
∷ word (ὅ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.10.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.1"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.10.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.1"
∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.10.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1"
∷ word (ὡ ∷ ς ∷ []) "Mark.10.1"
∷ word (ε ∷ ἰ ∷ ώ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.1"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.1"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.2"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.2"
∷ word (ε ∷ ἰ ∷ []) "Mark.10.2"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.2"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Mark.10.2"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.2"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.2"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.2"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.2"
∷ word (ὁ ∷ []) "Mark.10.3"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.3"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.3"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.3"
∷ word (Τ ∷ ί ∷ []) "Mark.10.3"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.3"
∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.3"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.10.3"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.4"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.4"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.4"
∷ word (Ἐ ∷ π ∷ έ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.4"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.10.4"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.10.4"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.4"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ ι ∷ []) "Mark.10.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.4"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.4"
∷ word (ὁ ∷ []) "Mark.10.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.5"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.5"
∷ word (Π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.5"
∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.5"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.5"
∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.5"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.5"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.10.5"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.10.5"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.10.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.6"
∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.10.6"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.10.6"
∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.6"
∷ word (θ ∷ ῆ ∷ ∙λ ∷ υ ∷ []) "Mark.10.6"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.6"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.7"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.10.7"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Mark.10.7"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.10.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.7"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.7"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.7"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.7"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.7"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.8"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.8"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.8"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.10.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.8"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Mark.10.8"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.8"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.10.8"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.10.8"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.10.8"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.10.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.10.8"
∷ word (μ ∷ ί ∷ α ∷ []) "Mark.10.8"
∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "Mark.10.8"
∷ word (ὃ ∷ []) "Mark.10.9"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.10.9"
∷ word (ὁ ∷ []) "Mark.10.9"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.10.9"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ζ ∷ ε ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.10.9"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.10.9"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.9"
∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ ζ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.10.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.10"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.10"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.10"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.10.10"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.10.10"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.10"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.11"
∷ word (Ὃ ∷ ς ∷ []) "Mark.10.11"
∷ word (ἂ ∷ ν ∷ []) "Mark.10.11"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ῃ ∷ []) "Mark.10.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.11"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.11"
∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.11"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.10.11"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.11"
∷ word (ἐ ∷ π ∷ []) "Mark.10.11"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.12"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Mark.10.12"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.10.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.12"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.10.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.10.12"
∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.12"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.12"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.13"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ φ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.10.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.13"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Mark.10.13"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.13"
∷ word (ἅ ∷ ψ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.13"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.13"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.13"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.13"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.10.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.13"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.10.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.14"
∷ word (ὁ ∷ []) "Mark.10.14"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.14"
∷ word (ἠ ∷ γ ∷ α ∷ ν ∷ ά ∷ κ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.14"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.14"
∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.14"
∷ word (τ ∷ ὰ ∷ []) "Mark.10.14"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Mark.10.14"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.10.14"
∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.10.14"
∷ word (μ ∷ ε ∷ []) "Mark.10.14"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.14"
∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.14"
∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Mark.10.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.14"
∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.10.14"
∷ word (ἡ ∷ []) "Mark.10.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.10.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.14"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.10.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.10.15"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.15"
∷ word (ὃ ∷ ς ∷ []) "Mark.10.15"
∷ word (ἂ ∷ ν ∷ []) "Mark.10.15"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.15"
∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.15"
∷ word (ὡ ∷ ς ∷ []) "Mark.10.15"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.10.15"
∷ word (ο ∷ ὐ ∷ []) "Mark.10.15"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.15"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.10.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.15"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.10.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.16"
∷ word (ἐ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.16"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.10.16"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ υ ∷ ∙λ ∷ ό ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.16"
∷ word (τ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.16"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.10.16"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.16"
∷ word (ἐ ∷ π ∷ []) "Mark.10.16"
∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Mark.10.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.17"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.17"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.10.17"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ὼ ∷ ν ∷ []) "Mark.10.17"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.17"
∷ word (γ ∷ ο ∷ ν ∷ υ ∷ π ∷ ε ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.17"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.10.17"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.17"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.17"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ έ ∷ []) "Mark.10.17"
∷ word (τ ∷ ί ∷ []) "Mark.10.17"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.17"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.17"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.10.17"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.17"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.17"
∷ word (ὁ ∷ []) "Mark.10.18"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.18"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.18"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.18"
∷ word (Τ ∷ ί ∷ []) "Mark.10.18"
∷ word (μ ∷ ε ∷ []) "Mark.10.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.18"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Mark.10.18"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.18"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ς ∷ []) "Mark.10.18"
∷ word (ε ∷ ἰ ∷ []) "Mark.10.18"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.18"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.18"
∷ word (ὁ ∷ []) "Mark.10.18"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.10.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.10.19"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.10.19"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (κ ∷ ∙λ ∷ έ ∷ ψ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.10.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.19"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.19"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.19"
∷ word (ὁ ∷ []) "Mark.10.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.20"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.10.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.20"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.20"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.10.20"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.20"
∷ word (ἐ ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ ξ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "Mark.10.20"
∷ word (ἐ ∷ κ ∷ []) "Mark.10.20"
∷ word (ν ∷ ε ∷ ό ∷ τ ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.10.20"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.10.20"
∷ word (ὁ ∷ []) "Mark.10.21"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.21"
∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.10.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.21"
∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.21"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.21"
∷ word (Ἕ ∷ ν ∷ []) "Mark.10.21"
∷ word (σ ∷ ε ∷ []) "Mark.10.21"
∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.10.21"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.10.21"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.10.21"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.21"
∷ word (π ∷ ώ ∷ ∙λ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Mark.10.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21"
∷ word (δ ∷ ὸ ∷ ς ∷ []) "Mark.10.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.21"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21"
∷ word (ἕ ∷ ξ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.21"
∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.10.21"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.21"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Mark.10.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21"
∷ word (δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Mark.10.21"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.21"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.10.21"
∷ word (ὁ ∷ []) "Mark.10.22"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.22"
∷ word (σ ∷ τ ∷ υ ∷ γ ∷ ν ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.22"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.10.22"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.22"
∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Mark.10.22"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.22"
∷ word (∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.22"
∷ word (ἦ ∷ ν ∷ []) "Mark.10.22"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.22"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.10.22"
∷ word (κ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.10.22"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.10.22"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.23"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.23"
∷ word (ὁ ∷ []) "Mark.10.23"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.23"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.23"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.23"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.10.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.23"
∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.10.23"
∷ word (δ ∷ υ ∷ σ ∷ κ ∷ ό ∷ ∙λ ∷ ω ∷ ς ∷ []) "Mark.10.23"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.23"
∷ word (τ ∷ ὰ ∷ []) "Mark.10.23"
∷ word (χ ∷ ρ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.10.23"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.23"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.23"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.23"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.23"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.23"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.23"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.24"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.24"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.24"
∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.24"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.10.24"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.24"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.10.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.24"
∷ word (ὁ ∷ []) "Mark.10.24"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.24"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.24"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.24"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.24"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.24"
∷ word (Τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.24"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.10.24"
∷ word (δ ∷ ύ ∷ σ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.10.24"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.24"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.24"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.24"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.24"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.24"
∷ word (ε ∷ ὐ ∷ κ ∷ ο ∷ π ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.10.25"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.25"
∷ word (κ ∷ ά ∷ μ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.25"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.10.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.25"
∷ word (τ ∷ ρ ∷ υ ∷ μ ∷ α ∷ ∙λ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Mark.10.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.25"
∷ word (ῥ ∷ α ∷ φ ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Mark.10.25"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.25"
∷ word (ἢ ∷ []) "Mark.10.25"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.25"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.25"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.25"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.25"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.25"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.26"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.26"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.10.26"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.26"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.26"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.26"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.26"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.26"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.10.26"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.26"
∷ word (σ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.26"
∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.10.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.27"
∷ word (ὁ ∷ []) "Mark.10.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.27"
∷ word (Π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Mark.10.27"
∷ word (ἀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.10.27"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.27"
∷ word (ο ∷ ὐ ∷ []) "Mark.10.27"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.10.27"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.27"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.27"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.10.27"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.27"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.10.27"
∷ word (Ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.28"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.28"
∷ word (ὁ ∷ []) "Mark.10.28"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.10.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.28"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.10.28"
∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.10.28"
∷ word (ἀ ∷ φ ∷ ή ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.28"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.28"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ κ ∷ α ∷ μ ∷ έ ∷ ν ∷ []) "Mark.10.28"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.10.28"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.10.29"
∷ word (ὁ ∷ []) "Mark.10.29"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.29"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.10.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.10.29"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.29"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ί ∷ ς ∷ []) "Mark.10.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.29"
∷ word (ὃ ∷ ς ∷ []) "Mark.10.29"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.29"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.10.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.29"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.29"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.29"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.30"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.30"
∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.10.30"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ο ∷ ν ∷ τ ∷ α ∷ π ∷ ∙λ ∷ α ∷ σ ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Mark.10.30"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.10.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.30"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Mark.10.30"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.10.30"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.30"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.10.30"
∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.30"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.30"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "Mark.10.30"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.30"
∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Mark.10.30"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.10.30"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.30"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.10.31"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.31"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.31"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.31"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31"
∷ word (Ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.10.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.32"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.32"
∷ word (τ ∷ ῇ ∷ []) "Mark.10.32"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.10.32"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.32"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.32"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.10.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32"
∷ word (ἦ ∷ ν ∷ []) "Mark.10.32"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.10.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.32"
∷ word (ὁ ∷ []) "Mark.10.32"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32"
∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.32"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.32"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.32"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.10.32"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.32"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.32"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.10.32"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.32"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.32"
∷ word (τ ∷ ὰ ∷ []) "Mark.10.32"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.32"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.32"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.33"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.10.33"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.33"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.33"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33"
∷ word (ὁ ∷ []) "Mark.10.33"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.33"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.33"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.10.33"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.33"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.33"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.33"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ί ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (ἐ ∷ μ ∷ π ∷ τ ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (μ ∷ α ∷ σ ∷ τ ∷ ι ∷ γ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.10.34"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.10.34"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.34"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.35"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.35"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.35"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ς ∷ []) "Mark.10.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.35"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.10.35"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.35"
∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.10.35"
∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.35"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.35"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.35"
∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.35"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.35"
∷ word (ὃ ∷ []) "Mark.10.35"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.35"
∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ []) "Mark.10.35"
∷ word (σ ∷ ε ∷ []) "Mark.10.35"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.35"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.35"
∷ word (ὁ ∷ []) "Mark.10.36"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.36"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.36"
∷ word (Τ ∷ ί ∷ []) "Mark.10.36"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.36"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.36"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.36"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.37"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.37"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.37"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.37"
∷ word (Δ ∷ ὸ ∷ ς ∷ []) "Mark.10.37"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.37"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.37"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.37"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.37"
∷ word (ἐ ∷ κ ∷ []) "Mark.10.37"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.10.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.37"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.37"
∷ word (ἐ ∷ ξ ∷ []) "Mark.10.37"
∷ word (ἀ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.10.37"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.37"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.37"
∷ word (τ ∷ ῇ ∷ []) "Mark.10.37"
∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Mark.10.37"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.37"
∷ word (ὁ ∷ []) "Mark.10.38"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.38"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.38"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.38"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.10.38"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.38"
∷ word (τ ∷ ί ∷ []) "Mark.10.38"
∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.38"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.38"
∷ word (π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.38"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.38"
∷ word (ὃ ∷ []) "Mark.10.38"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.38"
∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.10.38"
∷ word (ἢ ∷ []) "Mark.10.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.38"
∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.10.38"
∷ word (ὃ ∷ []) "Mark.10.38"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.38"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.10.38"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.38"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.39"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.39"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.39"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.39"
∷ word (Δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Mark.10.39"
∷ word (ὁ ∷ []) "Mark.10.39"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.39"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.39"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.39"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.39"
∷ word (Τ ∷ ὸ ∷ []) "Mark.10.39"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.39"
∷ word (ὃ ∷ []) "Mark.10.39"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.39"
∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.10.39"
∷ word (π ∷ ί ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.39"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.39"
∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.10.39"
∷ word (ὃ ∷ []) "Mark.10.39"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.39"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.10.39"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.39"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.40"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.40"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.40"
∷ word (ἐ ∷ κ ∷ []) "Mark.10.40"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.10.40"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.10.40"
∷ word (ἢ ∷ []) "Mark.10.40"
∷ word (ἐ ∷ ξ ∷ []) "Mark.10.40"
∷ word (ε ∷ ὐ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.10.40"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.10.40"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.40"
∷ word (ἐ ∷ μ ∷ ὸ ∷ ν ∷ []) "Mark.10.40"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.40"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.40"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Mark.10.40"
∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.40"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.41"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.41"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.41"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Mark.10.41"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.41"
∷ word (ἀ ∷ γ ∷ α ∷ ν ∷ α ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.41"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.10.41"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.10.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.41"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.42"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.42"
∷ word (ὁ ∷ []) "Mark.10.42"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.42"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.42"
∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.42"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.42"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.42"
∷ word (δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.42"
∷ word (ἄ ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.42"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.42"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.42"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.10.43"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.10.43"
∷ word (δ ∷ έ ∷ []) "Mark.10.43"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.43"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.43"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.43"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.43"
∷ word (ὃ ∷ ς ∷ []) "Mark.10.43"
∷ word (ἂ ∷ ν ∷ []) "Mark.10.43"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.10.43"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Mark.10.43"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.10.43"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.43"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.43"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.43"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.43"
∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.44"
∷ word (ὃ ∷ ς ∷ []) "Mark.10.44"
∷ word (ἂ ∷ ν ∷ []) "Mark.10.44"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.10.44"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.44"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.44"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.44"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.10.44"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.44"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.44"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.10.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.45"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.45"
∷ word (ὁ ∷ []) "Mark.10.45"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.45"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.45"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.10.45"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.10.45"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.45"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.45"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.10.45"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.45"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.45"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.45"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.10.45"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.45"
∷ word (∙λ ∷ ύ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.10.45"
∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "Mark.10.45"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.10.45"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.46"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.46"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.46"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ι ∷ χ ∷ ώ ∷ []) "Mark.10.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.46"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.46"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.10.46"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ι ∷ χ ∷ ὼ ∷ []) "Mark.10.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.46"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.46"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.10.46"
∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.10.46"
∷ word (ὁ ∷ []) "Mark.10.46"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.46"
∷ word (Τ ∷ ι ∷ μ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.46"
∷ word (Β ∷ α ∷ ρ ∷ τ ∷ ι ∷ μ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Mark.10.46"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.10.46"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Mark.10.46"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ η ∷ τ ∷ ο ∷ []) "Mark.10.46"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.46"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.46"
∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.10.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.47"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.47"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.47"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.47"
∷ word (ὁ ∷ []) "Mark.10.47"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ό ∷ ς ∷ []) "Mark.10.47"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.47"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.47"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.47"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.47"
∷ word (Υ ∷ ἱ ∷ ὲ ∷ []) "Mark.10.47"
∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.10.47"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.10.47"
∷ word (ἐ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.10.47"
∷ word (μ ∷ ε ∷ []) "Mark.10.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.48"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.10.48"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.48"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.10.48"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.48"
∷ word (σ ∷ ι ∷ ω ∷ π ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.48"
∷ word (ὁ ∷ []) "Mark.10.48"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.48"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Mark.10.48"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.48"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.10.48"
∷ word (Υ ∷ ἱ ∷ ὲ ∷ []) "Mark.10.48"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.10.48"
∷ word (ἐ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.10.48"
∷ word (μ ∷ ε ∷ []) "Mark.10.48"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.49"
∷ word (σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.10.49"
∷ word (ὁ ∷ []) "Mark.10.49"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.49"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.49"
∷ word (Φ ∷ ω ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.49"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.49"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.49"
∷ word (φ ∷ ω ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Mark.10.49"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.49"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.10.49"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.49"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.49"
∷ word (Θ ∷ ά ∷ ρ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.10.49"
∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.10.49"
∷ word (φ ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ []) "Mark.10.49"
∷ word (σ ∷ ε ∷ []) "Mark.10.49"
∷ word (ὁ ∷ []) "Mark.10.50"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.50"
∷ word (ἀ ∷ π ∷ ο ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.10.50"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.50"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.50"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.50"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ η ∷ δ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.50"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.50"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.50"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.50"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.10.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.51"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.51"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.51"
∷ word (ὁ ∷ []) "Mark.10.51"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.51"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.51"
∷ word (Τ ∷ ί ∷ []) "Mark.10.51"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.10.51"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.51"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.51"
∷ word (ὁ ∷ []) "Mark.10.51"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.51"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.10.51"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.51"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.51"
∷ word (Ρ ∷ α ∷ β ∷ β ∷ ο ∷ υ ∷ ν ∷ ι ∷ []) "Mark.10.51"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.51"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ ω ∷ []) "Mark.10.51"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52"
∷ word (ὁ ∷ []) "Mark.10.52"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.52"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.52"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.52"
∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.10.52"
∷ word (ἡ ∷ []) "Mark.10.52"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Mark.10.52"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.52"
∷ word (σ ∷ έ ∷ σ ∷ ω ∷ κ ∷ έ ∷ ν ∷ []) "Mark.10.52"
∷ word (σ ∷ ε ∷ []) "Mark.10.52"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.10.52"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.52"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.52"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.52"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.52"
∷ word (τ ∷ ῇ ∷ []) "Mark.10.52"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.10.52"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.1"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.11.1"
∷ word (ἐ ∷ γ ∷ γ ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.1"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.1"
∷ word (Β ∷ η ∷ θ ∷ φ ∷ α ∷ γ ∷ ὴ ∷ []) "Mark.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.1"
∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.1"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.1"
∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.11.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1"
∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.11.1"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.11.1"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.11.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.2"
∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2"
∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Mark.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.11.2"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.11.2"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2"
∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2"
∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.2"
∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.11.2"
∷ word (ἐ ∷ φ ∷ []) "Mark.11.2"
∷ word (ὃ ∷ ν ∷ []) "Mark.11.2"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.2"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.11.2"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.2"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.2"
∷ word (∙λ ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2"
∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.3"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.11.3"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.11.3"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.3"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.11.3"
∷ word (Τ ∷ ί ∷ []) "Mark.11.3"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.11.3"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.11.3"
∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.3"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.3"
∷ word (Ὁ ∷ []) "Mark.11.3"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.11.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.3"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.3"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.11.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.3"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.11.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.3"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.11.3"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.11.3"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.11.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.11.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4"
∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.11.4"
∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.4"
∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.11.4"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.4"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.11.4"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.11.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.11.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.4"
∷ word (ἀ ∷ μ ∷ φ ∷ ό ∷ δ ∷ ο ∷ υ ∷ []) "Mark.11.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4"
∷ word (∙λ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.4"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.4"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.11.5"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.11.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.5"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.11.5"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.5"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.5"
∷ word (Τ ∷ ί ∷ []) "Mark.11.5"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.11.5"
∷ word (∙λ ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.5"
∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.11.6"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.11.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.6"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.11.6"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.6"
∷ word (ὁ ∷ []) "Mark.11.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.6"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.11.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.11.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.7"
∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.7"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.7"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7"
∷ word (ἐ ∷ π ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.7"
∷ word (τ ∷ ὰ ∷ []) "Mark.11.7"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.7"
∷ word (ἐ ∷ π ∷ []) "Mark.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.8"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.11.8"
∷ word (τ ∷ ὰ ∷ []) "Mark.11.8"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.11.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.8"
∷ word (ἔ ∷ σ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.8"
∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.11.8"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.11.8"
∷ word (δ ∷ ὲ ∷ []) "Mark.11.8"
∷ word (σ ∷ τ ∷ ι ∷ β ∷ ά ∷ δ ∷ α ∷ ς ∷ []) "Mark.11.8"
∷ word (κ ∷ ό ∷ ψ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.8"
∷ word (ἐ ∷ κ ∷ []) "Mark.11.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.8"
∷ word (ἀ ∷ γ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.11.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.9"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.9"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.9"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.9"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.9"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.11.9"
∷ word (Ὡ ∷ σ ∷ α ∷ ν ∷ ν ∷ ά ∷ []) "Mark.11.9"
∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.9"
∷ word (ὁ ∷ []) "Mark.11.9"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.9"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.9"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.11.9"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.11.9"
∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.11.10"
∷ word (ἡ ∷ []) "Mark.11.10"
∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.11.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.11.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.10"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.10"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.11.10"
∷ word (Ὡ ∷ σ ∷ α ∷ ν ∷ ν ∷ ὰ ∷ []) "Mark.11.10"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.10"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.10"
∷ word (ὑ ∷ ψ ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.11.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.11"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.11"
∷ word (ἱ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.11"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.11"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.11.11"
∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.11.11"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.11.11"
∷ word (ο ∷ ὔ ∷ σ ∷ η ∷ ς ∷ []) "Mark.11.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.11.11"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.11.11"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11"
∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.11"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.11.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.11"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.11.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.12"
∷ word (τ ∷ ῇ ∷ []) "Mark.11.12"
∷ word (ἐ ∷ π ∷ α ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.11.12"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.12"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.11.12"
∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.11.12"
∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.13"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.11.13"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ν ∷ []) "Mark.11.13"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.11.13"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.13"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.13"
∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.11.13"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.13"
∷ word (ε ∷ ἰ ∷ []) "Mark.11.13"
∷ word (ἄ ∷ ρ ∷ α ∷ []) "Mark.11.13"
∷ word (τ ∷ ι ∷ []) "Mark.11.13"
∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.11.13"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.13"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.11.13"
∷ word (ἐ ∷ π ∷ []) "Mark.11.13"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.11.13"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.11.13"
∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.11.13"
∷ word (ε ∷ ἰ ∷ []) "Mark.11.13"
∷ word (μ ∷ ὴ ∷ []) "Mark.11.13"
∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.11.13"
∷ word (ὁ ∷ []) "Mark.11.13"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.13"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.13"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.13"
∷ word (ἦ ∷ ν ∷ []) "Mark.11.13"
∷ word (σ ∷ ύ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.14"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.14"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.11.14"
∷ word (Μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.11.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.14"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.11.14"
∷ word (ἐ ∷ κ ∷ []) "Mark.11.14"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Mark.11.14"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.14"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.11.14"
∷ word (φ ∷ ά ∷ γ ∷ ο ∷ ι ∷ []) "Mark.11.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.14"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ο ∷ ν ∷ []) "Mark.11.14"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.14"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.11.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.15"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.11.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.15"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.15"
∷ word (ἱ ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.11.15"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.11.15"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.11.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.15"
∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.15"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.11.15"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.15"
∷ word (τ ∷ ῷ ∷ []) "Mark.11.15"
∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15"
∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ α ∷ ς ∷ []) "Mark.11.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15"
∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ β ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ θ ∷ έ ∷ δ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.11.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15"
∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.15"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ὰ ∷ ς ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.16"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.16"
∷ word (ἤ ∷ φ ∷ ι ∷ ε ∷ ν ∷ []) "Mark.11.16"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.16"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.11.16"
∷ word (δ ∷ ι ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ ῃ ∷ []) "Mark.11.16"
∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Mark.11.16"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.11.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.16"
∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.11.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.17"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.17"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.11.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.17"
∷ word (Ο ∷ ὐ ∷ []) "Mark.11.17"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.17"
∷ word (Ὁ ∷ []) "Mark.11.17"
∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ς ∷ []) "Mark.11.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.11.17"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ς ∷ []) "Mark.11.17"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.11.17"
∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.17"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.17"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.17"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.17"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.17"
∷ word (δ ∷ ὲ ∷ []) "Mark.11.17"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ ή ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.17"
∷ word (σ ∷ π ∷ ή ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.11.17"
∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.18"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.18"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.11.18"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.11.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.18"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.18"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.18"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.18"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.11.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.18"
∷ word (ὁ ∷ []) "Mark.11.18"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.11.18"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.11.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.11.18"
∷ word (τ ∷ ῇ ∷ []) "Mark.11.18"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.11.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.18"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.19"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.11.19"
∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.11.19"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.11.19"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.19"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.11.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.11.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.11.19"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.20"
∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.20"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.11.20"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.11.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.20"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ν ∷ []) "Mark.11.20"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.11.20"
∷ word (ἐ ∷ κ ∷ []) "Mark.11.20"
∷ word (ῥ ∷ ι ∷ ζ ∷ ῶ ∷ ν ∷ []) "Mark.11.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.21"
∷ word (ἀ ∷ ν ∷ α ∷ μ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.21"
∷ word (ὁ ∷ []) "Mark.11.21"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.11.21"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.21"
∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.11.21"
∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.11.21"
∷ word (ἡ ∷ []) "Mark.11.21"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ []) "Mark.11.21"
∷ word (ἣ ∷ ν ∷ []) "Mark.11.21"
∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ ά ∷ σ ∷ ω ∷ []) "Mark.11.21"
∷ word (ἐ ∷ ξ ∷ ή ∷ ρ ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.22"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.22"
∷ word (ὁ ∷ []) "Mark.11.22"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.22"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.22"
∷ word (Ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.22"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.11.22"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.11.22"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.11.23"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.23"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.23"
∷ word (ὃ ∷ ς ∷ []) "Mark.11.23"
∷ word (ἂ ∷ ν ∷ []) "Mark.11.23"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.11.23"
∷ word (τ ∷ ῷ ∷ []) "Mark.11.23"
∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.11.23"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.11.23"
∷ word (Ἄ ∷ ρ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.11.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.23"
∷ word (β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.11.23"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.23"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.23"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.23"
∷ word (μ ∷ ὴ ∷ []) "Mark.11.23"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.11.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.23"
∷ word (τ ∷ ῇ ∷ []) "Mark.11.23"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Mark.11.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.23"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.11.23"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ῃ ∷ []) "Mark.11.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.23"
∷ word (ὃ ∷ []) "Mark.11.23"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.11.23"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.23"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.23"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.11.24"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.11.24"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.24"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.24"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.11.24"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.11.24"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.11.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.24"
∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.11.24"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.24"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.24"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.24"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.24"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.25"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.11.25"
∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.25"
∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25"
∷ word (ε ∷ ἴ ∷ []) "Mark.11.25"
∷ word (τ ∷ ι ∷ []) "Mark.11.25"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25"
∷ word (κ ∷ α ∷ τ ∷ ά ∷ []) "Mark.11.25"
∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.25"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.25"
∷ word (ὁ ∷ []) "Mark.11.25"
∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.11.25"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.25"
∷ word (ὁ ∷ []) "Mark.11.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.25"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.25"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.25"
∷ word (ἀ ∷ φ ∷ ῇ ∷ []) "Mark.11.25"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.25"
∷ word (τ ∷ ὰ ∷ []) "Mark.11.25"
∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.11.25"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.25"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.27"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.27"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.11.27"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.27"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.27"
∷ word (τ ∷ ῷ ∷ []) "Mark.11.27"
∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.11.27"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.11.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.27"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.27"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.27"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.27"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.27"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.27"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Mark.11.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.28"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.28"
∷ word (Ἐ ∷ ν ∷ []) "Mark.11.28"
∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.28"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.28"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.28"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.28"
∷ word (ἢ ∷ []) "Mark.11.28"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.11.28"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.11.28"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.11.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.28"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.28"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.11.28"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.28"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.28"
∷ word (π ∷ ο ∷ ι ∷ ῇ ∷ ς ∷ []) "Mark.11.28"
∷ word (ὁ ∷ []) "Mark.11.29"
∷ word (δ ∷ ὲ ∷ []) "Mark.11.29"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.29"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.29"
∷ word (Ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.11.29"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.11.29"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.11.29"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.29"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ τ ∷ έ ∷ []) "Mark.11.29"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.11.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.29"
∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "Mark.11.29"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.29"
∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.29"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.29"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.29"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Mark.11.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.30"
∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.11.30"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.30"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.11.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.11.30"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.11.30"
∷ word (ἦ ∷ ν ∷ []) "Mark.11.30"
∷ word (ἢ ∷ []) "Mark.11.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.11.30"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.30"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ τ ∷ έ ∷ []) "Mark.11.30"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.11.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.31"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.31"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.31"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.31"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.31"
∷ word (Τ ∷ ί ∷ []) "Mark.11.31"
∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.31"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.11.31"
∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.31"
∷ word (Ἐ ∷ ξ ∷ []) "Mark.11.31"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.11.31"
∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.11.31"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.11.31"
∷ word (τ ∷ ί ∷ []) "Mark.11.31"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.11.31"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.31"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.31"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.31"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.11.32"
∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.32"
∷ word (Ἐ ∷ ξ ∷ []) "Mark.11.32"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.32"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.32"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.32"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.32"
∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.32"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.32"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.11.32"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.32"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.11.32"
∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "Mark.11.32"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.32"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.11.32"
∷ word (ἦ ∷ ν ∷ []) "Mark.11.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.33"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.33"
∷ word (τ ∷ ῷ ∷ []) "Mark.11.33"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.11.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.33"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.11.33"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.33"
∷ word (ὁ ∷ []) "Mark.11.33"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.33"
∷ word (Ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.11.33"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.11.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.33"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.33"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.33"
∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.33"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.33"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.33"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Mark.11.33"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.12.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.1"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.1"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.12.1"
∷ word (Ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.12.1"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.12.1"
∷ word (ἐ ∷ φ ∷ ύ ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (φ ∷ ρ ∷ α ∷ γ ∷ μ ∷ ὸ ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ὤ ∷ ρ ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (ὑ ∷ π ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ᾠ ∷ κ ∷ ο ∷ δ ∷ ό ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (π ∷ ύ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ἐ ∷ ξ ∷ έ ∷ δ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.12.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.1"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ή ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.2"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.2"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.2"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.2"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.2"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Mark.12.2"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.2"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.2"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.12.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.2"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ῶ ∷ ν ∷ []) "Mark.12.2"
∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.12.2"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.2"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ῶ ∷ ν ∷ []) "Mark.12.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.2"
∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.3"
∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.3"
∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Mark.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.3"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.12.3"
∷ word (κ ∷ ε ∷ ν ∷ ό ∷ ν ∷ []) "Mark.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.4"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.12.4"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.4"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.4"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.4"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.4"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.4"
∷ word (ἐ ∷ κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ί ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.4"
∷ word (ἠ ∷ τ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.5"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.5"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.5"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.5"
∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.12.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.5"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.5"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.12.5"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.12.5"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.12.5"
∷ word (δ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.5"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.12.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.5"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ έ ∷ ν ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.5"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.12.6"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.12.6"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.12.6"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.12.6"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.6"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.6"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.12.6"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.12.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.6"
∷ word (Ἐ ∷ ν ∷ τ ∷ ρ ∷ α ∷ π ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.6"
∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Mark.12.6"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.12.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.7"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.7"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ὶ ∷ []) "Mark.12.7"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.7"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.7"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.12.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.7"
∷ word (Ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.12.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.7"
∷ word (ὁ ∷ []) "Mark.12.7"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Mark.12.7"
∷ word (δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.12.7"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.7"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.7"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.7"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.7"
∷ word (ἡ ∷ []) "Mark.12.7"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ []) "Mark.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.8"
∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.8"
∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.12.8"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.8"
∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.8"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.12.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.8"
∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.8"
∷ word (τ ∷ ί ∷ []) "Mark.12.9"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9"
∷ word (ὁ ∷ []) "Mark.12.9"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.9"
∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.9"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.9"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.9"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.12.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.9"
∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.9"
∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.12.9"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.12.9"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.12.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.10"
∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ ν ∷ []) "Mark.12.10"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.12.10"
∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.12.10"
∷ word (Λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.12.10"
∷ word (ὃ ∷ ν ∷ []) "Mark.12.10"
∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ο ∷ κ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.10"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.10"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.12.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.10"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.10"
∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.10"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.12.11"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.12.11"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.12.11"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.11"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.11"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ὴ ∷ []) "Mark.12.11"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.11"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.11"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.12"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.12.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.12.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.12"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.12"
∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.12"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.12"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.12"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.12"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.12.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.13"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.13"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.13"
∷ word (τ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "Mark.12.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.13"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.12.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.13"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.12.13"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.13"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.13"
∷ word (ἀ ∷ γ ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.13"
∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Mark.12.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.14"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.14"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.14"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.14"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ὴ ∷ ς ∷ []) "Mark.12.14"
∷ word (ε ∷ ἶ ∷ []) "Mark.12.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.14"
∷ word (ο ∷ ὐ ∷ []) "Mark.12.14"
∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.12.14"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.12.14"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.12.14"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ό ∷ ς ∷ []) "Mark.12.14"
∷ word (ο ∷ ὐ ∷ []) "Mark.12.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.14"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.14"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.12.14"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.12.14"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.12.14"
∷ word (ἐ ∷ π ∷ []) "Mark.12.14"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.14"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.12.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.14"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.14"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.14"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.12.14"
∷ word (κ ∷ ῆ ∷ ν ∷ σ ∷ ο ∷ ν ∷ []) "Mark.12.14"
∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ι ∷ []) "Mark.12.14"
∷ word (ἢ ∷ []) "Mark.12.14"
∷ word (ο ∷ ὔ ∷ []) "Mark.12.14"
∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14"
∷ word (ἢ ∷ []) "Mark.12.14"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.14"
∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14"
∷ word (ὁ ∷ []) "Mark.12.15"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.15"
∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Mark.12.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.15"
∷ word (ὑ ∷ π ∷ ό ∷ κ ∷ ρ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.15"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.15"
∷ word (Τ ∷ ί ∷ []) "Mark.12.15"
∷ word (μ ∷ ε ∷ []) "Mark.12.15"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.12.15"
∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ έ ∷ []) "Mark.12.15"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.12.15"
∷ word (δ ∷ η ∷ ν ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.15"
∷ word (ἴ ∷ δ ∷ ω ∷ []) "Mark.12.15"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.16"
∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.16"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.12.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.16"
∷ word (Τ ∷ ί ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.16"
∷ word (ἡ ∷ []) "Mark.12.16"
∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "Mark.12.16"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.16"
∷ word (ἡ ∷ []) "Mark.12.16"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ α ∷ φ ∷ ή ∷ []) "Mark.12.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.16"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.12.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.16"
∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.16"
∷ word (ὁ ∷ []) "Mark.12.17"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.17"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.17"
∷ word (Τ ∷ ὰ ∷ []) "Mark.12.17"
∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.17"
∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.12.17"
∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ι ∷ []) "Mark.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.17"
∷ word (τ ∷ ὰ ∷ []) "Mark.12.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.17"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.17"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.17"
∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.12.17"
∷ word (ἐ ∷ π ∷ []) "Mark.12.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.18"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.18"
∷ word (Σ ∷ α ∷ δ ∷ δ ∷ ο ∷ υ ∷ κ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.12.18"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.18"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.18"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.12.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.18"
∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.18"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.18"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.12.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.18"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.18"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.19"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.12.19"
∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.12.19"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.12.19"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.19"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.12.19"
∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.19"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.12.19"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ά ∷ ν ∷ ῃ ∷ []) "Mark.12.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ί ∷ π ∷ ῃ ∷ []) "Mark.12.19"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.19"
∷ word (ἀ ∷ φ ∷ ῇ ∷ []) "Mark.12.19"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.19"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.19"
∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.12.19"
∷ word (ὁ ∷ []) "Mark.12.19"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.12.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.19"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19"
∷ word (ἐ ∷ ξ ∷ α ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.12.19"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.19"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.19"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῷ ∷ []) "Mark.12.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.19"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.20"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Mark.12.20"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.20"
∷ word (ὁ ∷ []) "Mark.12.20"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.20"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.12.20"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.20"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.12.20"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.20"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.12.20"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21"
∷ word (ὁ ∷ []) "Mark.12.21"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.21"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.12.21"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.12.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.12.21"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.21"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ι ∷ π ∷ ὼ ∷ ν ∷ []) "Mark.12.21"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21"
∷ word (ὁ ∷ []) "Mark.12.21"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.21"
∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.12.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.22"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.22"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.22"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.12.22"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.22"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.12.22"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.22"
∷ word (ἡ ∷ []) "Mark.12.22"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.12.22"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.12.22"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.23"
∷ word (τ ∷ ῇ ∷ []) "Mark.12.23"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.23"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.12.23"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.23"
∷ word (τ ∷ ί ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.23"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.23"
∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "Mark.12.23"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.23"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.23"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.23"
∷ word (ἔ ∷ σ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.12.23"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.12.23"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.23"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.12.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.24"
∷ word (ὁ ∷ []) "Mark.12.24"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.24"
∷ word (Ο ∷ ὐ ∷ []) "Mark.12.24"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.12.24"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.12.24"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.12.24"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.24"
∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.24"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.12.24"
∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.12.24"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.12.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.24"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.12.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.24"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.24"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.12.25"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.25"
∷ word (ἐ ∷ κ ∷ []) "Mark.12.25"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.25"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.25"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.12.25"
∷ word (γ ∷ α ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.25"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.12.25"
∷ word (γ ∷ α ∷ μ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.25"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.12.25"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.12.25"
∷ word (ὡ ∷ ς ∷ []) "Mark.12.25"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.12.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.25"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.25"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.25"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.12.26"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.26"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.26"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.26"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.26"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.26"
∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.12.26"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.26"
∷ word (τ ∷ ῇ ∷ []) "Mark.12.26"
∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ῳ ∷ []) "Mark.12.26"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.12.26"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.12.26"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.26"
∷ word (β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.12.26"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.12.26"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.26"
∷ word (ὁ ∷ []) "Mark.12.26"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.12.26"
∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Mark.12.26"
∷ word (ὁ ∷ []) "Mark.12.26"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26"
∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Mark.12.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.26"
∷ word (ὁ ∷ []) "Mark.12.26"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26"
∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Mark.12.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.26"
∷ word (ὁ ∷ []) "Mark.12.26"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ []) "Mark.12.26"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.27"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.27"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.27"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.27"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.12.27"
∷ word (ζ ∷ ώ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.27"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Mark.12.27"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.12.27"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.28"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.12.28"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.28"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.12.28"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.12.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.28"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.28"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.12.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.28"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.12.28"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.28"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.28"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.28"
∷ word (Π ∷ ο ∷ ί ∷ α ∷ []) "Mark.12.28"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.12.28"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Mark.12.28"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Mark.12.28"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.28"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.29"
∷ word (ὁ ∷ []) "Mark.12.29"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.29"
∷ word (Π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Mark.12.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.12.29"
∷ word (Ἄ ∷ κ ∷ ο ∷ υ ∷ ε ∷ []) "Mark.12.29"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Mark.12.29"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.29"
∷ word (ὁ ∷ []) "Mark.12.29"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.29"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.29"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.29"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.30"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.30"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.30"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.12.31"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.31"
∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.31"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.31"
∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.31"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.31"
∷ word (ὡ ∷ ς ∷ []) "Mark.12.31"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.31"
∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.12.31"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.31"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "Mark.12.31"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Mark.12.31"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.31"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.32"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.32"
∷ word (ὁ ∷ []) "Mark.12.32"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ς ∷ []) "Mark.12.32"
∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.12.32"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.32"
∷ word (ἐ ∷ π ∷ []) "Mark.12.32"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.32"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ς ∷ []) "Mark.12.32"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.32"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.32"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.32"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.32"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.32"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.32"
∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (τ ∷ ὸ ∷ []) "Mark.12.33"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Mark.12.33"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33"
∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (τ ∷ ὸ ∷ []) "Mark.12.33"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Mark.12.33"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33"
∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.33"
∷ word (ὡ ∷ ς ∷ []) "Mark.12.33"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.12.33"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.33"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.33"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.33"
∷ word (ὁ ∷ ∙λ ∷ ο ∷ κ ∷ α ∷ υ ∷ τ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.34"
∷ word (ὁ ∷ []) "Mark.12.34"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.34"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.12.34"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.34"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.34"
∷ word (ν ∷ ο ∷ υ ∷ ν ∷ ε ∷ χ ∷ ῶ ∷ ς ∷ []) "Mark.12.34"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.34"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.34"
∷ word (Ο ∷ ὐ ∷ []) "Mark.12.34"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Mark.12.34"
∷ word (ε ∷ ἶ ∷ []) "Mark.12.34"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.34"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.34"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.34"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.34"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.34"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.12.34"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.12.34"
∷ word (ἐ ∷ τ ∷ ό ∷ ∙λ ∷ μ ∷ α ∷ []) "Mark.12.34"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.34"
∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.12.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.35"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.12.35"
∷ word (ὁ ∷ []) "Mark.12.35"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.35"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.12.35"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.12.35"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.35"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.35"
∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.12.35"
∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.12.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.35"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.35"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.12.35"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.35"
∷ word (ὁ ∷ []) "Mark.12.35"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.35"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.12.35"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.12.35"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.35"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.36"
∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.12.36"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.36"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.36"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.12.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.36"
∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Mark.12.36"
∷ word (Ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.36"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.36"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Mark.12.36"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (Κ ∷ ά ∷ θ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (ἐ ∷ κ ∷ []) "Mark.12.36"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.12.36"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.12.36"
∷ word (ἂ ∷ ν ∷ []) "Mark.12.36"
∷ word (θ ∷ ῶ ∷ []) "Mark.12.36"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.36"
∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.12.36"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.12.36"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.36"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Mark.12.36"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.37"
∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.12.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.12.37"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.37"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.37"
∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.12.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.37"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.37"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.12.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.37"
∷ word (ὁ ∷ []) "Mark.12.37"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ς ∷ []) "Mark.12.37"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.37"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ε ∷ ν ∷ []) "Mark.12.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.37"
∷ word (ἡ ∷ δ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.12.37"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.12.38"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.12.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.38"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.12.38"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.12.38"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.38"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.38"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.12.38"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.38"
∷ word (θ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.38"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.12.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.38"
∷ word (ἀ ∷ σ ∷ π ∷ α ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.38"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.39"
∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ κ ∷ α ∷ θ ∷ ε ∷ δ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.39"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.39"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.39"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.39"
∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ κ ∷ ∙λ ∷ ι ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.39"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.39"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.39"
∷ word (δ ∷ ε ∷ ί ∷ π ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.12.39"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.40"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ θ ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.40"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.12.40"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.40"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.40"
∷ word (χ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.40"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.40"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ []) "Mark.12.40"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.12.40"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.12.40"
∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.40"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.12.40"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Mark.12.40"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.41"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.12.41"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.12.41"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.41"
∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.12.41"
∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.12.41"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.12.41"
∷ word (ὁ ∷ []) "Mark.12.41"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.41"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.12.41"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ὸ ∷ ν ∷ []) "Mark.12.41"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.41"
∷ word (τ ∷ ὸ ∷ []) "Mark.12.41"
∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.41"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.12.41"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.12.41"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.41"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.12.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.42"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.12.42"
∷ word (μ ∷ ί ∷ α ∷ []) "Mark.12.42"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Mark.12.42"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὴ ∷ []) "Mark.12.42"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.42"
∷ word (∙λ ∷ ε ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.42"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.12.42"
∷ word (ὅ ∷ []) "Mark.12.42"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.42"
∷ word (κ ∷ ο ∷ δ ∷ ρ ∷ ά ∷ ν ∷ τ ∷ η ∷ ς ∷ []) "Mark.12.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.43"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.43"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.43"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.12.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.43"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.43"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.12.43"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.12.43"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.12.43"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.43"
∷ word (ἡ ∷ []) "Mark.12.43"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Mark.12.43"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.43"
∷ word (ἡ ∷ []) "Mark.12.43"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὴ ∷ []) "Mark.12.43"
∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.12.43"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.43"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.43"
∷ word (β ∷ α ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.43"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.43"
∷ word (τ ∷ ὸ ∷ []) "Mark.12.43"
∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.43"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.44"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.44"
∷ word (ἐ ∷ κ ∷ []) "Mark.12.44"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.44"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.44"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.44"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.44"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.44"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.44"
∷ word (ἐ ∷ κ ∷ []) "Mark.12.44"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44"
∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.12.44"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.12.44"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.12.44"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.12.44"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.44"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.44"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.44"
∷ word (β ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.44"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.13.1"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1"
∷ word (ἐ ∷ κ ∷ []) "Mark.13.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1"
∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.13.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.13.1"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.13.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.1"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.13.1"
∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.13.1"
∷ word (π ∷ ο ∷ τ ∷ α ∷ π ∷ ο ∷ ὶ ∷ []) "Mark.13.1"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ []) "Mark.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.1"
∷ word (π ∷ ο ∷ τ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Mark.13.1"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Mark.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.2"
∷ word (ὁ ∷ []) "Mark.13.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.13.2"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.13.2"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.13.2"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Mark.13.2"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.13.2"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ά ∷ ς ∷ []) "Mark.13.2"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.2"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.2"
∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.13.2"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.13.2"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "Mark.13.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.2"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.13.2"
∷ word (ὃ ∷ ς ∷ []) "Mark.13.2"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.2"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.2"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ υ ∷ θ ∷ ῇ ∷ []) "Mark.13.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.13.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.3"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.3"
∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.3"
∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.13.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.3"
∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.13.3"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.13.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.13.3"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.3"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ς ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3"
∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ς ∷ []) "Mark.13.3"
∷ word (Ε ∷ ἰ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.13.4"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.4"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.4"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.4"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.4"
∷ word (τ ∷ ί ∷ []) "Mark.13.4"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.4"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.13.4"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.4"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Mark.13.4"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.4"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.13.4"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.4"
∷ word (ὁ ∷ []) "Mark.13.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.13.5"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.13.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.5"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.5"
∷ word (μ ∷ ή ∷ []) "Mark.13.5"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.13.5"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.5"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.13.5"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.13.6"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.6"
∷ word (τ ∷ ῷ ∷ []) "Mark.13.6"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.13.6"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.6"
∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Mark.13.6"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.13.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.6"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.6"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.6"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.7"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.7"
∷ word (π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.7"
∷ word (ἀ ∷ κ ∷ ο ∷ ὰ ∷ ς ∷ []) "Mark.13.7"
∷ word (π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.13.7"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.7"
∷ word (θ ∷ ρ ∷ ο ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.7"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.7"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.13.7"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.13.7"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.13.7"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.7"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.13.7"
∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.8"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.8"
∷ word (ἐ ∷ π ∷ []) "Mark.13.8"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.8"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.13.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.8"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.8"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.13.8"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.13.8"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.8"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8"
∷ word (∙λ ∷ ι ∷ μ ∷ ο ∷ ί ∷ []) "Mark.13.8"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Mark.13.8"
∷ word (ὠ ∷ δ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.13.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.8"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.9"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.9"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.9"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.9"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.13.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὰ ∷ ς ∷ []) "Mark.13.9"
∷ word (δ ∷ α ∷ ρ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.9"
∷ word (ἡ ∷ γ ∷ ε ∷ μ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Mark.13.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.13.9"
∷ word (σ ∷ τ ∷ α ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.9"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.13.9"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.13.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.10"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.10"
∷ word (τ ∷ ὰ ∷ []) "Mark.13.10"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Mark.13.10"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.13.10"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.10"
∷ word (κ ∷ η ∷ ρ ∷ υ ∷ χ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.13.10"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.10"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.11"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.11"
∷ word (ἄ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.11"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.11"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.11"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.11"
∷ word (π ∷ ρ ∷ ο ∷ μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾶ ∷ τ ∷ ε ∷ []) "Mark.13.11"
∷ word (τ ∷ ί ∷ []) "Mark.13.11"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.11"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.13.11"
∷ word (ὃ ∷ []) "Mark.13.11"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.13.11"
∷ word (δ ∷ ο ∷ θ ∷ ῇ ∷ []) "Mark.13.11"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.11"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.11"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.13.11"
∷ word (τ ∷ ῇ ∷ []) "Mark.13.11"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Mark.13.11"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.13.11"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.11"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.11"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.13.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.13.11"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.11"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.11"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.11"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.11"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.11"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.13.11"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.11"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.13.12"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.13.12"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.13.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.12"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12"
∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.13.12"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12"
∷ word (ἐ ∷ π ∷ α ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.12"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.13.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.12"
∷ word (γ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12"
∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.13"
∷ word (ἔ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.13"
∷ word (μ ∷ ι ∷ σ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.13.13"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.13.13"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.13.13"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.13.13"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.13"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.13.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.13"
∷ word (ὁ ∷ []) "Mark.13.13"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.13"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Mark.13.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.13"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.13.13"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.13.13"
∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.13"
∷ word (Ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.14"
∷ word (ἴ ∷ δ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.14"
∷ word (β ∷ δ ∷ έ ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Mark.13.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.14"
∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.14"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Mark.13.14"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.13.14"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.14"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.14"
∷ word (ὁ ∷ []) "Mark.13.14"
∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.13.14"
∷ word (ν ∷ ο ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Mark.13.14"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.14"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.14"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.14"
∷ word (τ ∷ ῇ ∷ []) "Mark.13.14"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ᾳ ∷ []) "Mark.13.14"
∷ word (φ ∷ ε ∷ υ ∷ γ ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.13.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.14"
∷ word (τ ∷ ὰ ∷ []) "Mark.13.14"
∷ word (ὄ ∷ ρ ∷ η ∷ []) "Mark.13.14"
∷ word (ὁ ∷ []) "Mark.13.15"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.15"
∷ word (δ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.13.15"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.15"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.15"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.13.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.15"
∷ word (τ ∷ ι ∷ []) "Mark.13.15"
∷ word (ἆ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.15"
∷ word (ἐ ∷ κ ∷ []) "Mark.13.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.15"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.16"
∷ word (ὁ ∷ []) "Mark.13.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.13.16"
∷ word (ἀ ∷ γ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.13.16"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.16"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.16"
∷ word (τ ∷ ὰ ∷ []) "Mark.13.16"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.13.16"
∷ word (ἆ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.16"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.16"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.16"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Mark.13.17"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.17"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.17"
∷ word (γ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.13.17"
∷ word (ἐ ∷ χ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.17"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17"
∷ word (θ ∷ η ∷ ∙λ ∷ α ∷ ζ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.17"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.18"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.13.18"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.18"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.18"
∷ word (χ ∷ ε ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.18"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.19"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.19"
∷ word (α ∷ ἱ ∷ []) "Mark.13.19"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.19"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.13.19"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ς ∷ []) "Mark.13.19"
∷ word (ο ∷ ἵ ∷ α ∷ []) "Mark.13.19"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.19"
∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.13.19"
∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ []) "Mark.13.19"
∷ word (ἀ ∷ π ∷ []) "Mark.13.19"
∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.13.19"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.19"
∷ word (ἣ ∷ ν ∷ []) "Mark.13.19"
∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.19"
∷ word (ὁ ∷ []) "Mark.13.19"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.13.19"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.13.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.19"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.13.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.19"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.19"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.19"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.20"
∷ word (ε ∷ ἰ ∷ []) "Mark.13.20"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.20"
∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ β ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.20"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.20"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.20"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.20"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.20"
∷ word (ἂ ∷ ν ∷ []) "Mark.13.20"
∷ word (ἐ ∷ σ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.13.20"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Mark.13.20"
∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "Mark.13.20"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.20"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.13.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.20"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.20"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.13.20"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.20"
∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ β ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.20"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.20"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.21"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.21"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.13.21"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.13.21"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.21"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.13.21"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.13.21"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.13.21"
∷ word (ὁ ∷ []) "Mark.13.21"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.13.21"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.13.21"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.13.21"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.21"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.21"
∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.22"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.22"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ό ∷ χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.13.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22"
∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.22"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Mark.13.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22"
∷ word (τ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Mark.13.22"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.13.22"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.22"
∷ word (ἀ ∷ π ∷ ο ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ ν ∷ []) "Mark.13.22"
∷ word (ε ∷ ἰ ∷ []) "Mark.13.22"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.13.22"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.22"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.22"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.23"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.23"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.23"
∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ί ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "Mark.13.23"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.23"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.23"
∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.24"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.24"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.24"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.24"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.24"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.13.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.24"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Mark.13.24"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.13.24"
∷ word (ὁ ∷ []) "Mark.13.24"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.24"
∷ word (σ ∷ κ ∷ ο ∷ τ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.24"
∷ word (ἡ ∷ []) "Mark.13.24"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Mark.13.24"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.24"
∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.13.24"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.24"
∷ word (φ ∷ έ ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Mark.13.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.13.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.25"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.25"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Mark.13.25"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.25"
∷ word (ἐ ∷ κ ∷ []) "Mark.13.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.25"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.13.25"
∷ word (π ∷ ί ∷ π ∷ τ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.25"
∷ word (α ∷ ἱ ∷ []) "Mark.13.25"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.13.25"
∷ word (α ∷ ἱ ∷ []) "Mark.13.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.25"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.25"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.25"
∷ word (σ ∷ α ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.26"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.26"
∷ word (ὄ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.26"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.13.26"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.13.26"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.26"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.13.26"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.13.26"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.26"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.26"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.13.26"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.13.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.26"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Mark.13.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.27"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.27"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.13.27"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.27"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ ά ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.13.27"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27"
∷ word (ἐ ∷ κ ∷ []) "Mark.13.27"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.27"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.13.27"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.13.27"
∷ word (ἀ ∷ π ∷ []) "Mark.13.27"
∷ word (ἄ ∷ κ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.13.27"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.13.27"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.13.27"
∷ word (ἄ ∷ κ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.13.27"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.13.27"
∷ word (Ἀ ∷ π ∷ ὸ ∷ []) "Mark.13.28"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.28"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.28"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ς ∷ []) "Mark.13.28"
∷ word (μ ∷ ά ∷ θ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.28"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.13.28"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.28"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.13.28"
∷ word (ὁ ∷ []) "Mark.13.28"
∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ ς ∷ []) "Mark.13.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.13.28"
∷ word (ἁ ∷ π ∷ α ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.13.28"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.28"
∷ word (ἐ ∷ κ ∷ φ ∷ ύ ∷ ῃ ∷ []) "Mark.13.28"
∷ word (τ ∷ ὰ ∷ []) "Mark.13.28"
∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.13.28"
∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.28"
∷ word (ἐ ∷ γ ∷ γ ∷ ὺ ∷ ς ∷ []) "Mark.13.28"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.28"
∷ word (θ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.28"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.13.28"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.13.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.29"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.29"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.29"
∷ word (ἴ ∷ δ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.29"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.29"
∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Mark.13.29"
∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.29"
∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Mark.13.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.13.29"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.29"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.29"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.13.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.30"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.30"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.30"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.30"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.30"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.13.30"
∷ word (ἡ ∷ []) "Mark.13.30"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.13.30"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.13.30"
∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ ς ∷ []) "Mark.13.30"
∷ word (ο ∷ ὗ ∷ []) "Mark.13.30"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.30"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.30"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.30"
∷ word (ὁ ∷ []) "Mark.13.31"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.13.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.31"
∷ word (ἡ ∷ []) "Mark.13.31"
∷ word (γ ∷ ῆ ∷ []) "Mark.13.31"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.31"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.31"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Mark.13.31"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.31"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.31"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.31"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.31"
∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.13.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.32"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.32"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.32"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.32"
∷ word (ἢ ∷ []) "Mark.13.32"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.32"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.32"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.13.32"
∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.13.32"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.13.32"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.32"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.13.32"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.32"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Mark.13.32"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.13.32"
∷ word (ὁ ∷ []) "Mark.13.32"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.13.32"
∷ word (ε ∷ ἰ ∷ []) "Mark.13.32"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.32"
∷ word (ὁ ∷ []) "Mark.13.32"
∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Mark.13.32"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.33"
∷ word (ἀ ∷ γ ∷ ρ ∷ υ ∷ π ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.33"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.33"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.13.33"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.33"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.33"
∷ word (ὁ ∷ []) "Mark.13.33"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.13.33"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.13.33"
∷ word (ὡ ∷ ς ∷ []) "Mark.13.34"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.13.34"
∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ η ∷ μ ∷ ο ∷ ς ∷ []) "Mark.13.34"
∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.13.34"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.34"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.34"
∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.34"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.34"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.13.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.34"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.34"
∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Mark.13.34"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.34"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.13.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.34"
∷ word (τ ∷ ῷ ∷ []) "Mark.13.34"
∷ word (θ ∷ υ ∷ ρ ∷ ω ∷ ρ ∷ ῷ ∷ []) "Mark.13.34"
∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.34"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.13.34"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῇ ∷ []) "Mark.13.34"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.35"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.13.35"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.35"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.13.35"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.35"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.35"
∷ word (ὁ ∷ []) "Mark.13.35"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.35"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.35"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.35"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.35"
∷ word (ἢ ∷ []) "Mark.13.35"
∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.13.35"
∷ word (ἢ ∷ []) "Mark.13.35"
∷ word (μ ∷ ε ∷ σ ∷ ο ∷ ν ∷ ύ ∷ κ ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.35"
∷ word (ἢ ∷ []) "Mark.13.35"
∷ word (ἀ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ρ ∷ ο ∷ φ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.35"
∷ word (ἢ ∷ []) "Mark.13.35"
∷ word (π ∷ ρ ∷ ω ∷ ΐ ∷ []) "Mark.13.35"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.36"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.13.36"
∷ word (ἐ ∷ ξ ∷ α ∷ ί ∷ φ ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.36"
∷ word (ε ∷ ὕ ∷ ρ ∷ ῃ ∷ []) "Mark.13.36"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.36"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.13.36"
∷ word (ὃ ∷ []) "Mark.13.37"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.37"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.37"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.37"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.37"
∷ word (Ἦ ∷ ν ∷ []) "Mark.14.1"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.1"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.1"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1"
∷ word (τ ∷ ὰ ∷ []) "Mark.14.1"
∷ word (ἄ ∷ ζ ∷ υ ∷ μ ∷ α ∷ []) "Mark.14.1"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.1"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.14.1"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.1"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.1"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.1"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.1"
∷ word (δ ∷ ό ∷ ∙λ ∷ ῳ ∷ []) "Mark.14.1"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.1"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.1"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.2"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.14.2"
∷ word (Μ ∷ ὴ ∷ []) "Mark.14.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.2"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.2"
∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ῇ ∷ []) "Mark.14.2"
∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.2"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.2"
∷ word (θ ∷ ό ∷ ρ ∷ υ ∷ β ∷ ο ∷ ς ∷ []) "Mark.14.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.2"
∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Mark.14.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.3"
∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.3"
∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ ᾳ ∷ []) "Mark.14.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.3"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.3"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.14.3"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (∙λ ∷ ε ∷ π ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.14.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.3"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.14.3"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.14.3"
∷ word (ἀ ∷ ∙λ ∷ ά ∷ β ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.3"
∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.3"
∷ word (ν ∷ ά ∷ ρ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.14.3"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ι ∷ κ ∷ ῆ ∷ ς ∷ []) "Mark.14.3"
∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ε ∷ ∙λ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.3"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ί ∷ ψ ∷ α ∷ σ ∷ α ∷ []) "Mark.14.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.3"
∷ word (ἀ ∷ ∙λ ∷ ά ∷ β ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.3"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Mark.14.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.14.3"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.4"
∷ word (δ ∷ έ ∷ []) "Mark.14.4"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.4"
∷ word (ἀ ∷ γ ∷ α ∷ ν ∷ α ∷ κ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.4"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.4"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.14.4"
∷ word (Ε ∷ ἰ ∷ ς ∷ []) "Mark.14.4"
∷ word (τ ∷ ί ∷ []) "Mark.14.4"
∷ word (ἡ ∷ []) "Mark.14.4"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ []) "Mark.14.4"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.14.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.4"
∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.4"
∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.14.4"
∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.5"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.5"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.14.5"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.5"
∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.5"
∷ word (π ∷ ρ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.5"
∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Mark.14.5"
∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.5"
∷ word (τ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.5"
∷ word (δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.5"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.5"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.5"
∷ word (ἐ ∷ ν ∷ ε ∷ β ∷ ρ ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.14.5"
∷ word (ὁ ∷ []) "Mark.14.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.6"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.6"
∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.6"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.14.6"
∷ word (τ ∷ ί ∷ []) "Mark.14.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.14.6"
∷ word (κ ∷ ό ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.14.6"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.6"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.14.6"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.6"
∷ word (ἠ ∷ ρ ∷ γ ∷ ά ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.6"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.6"
∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "Mark.14.6"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.7"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.7"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.14.7"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.7"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.14.7"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.7"
∷ word (ε ∷ ὖ ∷ []) "Mark.14.7"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.7"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.14.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.7"
∷ word (ο ∷ ὐ ∷ []) "Mark.14.7"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (ὃ ∷ []) "Mark.14.8"
∷ word (ἔ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.14.8"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.8"
∷ word (π ∷ ρ ∷ ο ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.14.8"
∷ word (μ ∷ υ ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.8"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.8"
∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "Mark.14.8"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.8"
∷ word (ἐ ∷ ν ∷ τ ∷ α ∷ φ ∷ ι ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Mark.14.8"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.9"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.9"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.9"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.9"
∷ word (κ ∷ η ∷ ρ ∷ υ ∷ χ ∷ θ ∷ ῇ ∷ []) "Mark.14.9"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.9"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.9"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.9"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.9"
∷ word (ὃ ∷ []) "Mark.14.9"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.9"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.14.9"
∷ word (∙λ ∷ α ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.9"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ σ ∷ υ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.14.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.10"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Mark.14.10"
∷ word (Ἰ ∷ σ ∷ κ ∷ α ∷ ρ ∷ ι ∷ ὼ ∷ θ ∷ []) "Mark.14.10"
∷ word (ὁ ∷ []) "Mark.14.10"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.10"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.10"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.10"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.10"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.10"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.14.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.11"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.11"
∷ word (ἐ ∷ χ ∷ ά ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.11"
∷ word (ἐ ∷ π ∷ η ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.11"
∷ word (ἀ ∷ ρ ∷ γ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.11"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.11"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ε ∷ ι ∷ []) "Mark.14.11"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.11"
∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ω ∷ ς ∷ []) "Mark.14.11"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.14.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.12"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.12"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Mark.14.12"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.14.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.12"
∷ word (ἀ ∷ ζ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.14.12"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.14.12"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.12"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.12"
∷ word (ἔ ∷ θ ∷ υ ∷ ο ∷ ν ∷ []) "Mark.14.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.12"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.12"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.14.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.12"
∷ word (Π ∷ ο ∷ ῦ ∷ []) "Mark.14.12"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.12"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.12"
∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.12"
∷ word (φ ∷ ά ∷ γ ∷ ῃ ∷ ς ∷ []) "Mark.14.12"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.12"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.14.13"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.14.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.13"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.13"
∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.13"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13"
∷ word (ἀ ∷ π ∷ α ∷ ν ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.14.13"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.13"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.14.13"
∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.13"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.13"
∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.14.13"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.14"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.14"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.14"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.14.14"
∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.14"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.14"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ ῃ ∷ []) "Mark.14.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.14"
∷ word (Ὁ ∷ []) "Mark.14.14"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.14.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.14"
∷ word (Π ∷ ο ∷ ῦ ∷ []) "Mark.14.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.14"
∷ word (κ ∷ α ∷ τ ∷ ά ∷ ∙λ ∷ υ ∷ μ ∷ ά ∷ []) "Mark.14.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.14"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.14"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.14"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.14"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.14"
∷ word (φ ∷ ά ∷ γ ∷ ω ∷ []) "Mark.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.14.15"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.15"
∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.14.15"
∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.15"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Mark.14.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.15"
∷ word (ἕ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.15"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.14.15"
∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.15"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.16"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.16"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.16"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.14.16"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.16"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.16"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.17"
∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.14.17"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.14.17"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.17"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.17"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.18"
∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Mark.14.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.18"
∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.18"
∷ word (ὁ ∷ []) "Mark.14.18"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.18"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.18"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.18"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.18"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.18"
∷ word (ἐ ∷ ξ ∷ []) "Mark.14.18"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.14.18"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.14.18"
∷ word (μ ∷ ε ∷ []) "Mark.14.18"
∷ word (ὁ ∷ []) "Mark.14.18"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.18"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.18"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.18"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.19"
∷ word (∙λ ∷ υ ∷ π ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.14.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.19"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.19"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.14.19"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.19"
∷ word (Μ ∷ ή ∷ τ ∷ ι ∷ []) "Mark.14.19"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.19"
∷ word (ὁ ∷ []) "Mark.14.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.20"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.20"
∷ word (Ε ∷ ἷ ∷ ς ∷ []) "Mark.14.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.20"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.20"
∷ word (ὁ ∷ []) "Mark.14.20"
∷ word (ἐ ∷ μ ∷ β ∷ α ∷ π ∷ τ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.20"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.20"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.20"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.20"
∷ word (τ ∷ ρ ∷ ύ ∷ β ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.20"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.21"
∷ word (ὁ ∷ []) "Mark.14.21"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.14.21"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.21"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.21"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.14.21"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.21"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.14.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Mark.14.21"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.21"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.14.21"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῳ ∷ []) "Mark.14.21"
∷ word (δ ∷ ι ∷ []) "Mark.14.21"
∷ word (ο ∷ ὗ ∷ []) "Mark.14.21"
∷ word (ὁ ∷ []) "Mark.14.21"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.21"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.21"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.14.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.21"
∷ word (ε ∷ ἰ ∷ []) "Mark.14.21"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.21"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.14.21"
∷ word (ὁ ∷ []) "Mark.14.21"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.14.21"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.22"
∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.22"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.14.22"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.22"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.22"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.22"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.22"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.22"
∷ word (Λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.22"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Mark.14.22"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.22"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.22"
∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "Mark.14.22"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.23"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.14.23"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.23"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.23"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.23"
∷ word (ἔ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.23"
∷ word (ἐ ∷ ξ ∷ []) "Mark.14.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.23"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.24"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.24"
∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Mark.14.24"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.24"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.24"
∷ word (α ∷ ἷ ∷ μ ∷ ά ∷ []) "Mark.14.24"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.24"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.24"
∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Mark.14.24"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.24"
∷ word (ἐ ∷ κ ∷ χ ∷ υ ∷ ν ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.24"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Mark.14.24"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.24"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.25"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.25"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.25"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.14.25"
∷ word (ο ∷ ὐ ∷ []) "Mark.14.25"
∷ word (μ ∷ ὴ ∷ []) "Mark.14.25"
∷ word (π ∷ ί ∷ ω ∷ []) "Mark.14.25"
∷ word (ἐ ∷ κ ∷ []) "Mark.14.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.25"
∷ word (γ ∷ ε ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.25"
∷ word (ἀ ∷ μ ∷ π ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.14.25"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.25"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.25"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Mark.14.25"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.14.25"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.14.25"
∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.14.25"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.14.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.25"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.25"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Mark.14.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.25"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.14.25"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.26"
∷ word (ὑ ∷ μ ∷ ν ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.26"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.26"
∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.26"
∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.26"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.27"
∷ word (ὁ ∷ []) "Mark.14.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.27"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.27"
∷ word (Π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.27"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.27"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.27"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.27"
∷ word (Π ∷ α ∷ τ ∷ ά ∷ ξ ∷ ω ∷ []) "Mark.14.27"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.27"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.14.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.27"
∷ word (τ ∷ ὰ ∷ []) "Mark.14.27"
∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Mark.14.27"
∷ word (δ ∷ ι ∷ α ∷ σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.27"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.14.28"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.28"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.28"
∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ί ∷ []) "Mark.14.28"
∷ word (μ ∷ ε ∷ []) "Mark.14.28"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ ξ ∷ ω ∷ []) "Mark.14.28"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.14.28"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.28"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.28"
∷ word (ὁ ∷ []) "Mark.14.29"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.29"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.29"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.14.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.29"
∷ word (Ε ∷ ἰ ∷ []) "Mark.14.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.29"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.29"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.29"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.29"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.29"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.30"
∷ word (ὁ ∷ []) "Mark.14.30"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.30"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.30"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.30"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.30"
∷ word (σ ∷ ὺ ∷ []) "Mark.14.30"
∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.30"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.14.30"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.30"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὶ ∷ []) "Mark.14.30"
∷ word (π ∷ ρ ∷ ὶ ∷ ν ∷ []) "Mark.14.30"
∷ word (ἢ ∷ []) "Mark.14.30"
∷ word (δ ∷ ὶ ∷ ς ∷ []) "Mark.14.30"
∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.14.30"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.30"
∷ word (τ ∷ ρ ∷ ί ∷ ς ∷ []) "Mark.14.30"
∷ word (μ ∷ ε ∷ []) "Mark.14.30"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.14.30"
∷ word (ὁ ∷ []) "Mark.14.31"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.31"
∷ word (ἐ ∷ κ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.14.31"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.14.31"
∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.31"
∷ word (δ ∷ έ ∷ ῃ ∷ []) "Mark.14.31"
∷ word (μ ∷ ε ∷ []) "Mark.14.31"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.31"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.31"
∷ word (ο ∷ ὐ ∷ []) "Mark.14.31"
∷ word (μ ∷ ή ∷ []) "Mark.14.31"
∷ word (σ ∷ ε ∷ []) "Mark.14.31"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.31"
∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.14.31"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.31"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.31"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.31"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.32"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.32"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.32"
∷ word (χ ∷ ω ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.14.32"
∷ word (ο ∷ ὗ ∷ []) "Mark.14.32"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.32"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.14.32"
∷ word (Γ ∷ ε ∷ θ ∷ σ ∷ η ∷ μ ∷ α ∷ ν ∷ ί ∷ []) "Mark.14.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.32"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.32"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.32"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.14.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.32"
∷ word (Κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.32"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.14.32"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.32"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.14.33"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.33"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.14.33"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.33"
∷ word (ἐ ∷ κ ∷ θ ∷ α ∷ μ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (ἀ ∷ δ ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.34"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.34"
∷ word (Π ∷ ε ∷ ρ ∷ ί ∷ ∙λ ∷ υ ∷ π ∷ ό ∷ ς ∷ []) "Mark.14.34"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.34"
∷ word (ἡ ∷ []) "Mark.14.34"
∷ word (ψ ∷ υ ∷ χ ∷ ή ∷ []) "Mark.14.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.34"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.34"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.14.34"
∷ word (μ ∷ ε ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.34"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.14.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.34"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.14.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.35"
∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.35"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.14.35"
∷ word (ἔ ∷ π ∷ ι ∷ π ∷ τ ∷ ε ∷ ν ∷ []) "Mark.14.35"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.35"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.35"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.14.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.35"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.14.35"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.35"
∷ word (ε ∷ ἰ ∷ []) "Mark.14.35"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.35"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.35"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.14.35"
∷ word (ἀ ∷ π ∷ []) "Mark.14.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.35"
∷ word (ἡ ∷ []) "Mark.14.35"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.14.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.36"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.14.36"
∷ word (Α ∷ β ∷ β ∷ α ∷ []) "Mark.14.36"
∷ word (ὁ ∷ []) "Mark.14.36"
∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Mark.14.36"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.14.36"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ά ∷ []) "Mark.14.36"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.36"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ []) "Mark.14.36"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.36"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.36"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.14.36"
∷ word (ἀ ∷ π ∷ []) "Mark.14.36"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.36"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.36"
∷ word (ο ∷ ὐ ∷ []) "Mark.14.36"
∷ word (τ ∷ ί ∷ []) "Mark.14.36"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.14.36"
∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.14.36"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.14.36"
∷ word (τ ∷ ί ∷ []) "Mark.14.36"
∷ word (σ ∷ ύ ∷ []) "Mark.14.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37"
∷ word (ε ∷ ὑ ∷ ρ ∷ ί ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Mark.14.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.37"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.14.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.37"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.37"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.14.37"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.14.37"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.37"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.37"
∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.37"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.37"
∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.37"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.37"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.14.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.38"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.38"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.38"
∷ word (μ ∷ ὴ ∷ []) "Mark.14.38"
∷ word (ἔ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.14.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.38"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Mark.14.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.38"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.14.38"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.14.38"
∷ word (π ∷ ρ ∷ ό ∷ θ ∷ υ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.38"
∷ word (ἡ ∷ []) "Mark.14.38"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.38"
∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "Mark.14.38"
∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ή ∷ ς ∷ []) "Mark.14.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.39"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.39"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.39"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.39"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.39"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.39"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.39"
∷ word (ε ∷ ἰ ∷ π ∷ ώ ∷ ν ∷ []) "Mark.14.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.40"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.40"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.40"
∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.14.40"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.40"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.14.40"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.40"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.40"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.40"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.40"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.14.40"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ρ ∷ υ ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.14.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.40"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.40"
∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.40"
∷ word (τ ∷ ί ∷ []) "Mark.14.40"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.40"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.41"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.41"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.41"
∷ word (Κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.41"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.41"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.14.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.41"
∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.14.41"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.41"
∷ word (ἡ ∷ []) "Mark.14.41"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.14.41"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.14.41"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.41"
∷ word (ὁ ∷ []) "Mark.14.41"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.41"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.41"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.41"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.41"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.14.41"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.41"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.41"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.41"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.42"
∷ word (ἄ ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.42"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.14.42"
∷ word (ὁ ∷ []) "Mark.14.42"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.14.42"
∷ word (μ ∷ ε ∷ []) "Mark.14.42"
∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.42"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.43"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.14.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.43"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.43"
∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.43"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Mark.14.43"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.43"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.14.43"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.43"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.14.43"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.14.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.14.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.14.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.14.43"
∷ word (δ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ ε ∷ ι ∷ []) "Mark.14.44"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.44"
∷ word (ὁ ∷ []) "Mark.14.44"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.44"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.44"
∷ word (σ ∷ ύ ∷ σ ∷ σ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.44"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.44"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.44"
∷ word (Ὃ ∷ ν ∷ []) "Mark.14.44"
∷ word (ἂ ∷ ν ∷ []) "Mark.14.44"
∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.14.44"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.14.44"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.44"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.44"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.44"
∷ word (ἀ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.44"
∷ word (ἀ ∷ σ ∷ φ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.14.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.45"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.45"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.45"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.45"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.45"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.45"
∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.14.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.45"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ φ ∷ ί ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.45"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.45"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.46"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.46"
∷ word (ἐ ∷ π ∷ έ ∷ β ∷ α ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.14.46"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.14.46"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.46"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.46"
∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.46"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.46"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.47"
∷ word (δ ∷ έ ∷ []) "Mark.14.47"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.14.47"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.47"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.47"
∷ word (σ ∷ π ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.47"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.47"
∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.47"
∷ word (ἔ ∷ π ∷ α ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.47"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.47"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.47"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.47"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.47"
∷ word (ἀ ∷ φ ∷ ε ∷ ῖ ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.14.47"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.47"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.47"
∷ word (ὠ ∷ τ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.48"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.14.48"
∷ word (ὁ ∷ []) "Mark.14.48"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.48"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.48"
∷ word (Ὡ ∷ ς ∷ []) "Mark.14.48"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.48"
∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.14.48"
∷ word (ἐ ∷ ξ ∷ ή ∷ ∙λ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.48"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.48"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.48"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.48"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.14.48"
∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.48"
∷ word (μ ∷ ε ∷ []) "Mark.14.48"
∷ word (κ ∷ α ∷ θ ∷ []) "Mark.14.49"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.49"
∷ word (ἤ ∷ μ ∷ η ∷ ν ∷ []) "Mark.14.49"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.49"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.14.49"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.49"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.49"
∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.14.49"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.14.49"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.49"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.49"
∷ word (ἐ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ έ ∷ []) "Mark.14.49"
∷ word (μ ∷ ε ∷ []) "Mark.14.49"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.49"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.49"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.49"
∷ word (α ∷ ἱ ∷ []) "Mark.14.49"
∷ word (γ ∷ ρ ∷ α ∷ φ ∷ α ∷ ί ∷ []) "Mark.14.49"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.50"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.50"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.50"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.50"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.50"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.51"
∷ word (ν ∷ ε ∷ α ∷ ν ∷ ί ∷ σ ∷ κ ∷ ο ∷ ς ∷ []) "Mark.14.51"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.14.51"
∷ word (σ ∷ υ ∷ ν ∷ η ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.14.51"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.51"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.51"
∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.14.51"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.51"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.51"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.51"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.51"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.51"
∷ word (ὁ ∷ []) "Mark.14.52"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.52"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ι ∷ π ∷ ὼ ∷ ν ∷ []) "Mark.14.52"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.52"
∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.14.52"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.14.52"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Mark.14.52"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.53"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.53"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.53"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.14.53"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.53"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.53"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Mark.14.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.53"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.53"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.53"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.53"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Mark.14.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.53"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54"
∷ word (ὁ ∷ []) "Mark.14.54"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.54"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.14.54"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.54"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.54"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.54"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.54"
∷ word (ἔ ∷ σ ∷ ω ∷ []) "Mark.14.54"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.54"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.54"
∷ word (α ∷ ὐ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.14.54"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.54"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.54"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54"
∷ word (ἦ ∷ ν ∷ []) "Mark.14.54"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.54"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.54"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.54"
∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.54"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54"
∷ word (θ ∷ ε ∷ ρ ∷ μ ∷ α ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.54"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.54"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.54"
∷ word (φ ∷ ῶ ∷ ς ∷ []) "Mark.14.54"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.55"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.55"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.55"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.55"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.55"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.55"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.55"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.55"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.14.55"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.55"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.14.55"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.55"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.55"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.55"
∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.55"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.55"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.55"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.14.55"
∷ word (η ∷ ὕ ∷ ρ ∷ ι ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.14.55"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.14.56"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.56"
∷ word (ἐ ∷ ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.56"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.14.56"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.56"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.56"
∷ word (ἴ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.56"
∷ word (α ∷ ἱ ∷ []) "Mark.14.56"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ι ∷ []) "Mark.14.56"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.56"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.56"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.14.57"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.57"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.57"
∷ word (ἐ ∷ ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.57"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.14.57"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.57"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.57"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.58"
∷ word (Ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.58"
∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.58"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.58"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.58"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.58"
∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Mark.14.58"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.14.58"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.58"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Mark.14.58"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.58"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.58"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.14.58"
∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.58"
∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.58"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.58"
∷ word (ἀ ∷ χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.14.58"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.59"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.14.59"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.14.59"
∷ word (ἴ ∷ σ ∷ η ∷ []) "Mark.14.59"
∷ word (ἦ ∷ ν ∷ []) "Mark.14.59"
∷ word (ἡ ∷ []) "Mark.14.59"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "Mark.14.59"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.59"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.60"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.14.60"
∷ word (ὁ ∷ []) "Mark.14.60"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.60"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.60"
∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.14.60"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.60"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.60"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.14.60"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.60"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.14.60"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.14.60"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.14.60"
∷ word (τ ∷ ί ∷ []) "Mark.14.60"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.14.60"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.14.60"
∷ word (κ ∷ α ∷ τ ∷ α ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.60"
∷ word (ὁ ∷ []) "Mark.14.61"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.61"
∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ α ∷ []) "Mark.14.61"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.61"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.61"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.61"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.14.61"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.61"
∷ word (ὁ ∷ []) "Mark.14.61"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.61"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.14.61"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.61"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.61"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.61"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.61"
∷ word (Σ ∷ ὺ ∷ []) "Mark.14.61"
∷ word (ε ∷ ἶ ∷ []) "Mark.14.61"
∷ word (ὁ ∷ []) "Mark.14.61"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.14.61"
∷ word (ὁ ∷ []) "Mark.14.61"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.61"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.61"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.61"
∷ word (ὁ ∷ []) "Mark.14.62"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.62"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.62"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.62"
∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.62"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.14.62"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.62"
∷ word (ὄ ∷ ψ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.62"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.62"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.14.62"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.62"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.62"
∷ word (ἐ ∷ κ ∷ []) "Mark.14.62"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.62"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.62"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.62"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.14.62"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.62"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.62"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.62"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.62"
∷ word (ν ∷ ε ∷ φ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.62"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.62"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.62"
∷ word (ὁ ∷ []) "Mark.14.63"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.63"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.63"
∷ word (δ ∷ ι ∷ α ∷ ρ ∷ ρ ∷ ή ∷ ξ ∷ α ∷ ς ∷ []) "Mark.14.63"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.63"
∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Mark.14.63"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.63"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.63"
∷ word (Τ ∷ ί ∷ []) "Mark.14.63"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.14.63"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.63"
∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.63"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.14.63"
∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.64"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.64"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Mark.14.64"
∷ word (τ ∷ ί ∷ []) "Mark.14.64"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.64"
∷ word (φ ∷ α ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.64"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.64"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.64"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.64"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.14.64"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.64"
∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ο ∷ ν ∷ []) "Mark.14.64"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.64"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.14.64"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ό ∷ []) "Mark.14.65"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.65"
∷ word (ἐ ∷ μ ∷ π ∷ τ ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.65"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.65"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.65"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.14.65"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ φ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.65"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.65"
∷ word (Π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.14.65"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.65"
∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ έ ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.65"
∷ word (ῥ ∷ α ∷ π ∷ ί ∷ σ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.65"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Mark.14.65"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.66"
∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.66"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.66"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.66"
∷ word (κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.14.66"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.66"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.66"
∷ word (α ∷ ὐ ∷ ∙λ ∷ ῇ ∷ []) "Mark.14.66"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.66"
∷ word (μ ∷ ί ∷ α ∷ []) "Mark.14.66"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.66"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ι ∷ σ ∷ κ ∷ ῶ ∷ ν ∷ []) "Mark.14.66"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.66"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.66"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.67"
∷ word (ἰ ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.14.67"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.67"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.67"
∷ word (θ ∷ ε ∷ ρ ∷ μ ∷ α ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.67"
∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ σ ∷ α ∷ []) "Mark.14.67"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.67"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.67"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.67"
∷ word (σ ∷ ὺ ∷ []) "Mark.14.67"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.67"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.67"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.67"
∷ word (ἦ ∷ σ ∷ θ ∷ α ∷ []) "Mark.14.67"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.67"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.14.67"
∷ word (ὁ ∷ []) "Mark.14.68"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.68"
∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.68"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.68"
∷ word (Ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.14.68"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Mark.14.68"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.14.68"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ α ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.68"
∷ word (σ ∷ ὺ ∷ []) "Mark.14.68"
∷ word (τ ∷ ί ∷ []) "Mark.14.68"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.68"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.68"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.68"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.14.68"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.68"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.68"
∷ word (π ∷ ρ ∷ ο ∷ α ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.68"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.68"
∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ρ ∷ []) "Mark.14.68"
∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.68"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.69"
∷ word (ἡ ∷ []) "Mark.14.69"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ σ ∷ κ ∷ η ∷ []) "Mark.14.69"
∷ word (ἰ ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.14.69"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.69"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.69"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.69"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.69"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.69"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.69"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.69"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.69"
∷ word (ἐ ∷ ξ ∷ []) "Mark.14.69"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.69"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.69"
∷ word (ὁ ∷ []) "Mark.14.70"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.70"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.70"
∷ word (ἠ ∷ ρ ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Mark.14.70"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.70"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.14.70"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.70"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.70"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.70"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.70"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.70"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.14.70"
∷ word (Ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.14.70"
∷ word (ἐ ∷ ξ ∷ []) "Mark.14.70"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.70"
∷ word (ε ∷ ἶ ∷ []) "Mark.14.70"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.70"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Mark.14.70"
∷ word (ε ∷ ἶ ∷ []) "Mark.14.70"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70"
∷ word (ἡ ∷ []) "Mark.14.70"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ι ∷ ά ∷ []) "Mark.14.70"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.14.70"
∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.14.70"
∷ word (ὁ ∷ []) "Mark.14.71"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.71"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.71"
∷ word (ἀ ∷ ν ∷ α ∷ θ ∷ ε ∷ μ ∷ α ∷ τ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.71"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.71"
∷ word (ὀ ∷ μ ∷ ν ∷ ύ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.71"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.71"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.14.71"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Mark.14.71"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.71"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.14.71"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.71"
∷ word (ὃ ∷ ν ∷ []) "Mark.14.71"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.71"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.72"
∷ word (ἐ ∷ κ ∷ []) "Mark.14.72"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.72"
∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ρ ∷ []) "Mark.14.72"
∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.72"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72"
∷ word (ἀ ∷ ν ∷ ε ∷ μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ []) "Mark.14.72"
∷ word (ὁ ∷ []) "Mark.14.72"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.72"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.72"
∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Mark.14.72"
∷ word (ὡ ∷ ς ∷ []) "Mark.14.72"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.72"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.72"
∷ word (ὁ ∷ []) "Mark.14.72"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.72"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.72"
∷ word (Π ∷ ρ ∷ ὶ ∷ ν ∷ []) "Mark.14.72"
∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.14.72"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.72"
∷ word (δ ∷ ὶ ∷ ς ∷ []) "Mark.14.72"
∷ word (τ ∷ ρ ∷ ί ∷ ς ∷ []) "Mark.14.72"
∷ word (μ ∷ ε ∷ []) "Mark.14.72"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.14.72"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72"
∷ word (ἐ ∷ π ∷ ι ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.14.72"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ ι ∷ ε ∷ ν ∷ []) "Mark.14.72"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.1"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.15.1"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.15.1"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.1"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.1"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.1"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.1"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.1"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.1"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.1"
∷ word (δ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.1"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.15.1"
∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Mark.15.1"
∷ word (Π ∷ ι ∷ ∙λ ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.2"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.2"
∷ word (ὁ ∷ []) "Mark.15.2"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.2"
∷ word (Σ ∷ ὺ ∷ []) "Mark.15.2"
∷ word (ε ∷ ἶ ∷ []) "Mark.15.2"
∷ word (ὁ ∷ []) "Mark.15.2"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.2"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.2"
∷ word (ὁ ∷ []) "Mark.15.2"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.2"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.15.2"
∷ word (Σ ∷ ὺ ∷ []) "Mark.15.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.3"
∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ό ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.3"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.3"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.3"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.15.3"
∷ word (ὁ ∷ []) "Mark.15.4"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.4"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.4"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.4"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.15.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.4"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.15.4"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.15.4"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.15.4"
∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.15.4"
∷ word (π ∷ ό ∷ σ ∷ α ∷ []) "Mark.15.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.15.4"
∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.4"
∷ word (ὁ ∷ []) "Mark.15.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.5"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.15.5"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.15.5"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.15.5"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.15.5"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.15.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.5"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.5"
∷ word (Κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.15.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.6"
∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.15.6"
∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.15.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.6"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.6"
∷ word (δ ∷ έ ∷ σ ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.6"
∷ word (ὃ ∷ ν ∷ []) "Mark.15.6"
∷ word (π ∷ α ∷ ρ ∷ ῃ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.15.6"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.7"
∷ word (ὁ ∷ []) "Mark.15.7"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.7"
∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ς ∷ []) "Mark.15.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.7"
∷ word (σ ∷ τ ∷ α ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.15.7"
∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.7"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.15.7"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.7"
∷ word (τ ∷ ῇ ∷ []) "Mark.15.7"
∷ word (σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.15.7"
∷ word (φ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.7"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ ή ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.8"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.15.8"
∷ word (ὁ ∷ []) "Mark.15.8"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.15.8"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.8"
∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.15.8"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.15.8"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ ε ∷ ι ∷ []) "Mark.15.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.8"
∷ word (ὁ ∷ []) "Mark.15.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.9"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.9"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.15.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.9"
∷ word (Θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.9"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.15.9"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.15.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.15.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.9"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.9"
∷ word (ἐ ∷ γ ∷ ί ∷ ν ∷ ω ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.15.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.15.10"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.15.10"
∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.10"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.10"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.11"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.11"
∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.11"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.11"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.11"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.11"
∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.15.11"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ῃ ∷ []) "Mark.15.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.11"
∷ word (ὁ ∷ []) "Mark.15.12"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.12"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.12"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.12"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.12"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.15.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.12"
∷ word (Τ ∷ ί ∷ []) "Mark.15.12"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.15.12"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.12"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.15.12"
∷ word (ὃ ∷ ν ∷ []) "Mark.15.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.15.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.12"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.12"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.13"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.13"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.13"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.13"
∷ word (Σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.13"
∷ word (ὁ ∷ []) "Mark.15.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.14"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.14"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.15.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.14"
∷ word (Τ ∷ ί ∷ []) "Mark.15.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.15.14"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.14"
∷ word (κ ∷ α ∷ κ ∷ ό ∷ ν ∷ []) "Mark.15.14"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.14"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.15.14"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.14"
∷ word (Σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.14"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.14"
∷ word (ὁ ∷ []) "Mark.15.15"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.15"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.15"
∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.15"
∷ word (τ ∷ ῷ ∷ []) "Mark.15.15"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.15.15"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.15"
∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.15.15"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.15"
∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.15"
∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.15.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.15"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.15"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.15.15"
∷ word (φ ∷ ρ ∷ α ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ώ ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.15"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.15.15"
∷ word (Ο ∷ ἱ ∷ []) "Mark.15.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.16"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ι ∷ ῶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.16"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.16"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.16"
∷ word (ἔ ∷ σ ∷ ω ∷ []) "Mark.15.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.15.16"
∷ word (α ∷ ὐ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.15.16"
∷ word (ὅ ∷ []) "Mark.15.16"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.16"
∷ word (π ∷ ρ ∷ α ∷ ι ∷ τ ∷ ώ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.16"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.16"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.16"
∷ word (σ ∷ π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.17"
∷ word (ἐ ∷ ν ∷ δ ∷ ι ∷ δ ∷ ύ ∷ σ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.17"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.17"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ι ∷ θ ∷ έ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.17"
∷ word (π ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.17"
∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.17"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.18"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.15.18"
∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.15.18"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.18"
∷ word (Χ ∷ α ∷ ῖ ∷ ρ ∷ ε ∷ []) "Mark.15.18"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῦ ∷ []) "Mark.15.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.18"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19"
∷ word (ἔ ∷ τ ∷ υ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.19"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.15.19"
∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Mark.15.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19"
∷ word (ἐ ∷ ν ∷ έ ∷ π ∷ τ ∷ υ ∷ ο ∷ ν ∷ []) "Mark.15.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19"
∷ word (τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.19"
∷ word (τ ∷ ὰ ∷ []) "Mark.15.19"
∷ word (γ ∷ ό ∷ ν ∷ α ∷ τ ∷ α ∷ []) "Mark.15.19"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.15.20"
∷ word (ἐ ∷ ν ∷ έ ∷ π ∷ α ∷ ι ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.20"
∷ word (ἐ ∷ ξ ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.20"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20"
∷ word (ἐ ∷ ν ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20"
∷ word (τ ∷ ὰ ∷ []) "Mark.15.20"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.15.20"
∷ word (τ ∷ ὰ ∷ []) "Mark.15.20"
∷ word (ἴ ∷ δ ∷ ι ∷ α ∷ []) "Mark.15.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20"
∷ word (ἐ ∷ ξ ∷ ά ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.20"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.21"
∷ word (ἀ ∷ γ ∷ γ ∷ α ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.21"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "Mark.15.21"
∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "Mark.15.21"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.15.21"
∷ word (Κ ∷ υ ∷ ρ ∷ η ∷ ν ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.15.21"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.21"
∷ word (ἀ ∷ π ∷ []) "Mark.15.21"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.21"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.15.21"
∷ word (Ἀ ∷ ∙λ ∷ ε ∷ ξ ∷ ά ∷ ν ∷ δ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.15.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.21"
∷ word (Ῥ ∷ ο ∷ ύ ∷ φ ∷ ο ∷ υ ∷ []) "Mark.15.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.21"
∷ word (ἄ ∷ ρ ∷ ῃ ∷ []) "Mark.15.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.21"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.15.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.22"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.22"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.15.22"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.22"
∷ word (Γ ∷ ο ∷ ∙λ ∷ γ ∷ ο ∷ θ ∷ ᾶ ∷ ν ∷ []) "Mark.15.22"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.15.22"
∷ word (ὅ ∷ []) "Mark.15.22"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.22"
∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.22"
∷ word (Κ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.15.22"
∷ word (Τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.15.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.23"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.23"
∷ word (ἐ ∷ σ ∷ μ ∷ υ ∷ ρ ∷ ν ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.23"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.23"
∷ word (ὃ ∷ ς ∷ []) "Mark.15.23"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.23"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.15.23"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.15.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.24"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.24"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.24"
∷ word (δ ∷ ι ∷ α ∷ μ ∷ ε ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.24"
∷ word (τ ∷ ὰ ∷ []) "Mark.15.24"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.15.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.24"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.24"
∷ word (κ ∷ ∙λ ∷ ῆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.15.24"
∷ word (ἐ ∷ π ∷ []) "Mark.15.24"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.15.24"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.15.24"
∷ word (τ ∷ ί ∷ []) "Mark.15.24"
∷ word (ἄ ∷ ρ ∷ ῃ ∷ []) "Mark.15.24"
∷ word (Ἦ ∷ ν ∷ []) "Mark.15.25"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.25"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.15.25"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ []) "Mark.15.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.25"
∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.25"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.26"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.26"
∷ word (ἡ ∷ []) "Mark.15.26"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ []) "Mark.15.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.15.26"
∷ word (α ∷ ἰ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.26"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.26"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.15.26"
∷ word (Ὁ ∷ []) "Mark.15.26"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.26"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.27"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.15.27"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.27"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.27"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.15.27"
∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ά ∷ ς ∷ []) "Mark.15.27"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.27"
∷ word (ἐ ∷ κ ∷ []) "Mark.15.27"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.15.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.27"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.27"
∷ word (ἐ ∷ ξ ∷ []) "Mark.15.27"
∷ word (ε ∷ ὐ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.15.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.27"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.29"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.29"
∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.15.29"
∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.29"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.29"
∷ word (κ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.29"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.15.29"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.15.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.15.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.29"
∷ word (Ο ∷ ὐ ∷ ὰ ∷ []) "Mark.15.29"
∷ word (ὁ ∷ []) "Mark.15.29"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ύ ∷ ω ∷ ν ∷ []) "Mark.15.29"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.29"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Mark.15.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.29"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.15.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.29"
∷ word (τ ∷ ρ ∷ ι ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.15.29"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.15.29"
∷ word (σ ∷ ῶ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.30"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.30"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.15.30"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.30"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.30"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.30"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Mark.15.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.31"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.31"
∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.31"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.15.31"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.31"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.31"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.15.31"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.31"
∷ word (Ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.31"
∷ word (ἔ ∷ σ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.31"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.31"
∷ word (ο ∷ ὐ ∷ []) "Mark.15.31"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.31"
∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.31"
∷ word (ὁ ∷ []) "Mark.15.32"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.15.32"
∷ word (ὁ ∷ []) "Mark.15.32"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.32"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Mark.15.32"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ τ ∷ ω ∷ []) "Mark.15.32"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.15.32"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.32"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.32"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.32"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.32"
∷ word (ἴ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.32"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.32"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.32"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.15.32"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.15.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.32"
∷ word (ὠ ∷ ν ∷ ε ∷ ί ∷ δ ∷ ι ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.15.32"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.32"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.33"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.15.33"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.33"
∷ word (ἕ ∷ κ ∷ τ ∷ η ∷ ς ∷ []) "Mark.15.33"
∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.33"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.15.33"
∷ word (ἐ ∷ φ ∷ []) "Mark.15.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.33"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.33"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.15.33"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.15.33"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.33"
∷ word (ἐ ∷ ν ∷ ά ∷ τ ∷ η ∷ ς ∷ []) "Mark.15.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.34"
∷ word (τ ∷ ῇ ∷ []) "Mark.15.34"
∷ word (ἐ ∷ ν ∷ ά ∷ τ ∷ ῃ ∷ []) "Mark.15.34"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Mark.15.34"
∷ word (ἐ ∷ β ∷ ό ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.34"
∷ word (ὁ ∷ []) "Mark.15.34"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.34"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.15.34"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.15.34"
∷ word (Ἐ ∷ ∙λ ∷ ω ∷ ῒ ∷ []) "Mark.15.34"
∷ word (ἐ ∷ ∙λ ∷ ω ∷ ῒ ∷ []) "Mark.15.34"
∷ word (∙λ ∷ ε ∷ μ ∷ ὰ ∷ []) "Mark.15.34"
∷ word (σ ∷ α ∷ β ∷ α ∷ χ ∷ θ ∷ ά ∷ ν ∷ ι ∷ []) "Mark.15.34"
∷ word (ὅ ∷ []) "Mark.15.34"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.34"
∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.34"
∷ word (Ὁ ∷ []) "Mark.15.34"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.15.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.15.34"
∷ word (ὁ ∷ []) "Mark.15.34"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.15.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.15.34"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.34"
∷ word (τ ∷ ί ∷ []) "Mark.15.34"
∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ έ ∷ ς ∷ []) "Mark.15.34"
∷ word (μ ∷ ε ∷ []) "Mark.15.34"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.15.35"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.15.35"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.35"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.15.35"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.35"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.35"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.15.35"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.15.35"
∷ word (φ ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ []) "Mark.15.35"
∷ word (δ ∷ ρ ∷ α ∷ μ ∷ ὼ ∷ ν ∷ []) "Mark.15.36"
∷ word (δ ∷ έ ∷ []) "Mark.15.36"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.15.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.36"
∷ word (γ ∷ ε ∷ μ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.36"
∷ word (σ ∷ π ∷ ό ∷ γ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.36"
∷ word (ὄ ∷ ξ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.36"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.36"
∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Mark.15.36"
∷ word (ἐ ∷ π ∷ ό ∷ τ ∷ ι ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.15.36"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.36"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.36"
∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.36"
∷ word (ἴ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.36"
∷ word (ε ∷ ἰ ∷ []) "Mark.15.36"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.36"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.36"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.15.36"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.36"
∷ word (ὁ ∷ []) "Mark.15.37"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.37"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.37"
∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.37"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Mark.15.37"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.37"
∷ word (ἐ ∷ ξ ∷ έ ∷ π ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.38"
∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ έ ∷ τ ∷ α ∷ σ ∷ μ ∷ α ∷ []) "Mark.15.38"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.38"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Mark.15.38"
∷ word (ἐ ∷ σ ∷ χ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.15.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.38"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.15.38"
∷ word (ἀ ∷ π ∷ []) "Mark.15.38"
∷ word (ἄ ∷ ν ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.38"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.15.38"
∷ word (κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.15.38"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.15.39"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.39"
∷ word (ὁ ∷ []) "Mark.15.39"
∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.39"
∷ word (ὁ ∷ []) "Mark.15.39"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ὼ ∷ ς ∷ []) "Mark.15.39"
∷ word (ἐ ∷ ξ ∷ []) "Mark.15.39"
∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.39"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.39"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.15.39"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.15.39"
∷ word (ἐ ∷ ξ ∷ έ ∷ π ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.39"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.15.39"
∷ word (Ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.15.39"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.39"
∷ word (ὁ ∷ []) "Mark.15.39"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.15.39"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.15.39"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.15.39"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.39"
∷ word (Ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.40"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "Mark.15.40"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.40"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.40"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.40"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.40"
∷ word (α ∷ ἷ ∷ ς ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.40"
∷ word (ἡ ∷ []) "Mark.15.40"
∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.40"
∷ word (ἡ ∷ []) "Mark.15.40"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.15.40"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.40"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.40"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (Σ ∷ α ∷ ∙λ ∷ ώ ∷ μ ∷ η ∷ []) "Mark.15.40"
∷ word (α ∷ ἳ ∷ []) "Mark.15.41"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.15.41"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.41"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.41"
∷ word (τ ∷ ῇ ∷ []) "Mark.15.41"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ ᾳ ∷ []) "Mark.15.41"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.41"
∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.41"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ ι ∷ []) "Mark.15.41"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Mark.15.41"
∷ word (α ∷ ἱ ∷ []) "Mark.15.41"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ β ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.41"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.15.41"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.42"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.15.42"
∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.42"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.15.42"
∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Mark.15.42"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.42"
∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ή ∷ []) "Mark.15.42"
∷ word (ὅ ∷ []) "Mark.15.42"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.42"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.42"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.15.43"
∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Mark.15.43"
∷ word (ὁ ∷ []) "Mark.15.43"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.43"
∷ word (Ἁ ∷ ρ ∷ ι ∷ μ ∷ α ∷ θ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.43"
∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ ή ∷ μ ∷ ω ∷ ν ∷ []) "Mark.15.43"
∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ή ∷ ς ∷ []) "Mark.15.43"
∷ word (ὃ ∷ ς ∷ []) "Mark.15.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.43"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.15.43"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.43"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.43"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.43"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.15.43"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.43"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.15.43"
∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.43"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.43"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.15.43"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.43"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.43"
∷ word (ᾐ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.43"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.43"
∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.15.43"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.43"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.15.43"
∷ word (ὁ ∷ []) "Mark.15.44"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.44"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.44"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.44"
∷ word (ε ∷ ἰ ∷ []) "Mark.15.44"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.15.44"
∷ word (τ ∷ έ ∷ θ ∷ ν ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.44"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.44"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.44"
∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ α ∷ []) "Mark.15.44"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.44"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.44"
∷ word (ε ∷ ἰ ∷ []) "Mark.15.44"
∷ word (π ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Mark.15.44"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.15.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.45"
∷ word (γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.15.45"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.45"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.45"
∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.45"
∷ word (ἐ ∷ δ ∷ ω ∷ ρ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.45"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.45"
∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.15.45"
∷ word (τ ∷ ῷ ∷ []) "Mark.15.45"
∷ word (Ἰ ∷ ω ∷ σ ∷ ή ∷ φ ∷ []) "Mark.15.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.46"
∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.15.46"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.15.46"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.46"
∷ word (ἐ ∷ ν ∷ ε ∷ ί ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.46"
∷ word (τ ∷ ῇ ∷ []) "Mark.15.46"
∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ ι ∷ []) "Mark.15.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.46"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.46"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.46"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ῳ ∷ []) "Mark.15.46"
∷ word (ὃ ∷ []) "Mark.15.46"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.46"
∷ word (∙λ ∷ ε ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.46"
∷ word (ἐ ∷ κ ∷ []) "Mark.15.46"
∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.46"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.15.46"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.15.46"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.46"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.46"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.46"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.15.46"
∷ word (ἡ ∷ []) "Mark.15.47"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.47"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.47"
∷ word (ἡ ∷ []) "Mark.15.47"
∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.15.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.47"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.47"
∷ word (ἡ ∷ []) "Mark.15.47"
∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.47"
∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.47"
∷ word (π ∷ ο ∷ ῦ ∷ []) "Mark.15.47"
∷ word (τ ∷ έ ∷ θ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.47"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.16.1"
∷ word (δ ∷ ι ∷ α ∷ γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.1"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.16.1"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.16.1"
∷ word (ἡ ∷ []) "Mark.16.1"
∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.16.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.1"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.16.1"
∷ word (ἡ ∷ []) "Mark.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.1"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.16.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.1"
∷ word (Σ ∷ α ∷ ∙λ ∷ ώ ∷ μ ∷ η ∷ []) "Mark.16.1"
∷ word (ἠ ∷ γ ∷ ό ∷ ρ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.1"
∷ word (ἀ ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.16.1"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.16.1"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.1"
∷ word (ἀ ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.1"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.16.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.2"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.2"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.16.2"
∷ word (τ ∷ ῇ ∷ []) "Mark.16.2"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Mark.16.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.16.2"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.16.2"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.16.2"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.2"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.16.2"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.2"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.3"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.3"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.16.3"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ά ∷ ς ∷ []) "Mark.16.3"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.16.3"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ υ ∷ ∙λ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.3"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.16.3"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.3"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.16.3"
∷ word (ἐ ∷ κ ∷ []) "Mark.16.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.16.3"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.16.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.3"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.4"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.4"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.4"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ε ∷ κ ∷ ύ ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.4"
∷ word (ὁ ∷ []) "Mark.16.4"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "Mark.16.4"
∷ word (ἦ ∷ ν ∷ []) "Mark.16.4"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.16.4"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Mark.16.4"
∷ word (σ ∷ φ ∷ ό ∷ δ ∷ ρ ∷ α ∷ []) "Mark.16.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.5"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.5"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.5"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (ν ∷ ε ∷ α ∷ ν ∷ ί ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (ἐ ∷ ν ∷ []) "Mark.16.5"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.5"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.5"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.16.5"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ ν ∷ []) "Mark.16.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.5"
∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.5"
∷ word (ὁ ∷ []) "Mark.16.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.16.6"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.6"
∷ word (Μ ∷ ὴ ∷ []) "Mark.16.6"
∷ word (ἐ ∷ κ ∷ θ ∷ α ∷ μ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.16.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.16.6"
∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.16.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.6"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.16.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.6"
∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.6"
∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.16.6"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.16.6"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.16.6"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.16.6"
∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.16.6"
∷ word (ὁ ∷ []) "Mark.16.6"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.16.6"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.16.6"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.16.6"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.16.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.16.7"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.16.7"
∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.16.7"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.7"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.16.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.7"
∷ word (τ ∷ ῷ ∷ []) "Mark.16.7"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.16.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.7"
∷ word (Π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Mark.16.7"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.16.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.16.7"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.7"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.16.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.16.7"
∷ word (ὄ ∷ ψ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.16.7"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.16.7"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.16.7"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.16.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.8"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.16.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.8"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.8"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.16.8"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.16.8"
∷ word (τ ∷ ρ ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ἔ ∷ κ ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.16.8"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.16.8"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.16.8"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.16.8"
∷ word (Π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.16.8"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.8"
∷ word (τ ∷ ὰ ∷ []) "Mark.16.8"
∷ word (π ∷ α ∷ ρ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.16.8"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.8"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.16.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.8"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.16.8"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ό ∷ μ ∷ ω ∷ ς ∷ []) "Mark.16.8"
∷ word (ἐ ∷ ξ ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.16.8"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.8"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.16.8"
∷ word (ὁ ∷ []) "Mark.16.8"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.16.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.16.8"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Mark.16.8"
∷ word (δ ∷ ύ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.16.8"
∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.16.8"
∷ word (δ ∷ ι ∷ []) "Mark.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.8"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.8"
∷ word (ἱ ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ἄ ∷ φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.16.8"
∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Mark.16.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.16.8"
∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.8"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.16.8"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Mark.16.8"
∷ word (Ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.16.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.9"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.16.9"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Mark.16.9"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.16.9"
∷ word (ἐ ∷ φ ∷ ά ∷ ν ∷ η ∷ []) "Mark.16.9"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.16.9"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ ᾳ ∷ []) "Mark.16.9"
∷ word (τ ∷ ῇ ∷ []) "Mark.16.9"
∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ῇ ∷ []) "Mark.16.9"
∷ word (π ∷ α ∷ ρ ∷ []) "Mark.16.9"
∷ word (ἧ ∷ ς ∷ []) "Mark.16.9"
∷ word (ἐ ∷ κ ∷ β ∷ ε ∷ β ∷ ∙λ ∷ ή ∷ κ ∷ ε ∷ ι ∷ []) "Mark.16.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.16.9"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.16.9"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.16.10"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.16.10"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.16.10"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.10"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.16.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.16.10"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.10"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Mark.16.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.10"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.10"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.11"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.11"
∷ word (ζ ∷ ῇ ∷ []) "Mark.16.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.11"
∷ word (ἐ ∷ θ ∷ ε ∷ ά ∷ θ ∷ η ∷ []) "Mark.16.11"
∷ word (ὑ ∷ π ∷ []) "Mark.16.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.16.11"
∷ word (ἠ ∷ π ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.11"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.12"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.12"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.12"
∷ word (δ ∷ υ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.16.12"
∷ word (ἐ ∷ ξ ∷ []) "Mark.16.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.12"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.12"
∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.16.12"
∷ word (ἐ ∷ ν ∷ []) "Mark.16.12"
∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.16.12"
∷ word (μ ∷ ο ∷ ρ ∷ φ ∷ ῇ ∷ []) "Mark.16.12"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.12"
∷ word (ἀ ∷ γ ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.16.12"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.13"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.13"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.16.13"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.13"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.13"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.16.13"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.13"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.13"
∷ word (Ὕ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.16.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.14"
∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14"
∷ word (ἕ ∷ ν ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.16.14"
∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.16.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.14"
∷ word (ὠ ∷ ν ∷ ε ∷ ί ∷ δ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.16.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.16.14"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.14"
∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14"
∷ word (θ ∷ ε ∷ α ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.14"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.16.14"
∷ word (ἐ ∷ γ ∷ η ∷ γ ∷ ε ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.14"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.16.14"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.15"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.16.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.15"
∷ word (Π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.15"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.16.15"
∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Mark.16.15"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ τ ∷ ε ∷ []) "Mark.16.15"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.15"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.16.15"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Mark.16.15"
∷ word (τ ∷ ῇ ∷ []) "Mark.16.15"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.15"
∷ word (ὁ ∷ []) "Mark.16.16"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.16.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.16"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.16.16"
∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.16"
∷ word (ὁ ∷ []) "Mark.16.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.16"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.16.16"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.16"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Mark.16.17"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.17"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.17"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.17"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.16.17"
∷ word (τ ∷ ῷ ∷ []) "Mark.16.17"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.16.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.16.17"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.16.17"
∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.16.17"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.17"
∷ word (ὄ ∷ φ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.16.18"
∷ word (ἀ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18"
∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.16.18"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ σ ∷ ι ∷ μ ∷ ό ∷ ν ∷ []) "Mark.16.18"
∷ word (τ ∷ ι ∷ []) "Mark.16.18"
∷ word (π ∷ ί ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.16.18"
∷ word (μ ∷ ὴ ∷ []) "Mark.16.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.16.18"
∷ word (β ∷ ∙λ ∷ ά ∷ ψ ∷ ῃ ∷ []) "Mark.16.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.16.18"
∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.16.18"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.16.18"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.18"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.16.18"
∷ word (ἕ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18"
∷ word (Ὁ ∷ []) "Mark.16.19"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.16.19"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.16.19"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.16.19"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.16.19"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.19"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.19"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.19"
∷ word (ἀ ∷ ν ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ φ ∷ θ ∷ η ∷ []) "Mark.16.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.19"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.16.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.19"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.16.19"
∷ word (ἐ ∷ κ ∷ []) "Mark.16.19"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.16.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.16.19"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.20"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.20"
∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ α ∷ ν ∷ []) "Mark.16.20"
∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.16.20"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.20"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.20"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.20"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.20"
∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.20"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.16.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.16.20"
∷ word (ἐ ∷ π ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.16.20"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Mark.16.20"
∷ []
|
algebraic-stack_agda0000_doc_6770 | {-# OPTIONS --without-K #-}
module FinNatLemmas where
open import Data.Empty using (⊥-elim)
open import Data.Product using (_×_; _,_)
open import Data.Nat
using (ℕ; zero; suc; _+_; _*_; _<_; _≤_; _∸_; z≤n; s≤s; module ≤-Reasoning)
open import Data.Nat.Properties
using (m+n∸n≡m; m≤m+n; +-∸-assoc; cancel-+-left)
open import Data.Nat.Properties.Simple
using (+-comm; +-assoc; *-comm; distribʳ-*-+; +-right-identity)
open import Data.Fin
using (Fin; zero; suc; toℕ; raise; fromℕ≤; reduce≥; inject+)
open import Data.Fin.Properties
using (bounded; toℕ-injective; toℕ-raise; toℕ-fromℕ≤; inject+-lemma)
open import Relation.Binary using (module StrictTotalOrder)
open import Relation.Binary.Core using (_≢_)
open import Relation.Binary.PropositionalEquality
using (_≡_; subst; refl; sym; cong; cong₂; trans; module ≡-Reasoning)
------------------------------------------------------------------------------
-- Fin and Nat lemmas
toℕ-fin : (m n : ℕ) → (eq : m ≡ n) (fin : Fin m) →
toℕ (subst Fin eq fin) ≡ toℕ fin
toℕ-fin m .m refl fin = refl
∸≡ : (m n : ℕ) (i j : Fin (m + n)) (i≥ : m ≤ toℕ i) (j≥ : m ≤ toℕ j) →
toℕ i ∸ m ≡ toℕ j ∸ m → i ≡ j
∸≡ m n i j i≥ j≥ p = toℕ-injective pr
where pr = begin (toℕ i
≡⟨ sym (m+n∸n≡m (toℕ i) m) ⟩
(toℕ i + m) ∸ m
≡⟨ cong (λ x → x ∸ m) (+-comm (toℕ i) m) ⟩
(m + toℕ i) ∸ m
≡⟨ +-∸-assoc m i≥ ⟩
m + (toℕ i ∸ m)
≡⟨ cong (λ x → m + x) p ⟩
m + (toℕ j ∸ m)
≡⟨ sym (+-∸-assoc m j≥) ⟩
(m + toℕ j) ∸ m
≡⟨ cong (λ x → x ∸ m) (+-comm m (toℕ j)) ⟩
(toℕ j + m) ∸ m
≡⟨ m+n∸n≡m (toℕ j) m ⟩
toℕ j ∎)
where open ≡-Reasoning
cancel-right∸ : (m n k : ℕ) (k≤m : k ≤ m) (k≤n : k ≤ n) →
(m ∸ k ≡ n ∸ k) → m ≡ n
cancel-right∸ m n k k≤m k≤n mk≡nk =
begin (m
≡⟨ sym (m+n∸n≡m m k) ⟩
(m + k) ∸ k
≡⟨ cong (λ x → x ∸ k) (+-comm m k) ⟩
(k + m) ∸ k
≡⟨ +-∸-assoc k k≤m ⟩
k + (m ∸ k)
≡⟨ cong (λ x → k + x) mk≡nk ⟩
k + (n ∸ k)
≡⟨ sym (+-∸-assoc k k≤n) ⟩
(k + n) ∸ k
≡⟨ cong (λ x → x ∸ k) (+-comm k n) ⟩
(n + k) ∸ k
≡⟨ m+n∸n≡m n k ⟩
n ∎)
where open ≡-Reasoning
raise< : (m n : ℕ) (i : Fin (m + n)) (i< : toℕ i < m) →
toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<))) ≡ n + toℕ i
raise< m n i i< =
begin (toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<)))
≡⟨ toℕ-fin (n + m) (m + n) (+-comm n m) (raise n (fromℕ≤ i<)) ⟩
toℕ (raise n (fromℕ≤ i<))
≡⟨ toℕ-raise n (fromℕ≤ i<) ⟩
n + toℕ (fromℕ≤ i<)
≡⟨ cong (λ x → n + x) (toℕ-fromℕ≤ i<) ⟩
n + toℕ i ∎)
where open ≡-Reasoning
toℕ-reduce≥ : (m n : ℕ) (i : Fin (m + n)) (i≥ : m ≤ toℕ i) →
toℕ (reduce≥ i i≥) ≡ toℕ i ∸ m
toℕ-reduce≥ 0 n i _ = refl
toℕ-reduce≥ (suc m) n zero ()
toℕ-reduce≥ (suc m) n (suc i) (s≤s i≥) = toℕ-reduce≥ m n i i≥
inject≥ : (m n : ℕ) (i : Fin (m + n)) (i≥ : m ≤ toℕ i) →
toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i i≥))) ≡ toℕ i ∸ m
inject≥ m n i i≥ =
begin (toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i i≥)))
≡⟨ toℕ-fin (n + m) (m + n) (+-comm n m) (inject+ m (reduce≥ i i≥)) ⟩
toℕ (inject+ m (reduce≥ i i≥))
≡⟨ sym (inject+-lemma m (reduce≥ i i≥)) ⟩
toℕ (reduce≥ i i≥)
≡⟨ toℕ-reduce≥ m n i i≥ ⟩
toℕ i ∸ m ∎)
where open ≡-Reasoning
fromℕ≤-inj : (m n : ℕ) (i j : Fin n) (i< : toℕ i < m) (j< : toℕ j < m) →
fromℕ≤ i< ≡ fromℕ≤ j< → i ≡ j
fromℕ≤-inj m n i j i< j< fi≡fj =
toℕ-injective
(trans (sym (toℕ-fromℕ≤ i<)) (trans (cong toℕ fi≡fj) (toℕ-fromℕ≤ j<)))
reduce≥-inj : (m n : ℕ) (i j : Fin (m + n)) (i≥ : m ≤ toℕ i) (j≥ : m ≤ toℕ j) →
reduce≥ i i≥ ≡ reduce≥ j j≥ → i ≡ j
reduce≥-inj m n i j i≥ j≥ ri≡rj =
toℕ-injective
(cancel-right∸ (toℕ i) (toℕ j) m i≥ j≥
(trans (sym (toℕ-reduce≥ m n i i≥))
(trans (cong toℕ ri≡rj) (toℕ-reduce≥ m n j j≥))))
inj₁-toℕ≡ : {m n : ℕ} (i : Fin (m + n)) (i< : toℕ i < m) →
toℕ i ≡ toℕ (inject+ n (fromℕ≤ i<))
inj₁-toℕ≡ {0} _ ()
inj₁-toℕ≡ {suc m} zero (s≤s z≤n) = refl
inj₁-toℕ≡ {suc (suc m)} (suc i) (s≤s (s≤s i<)) = cong suc (inj₁-toℕ≡ i (s≤s i<))
inj₁-≡ : {m n : ℕ} (i : Fin (m + n)) (i< : toℕ i < m) → i ≡ inject+ n (fromℕ≤ i<)
inj₁-≡ i i< = toℕ-injective (inj₁-toℕ≡ i i<)
inj₂-toℕ≡ : {m n : ℕ} (i : Fin (m + n)) (i≥ : m ≤ toℕ i ) →
toℕ i ≡ toℕ (raise m (reduce≥ i i≥))
inj₂-toℕ≡ {Data.Nat.zero} i i≥ = refl
inj₂-toℕ≡ {suc m} zero ()
inj₂-toℕ≡ {suc m} (suc i) (s≤s i≥) = cong suc (inj₂-toℕ≡ i i≥)
inj₂-≡ : {m n : ℕ} (i : Fin (m + n)) (i≥ : m ≤ toℕ i ) → i ≡ raise m (reduce≥ i i≥)
inj₂-≡ i i≥ = toℕ-injective (inj₂-toℕ≡ i i≥)
inject+-injective : {m n : ℕ} (i j : Fin m) → (inject+ n i ≡ inject+ n j) → i ≡ j
inject+-injective {m} {n} i j p = toℕ-injective pf
where
open ≡-Reasoning
pf : toℕ i ≡ toℕ j
pf = begin (
toℕ i
≡⟨ inject+-lemma n i ⟩
toℕ (inject+ n i)
≡⟨ cong toℕ p ⟩
toℕ (inject+ n j)
≡⟨ sym (inject+-lemma n j) ⟩
toℕ j ∎)
raise-injective : {m n : ℕ} (i j : Fin n) → (raise m i ≡ raise m j) → i ≡ j
raise-injective {m} {n} i j p = toℕ-injective (cancel-+-left m pf)
where
open ≡-Reasoning
pf : m + toℕ i ≡ m + toℕ j
pf = begin (
m + toℕ i
≡⟨ sym (toℕ-raise m i) ⟩
toℕ (raise m i)
≡⟨ cong toℕ p ⟩
toℕ (raise m j)
≡⟨ toℕ-raise m j ⟩
m + toℕ j ∎)
toℕ-invariance : ∀ {n n'} → (i : Fin n) → (eq : n ≡ n') → toℕ (subst Fin eq i) ≡ toℕ i
toℕ-invariance i refl = refl
-- see FinEquiv for the naming
inject+0≡uniti+ : ∀ {m} → (n : Fin m) → (eq : m ≡ m + 0) → inject+ 0 n ≡ subst Fin eq n
inject+0≡uniti+ {m} n eq = toℕ-injective pf
where
open ≡-Reasoning
pf : toℕ (inject+ 0 n) ≡ toℕ (subst Fin eq n)
pf = begin (
toℕ (inject+ 0 n)
≡⟨ sym (inject+-lemma 0 n) ⟩
toℕ n
≡⟨ sym (toℕ-invariance n eq) ⟩
toℕ (subst Fin eq n) ∎)
-- Following code taken from
-- https://github.com/copumpkin/derpa/blob/master/REPA/Index.agda#L210
-- the next few bits are lemmas to prove uniqueness of euclidean division
-- first : for nonzero divisors, a nonzero quotient would require a larger
-- dividend than is consistent with a zero quotient, regardless of
-- remainders.
large : ∀ {d} {r : Fin (suc d)} x (r′ : Fin (suc d)) →
toℕ r ≢ suc x * suc d + toℕ r′
large {d} {r} x r′ pf = irrefl pf (
start
suc (toℕ r)
≤⟨ bounded r ⟩
suc d
≤⟨ m≤m+n (suc d) (x * suc d) ⟩
suc d + x * suc d -- same as (suc x * suc d)
≤⟨ m≤m+n (suc x * suc d) (toℕ r′) ⟩
suc x * suc d + toℕ r′ -- clearer in two steps; we'd need assoc anyway
□)
where
open ≤-Reasoning
renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≡⟨_⟩'_)
open Relation.Binary.StrictTotalOrder Data.Nat.Properties.strictTotalOrder
-- a raw statement of the uniqueness, in the arrangement of terms that's
-- easiest to work with computationally
addMul-lemma′ : ∀ x x′ d (r r′ : Fin (suc d)) →
x * suc d + toℕ r ≡ x′ * suc d + toℕ r′ → r ≡ r′ × x ≡ x′
addMul-lemma′ zero zero d r r′ hyp = (toℕ-injective hyp) , refl
addMul-lemma′ zero (suc x′) d r r′ hyp = ⊥-elim (large x′ r′ hyp)
addMul-lemma′ (suc x) zero d r r′ hyp = ⊥-elim (large x r (sym hyp))
addMul-lemma′ (suc x) (suc x′) d r r′ hyp
rewrite +-assoc (suc d) (x * suc d) (toℕ r)
| +-assoc (suc d) (x′ * suc d) (toℕ r′)
with addMul-lemma′ x x′ d r r′ (cancel-+-left (suc d) hyp)
... | pf₁ , pf₂ = pf₁ , cong suc pf₂
-- and now rearranged to the order that Data.Nat.DivMod uses
addMul-lemma : ∀ x x′ d (r r′ : Fin (suc d)) →
toℕ r + x * suc d ≡ toℕ r′ + x′ * suc d → r ≡ r′ × x ≡ x′
addMul-lemma x x′ d r r′ hyp rewrite +-comm (toℕ r) (x * suc d)
| +-comm (toℕ r′) (x′ * suc d)
= addMul-lemma′ x x′ d r r′ hyp
-- purely about Nat, but still not in Data.Nat.Properties.Simple
distribˡ-*-+ : ∀ m n o → m * (n + o) ≡ m * n + m * o
distribˡ-*-+ m n o =
trans (*-comm m (n + o)) (
trans (distribʳ-*-+ m n o) (
(cong₂ _+_ (*-comm n m) (*-comm o m))))
*-right-identity : ∀ n → n * 1 ≡ n
*-right-identity n = trans (*-comm n 1) (+-right-identity n)
------------------------------------------------------------------------
|
algebraic-stack_agda0000_doc_6771 | open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
test : (A : Set) (let X = _) (x : X) (p : A ≡ Bool) → Bool
test .Bool true refl = false
test .Bool false refl = true
|
algebraic-stack_agda0000_doc_6772 | -- Andreas, 2014-09-23
-- Syntax declaration for overloaded constructor.
module _ where
module A where
syntax c x = ⟦ x ⟧
data D2 (A : Set) : Set where
c : A → D2 A
data D1 : Set where
c : D1
open A
test : D2 D1
test = ⟦ c ⟧
-- Should work.
|
algebraic-stack_agda0000_doc_6773 | module Issue1419 where
module A where
module M where
module B where
module M where
open A
open B
module N (let open M) where
module LotsOfStuff where
|
algebraic-stack_agda0000_doc_6774 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- A simple example of a program using the foreign function interface
------------------------------------------------------------------------
module README.Foreign.Haskell where
-- In order to be considered safe by Agda, the standard library cannot
-- add COMPILE pragmas binding the inductive types it defines to concrete
-- Haskell types.
-- To work around this limitation, we have defined FFI-friendly versions
-- of these types together with a zero-cost coercion `coerce`.
open import Level using (Level)
open import Agda.Builtin.Int
open import Agda.Builtin.Nat
open import Data.Bool.Base using (Bool; if_then_else_)
open import Data.Char as Char
open import Data.List.Base as List using (List; _∷_; []; takeWhile; dropWhile)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Product
open import Function
open import Relation.Nullary.Decidable
import Foreign.Haskell as FFI
open import Foreign.Haskell.Coerce
private
variable
a : Level
A : Set a
-- Here we use the FFI version of Maybe and Pair.
postulate
primUncons : List A → FFI.Maybe (FFI.Pair A (List A))
primCatMaybes : List (FFI.Maybe A) → List A
primTestChar : Char → Bool
primIntEq : Int → Int → Bool
{-# COMPILE GHC primUncons = \ _ _ xs -> case xs of
{ [] -> Nothing
; (x : xs) -> Just (x, xs)
}
#-}
{-# FOREIGN GHC import Data.Maybe #-}
{-# COMPILE GHC primCatMaybes = \ _ _ -> catMaybes #-}
{-# COMPILE GHC primTestChar = ('-' /=) #-}
{-# COMPILE GHC primIntEq = (==) #-}
-- We however want to use the notion of Maybe and Pair internal to
-- the standard library. For this we use `coerce` to take use back
-- to the types we are used to.
-- The typeclass mechanism uses the coercion rules for Maybe and Pair,
-- as well as the knowledge that natural numbers are represented as
-- integers.
-- We additionally benefit from the congruence rules for List, Char,
-- Bool, and a reflexivity principle for variable A.
uncons : List A → Maybe (A × List A)
uncons = coerce primUncons
catMaybes : List (Maybe A) → List A
catMaybes = coerce primCatMaybes
testChar : Char → Bool
testChar = coerce primTestChar
-- note that coerce is useless here but the proof could come from
-- either `coerce-fun coerce-refl coerce-refl` or `coerce-refl` alone
-- We (and Agda) do not care which proof we got.
eqNat : Nat → Nat → Bool
eqNat = coerce primIntEq
-- We can coerce `Nat` to `Int` but not `Int` to `Nat`. This fundamentally
-- relies on the fact that `Coercible` understands that functions are
-- contravariant.
open import IO
open import Codata.Musical.Notation
open import Data.String.Base
open import Relation.Nullary.Negation
-- example program using uncons, catMaybes, and testChar
main = run $
♯ readFiniteFile "README/Foreign/Haskell.agda" {- read this file -} >>= λ f →
♯ let chars = toList f in
let cleanup = catMaybes ∘ List.map (λ c → if testChar c then just c else nothing) in
let cleaned = dropWhile ('\n' ≟_) $ cleanup chars in
case uncons cleaned of λ where
nothing → putStrLn "I cannot believe this file is filed with dashes only!"
(just (c , cs)) → putStrLn $ unlines
$ ("First (non dash) character: " ++ Char.show c)
∷ ("Rest (dash free) of the line: " ++ fromList (takeWhile (¬? ∘ ('\n' ≟_)) cs))
∷ []
-- You can compile and run this test by writing:
-- agda -c Haskell.agda
-- ../../Haskell
-- You should see the following text (without the indentation on the left):
-- First (non dash) character: ' '
-- Rest (dash free) of the line: The Agda standard library
|
algebraic-stack_agda0000_doc_6775 | {-# OPTIONS --sized-types #-}
module Sized.Data.List where
import Lvl
open import Lang.Size
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable T A A₁ A₂ B B₁ B₂ Result : Type{ℓ}
private variable s s₁ s₂ : Size
data List(s : Size){ℓ} (T : Type{ℓ}) : Type{ℓ} where
∅ : List(s)(T) -- An empty list
_⊰_ : ∀{sₛ : <ˢⁱᶻᵉ s} → T → List(sₛ)(T) → List(s)(T) -- Cons
infixr 1000 _⊰_
tail : List(s)(T) → List(s)(T)
tail ∅ = ∅
tail (_ ⊰ l) = l
{-
-- TODO: Size problems. See notes in Lang.Size.
_++_ : List(s)(T) → List(s)(T) → List(s)(T)
_++_ ∅ b = b
_++_ {s = s} (_⊰_ {sₛ = sₛ} x a) b = _⊰_ {s = s}{sₛ = sₛ} x (_++_ {s = sₛ} a b)
infixl 1000 _++_
-}
|
algebraic-stack_agda0000_doc_6776 | {-# OPTIONS --without-K --rewriting #-}
open import HoTT
{- The cofiber space of [winl : X → X ∨ Y] is equivalent to [Y],
- and the cofiber space of [winr : Y → X ∨ Y] is equivalent to [X]. -}
module homotopy.WedgeCofiber {i} (X Y : Ptd i) where
module CofWinl where
module Into = CofiberRec {f = winl} (pt Y) (projr X Y) (λ _ → idp)
into = Into.f
out : de⊙ Y → Cofiber (winl {X = X} {Y = Y})
out = cfcod ∘ winr
abstract
out-into : (κ : Cofiber (winl {X = X} {Y = Y})) → out (into κ) == κ
out-into = Cofiber-elim
(! (cfglue (pt X) ∙ ap cfcod wglue))
(Wedge-elim
(λ x → ! (cfglue (pt X) ∙ ap cfcod wglue) ∙ cfglue x)
(λ y → idp)
(↓-='-from-square $
(lemma (cfglue (pt X)) (ap cfcod wglue)
∙h⊡ (ap-∘ out (projr X Y) wglue ∙ ap (ap out) (Projr.glue-β X Y))
∙v⊡ bl-square (ap cfcod wglue))))
(λ x → ↓-∘=idf-from-square out into $
! (∙-unit-r _) ∙h⊡
ap (ap out) (Into.glue-β x) ∙v⊡
hid-square {p = (! (cfglue' winl (pt X) ∙ ap cfcod wglue))}
⊡v connection {q = cfglue x})
where
lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z)
→ ! (p ∙ q) ∙ p == ! q
lemma idp idp = idp
eq : Cofiber winl ≃ de⊙ Y
eq = equiv into out (λ _ → idp) out-into
⊙eq : ⊙Cofiber ⊙winl ⊙≃ Y
⊙eq = ≃-to-⊙≃ eq idp
cfcod-winl-projr-comm-sqr : CommSquare (cfcod' winl) (projr X Y) (idf _) CofWinl.into
cfcod-winl-projr-comm-sqr = comm-sqr λ _ → idp
module CofWinr where
module Into = CofiberRec {f = winr} (pt X) (projl X Y) (λ _ → idp)
into = Into.f
out : de⊙ X → Cofiber (winr {X = X} {Y = Y})
out = cfcod ∘ winl
abstract
out-into : ∀ κ → out (into κ) == κ
out-into = Cofiber-elim
(ap cfcod wglue ∙ ! (cfglue (pt Y)))
(Wedge-elim
(λ x → idp)
(λ y → (ap cfcod wglue ∙ ! (cfglue (pt Y))) ∙ cfglue y)
(↓-='-from-square $
(ap-∘ out (projl X Y) wglue ∙ ap (ap out) (Projl.glue-β X Y)) ∙v⊡
connection
⊡h∙ ! (lemma (ap (cfcod' winr) wglue) (cfglue (pt Y)))))
(λ y → ↓-∘=idf-from-square out into $
! (∙-unit-r _) ∙h⊡
ap (ap out) (Into.glue-β y) ∙v⊡
hid-square {p = (ap (cfcod' winr) wglue ∙ ! (cfglue (pt Y)))}
⊡v connection {q = cfglue y})
where
lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y)
→ (p ∙ ! q) ∙ q == p
lemma idp idp = idp
eq : Cofiber winr ≃ de⊙ X
eq = equiv into out (λ _ → idp) out-into
⊙eq : ⊙Cofiber ⊙winr ⊙≃ X
⊙eq = ≃-to-⊙≃ eq idp
cfcod-winr-projl-comm-sqr : CommSquare (cfcod' winr) (projl X Y) (idf _) CofWinr.into
cfcod-winr-projl-comm-sqr = comm-sqr λ _ → idp
|
algebraic-stack_agda0000_doc_6777 |
module Issue1278.A (X : Set1) where
data D : Set where
d : D
|
algebraic-stack_agda0000_doc_6778 | -- Combinators for logical reasoning
{-# OPTIONS --without-K --safe --exact-split #-}
module Constructive.Combinators where
-- agda-stdlib
open import Data.Empty
open import Data.Sum as Sum
open import Data.Product as Prod
open import Function.Base
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Decidable using (⌊_⌋)
import Relation.Unary as U
open import Relation.Binary.PropositionalEquality
-- agda-misc
open import Constructive.Common
---------------------------------------------------------------------------
-- Combinators
---------------------------------------------------------------------------
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
→-distrib-⊎-× : ((A ⊎ B) → C) → (A → C) × (B → C)
→-distrib-⊎-× f = f ∘ inj₁ , f ∘ inj₂
→-undistrib-⊎-× : (A → C) × (B → C) → (A ⊎ B) → C
→-undistrib-⊎-× (f , g) (inj₁ x) = f x
→-undistrib-⊎-× (f , g) (inj₂ y) = g y
→-undistrib-⊎-×-flip : (A ⊎ B) → (A → C) × (B → C) → C
→-undistrib-⊎-×-flip = flip →-undistrib-⊎-×
→-undistrib-×-⊎ : (A → C) ⊎ (B → C) → (A × B) → C
→-undistrib-×-⊎ (inj₁ f) (x , y) = f x
→-undistrib-×-⊎ (inj₂ g) (x , y) = g y
→-undistrib-×-⊎-flip : (A × B) → (A → C) ⊎ (B → C) → C
→-undistrib-×-⊎-flip = flip →-undistrib-×-⊎
-- contradiction
contradiction : ∀ {a w} {A : Set a} {WhatEver : Set w} → A → ¬ A → WhatEver
contradiction x ¬x = ⊥-elim (¬x x)
-- sum and product
module _ {a b} {A : Set a} {B : Set b} where
A⊎B→¬A→B : A ⊎ B → ¬ A → B
A⊎B→¬A→B (inj₁ x) ¬A = contradiction x ¬A
A⊎B→¬A→B (inj₂ y) ¬A = y
A⊎B→¬B→A : A ⊎ B → ¬ B → A
A⊎B→¬B→A (inj₁ x) ¬B = x
A⊎B→¬B→A (inj₂ y) ¬B = contradiction y ¬B
¬A⊎B→A→B : ¬ A ⊎ B → A → B
¬A⊎B→A→B (inj₁ ¬A) x = contradiction x ¬A
¬A⊎B→A→B (inj₂ y) _ = y
[A→B]→¬[A׬B] : (A → B) → ¬ (A × ¬ B)
[A→B]→¬[A׬B] f (x , y) = y (f x)
A×B→¬[A→¬B] : A × B → ¬ (A → ¬ B)
A×B→¬[A→¬B] (x , y) f = f x y
-- De Morgan's laws
¬[A⊎B]→¬A׬B : ¬ (A ⊎ B) → ¬ A × ¬ B
¬[A⊎B]→¬A׬B = →-distrib-⊎-×
¬A׬B→¬[A⊎B] : ¬ A × ¬ B → ¬ (A ⊎ B)
¬A׬B→¬[A⊎B] = →-undistrib-⊎-×
A⊎B→¬[¬A׬B] : A ⊎ B → ¬ (¬ A × ¬ B)
A⊎B→¬[¬A׬B] = →-undistrib-⊎-×-flip
¬A⊎¬B→¬[A×B] : ¬ A ⊎ ¬ B → ¬ (A × B)
¬A⊎¬B→¬[A×B] = →-undistrib-×-⊎
A×B→¬[¬A⊎¬B] : A × B → ¬ (¬ A ⊎ ¬ B)
A×B→¬[¬A⊎¬B] = →-undistrib-×-⊎-flip
-- Double negated DEM₃
¬[A×B]→¬¬[¬A⊎¬B] : ¬ (A × B) → ¬ ¬ (¬ A ⊎ ¬ B)
¬[A×B]→¬¬[¬A⊎¬B] ¬[A×B] ¬[¬A⊎¬B] =
¬[¬A⊎¬B] (inj₁ λ x → contradiction (inj₂ (λ y → ¬[A×B] (x , y))) ¬[¬A⊎¬B])
dec⊎⇒¬[A×B]→¬A⊎¬B : Dec⊎ A → Dec⊎ B → ¬ (A × B) → ¬ A ⊎ ¬ B
dec⊎⇒¬[A×B]→¬A⊎¬B (inj₁ x) (inj₁ y) ¬[A×B] = contradiction (x , y) ¬[A×B]
dec⊎⇒¬[A×B]→¬A⊎¬B (inj₁ x) (inj₂ ¬y) ¬[A×B] = inj₂ ¬y
dec⊎⇒¬[A×B]→¬A⊎¬B (inj₂ ¬x) _ ¬[A×B] = inj₁ ¬x
join : (A → A → B) → A → B
join f x = f x x
-- properties of negation
module _ {a} {A : Set a} where
[A→¬A]→¬A : (A → ¬ A) → ¬ A
[A→¬A]→¬A = join
[¬A→A]→¬¬A : (¬ A → A) → ¬ ¬ A
[¬A→A]→¬¬A ¬A→A ¬A = ¬A (¬A→A ¬A)
-- Law of noncontradiction (LNC)
¬[A׬A] : ¬ (A × ¬ A)
¬[A׬A] = uncurry (flip _$_)
module _ {a b} {A : Set a} {B : Set b} where
¬[A→B]→¬B : ¬ (A → B) → ¬ B
¬[A→B]→¬B ¬[A→B] y = ¬[A→B] (const y)
¬[A→B]→¬[A→¬¬B] : ¬ (A → B) → ¬ (A → ¬ ¬ B)
¬[A→B]→¬[A→¬¬B] ¬[A→B] A→¬¬B = ¬[A→B] λ x → ⊥-elim $ A→¬¬B x (¬[A→B]→¬B ¬[A→B])
¬[A→B]→B→A : ¬ (A → B) → B → A
¬[A→B]→B→A ¬[A→B] y = contradiction (λ _ → y) ¬[A→B]
[[A→B]→A]→¬A→A : ((A → B) → A) → ¬ A → A
[[A→B]→A]→¬A→A [A→B]→A ¬A = [A→B]→A (⊥-elim ∘′ ¬A)
[[A→B]→A]→¬¬A : ((A → B) → A) → ¬ ¬ A
[[A→B]→A]→¬¬A [A→B]→A ¬A = ¬A ([[A→B]→A]→¬A→A [A→B]→A ¬A)
[[[A→B]→A]→A]→¬B→¬¬A→A : (((A → B) → A) → A) → ¬ B → ¬ ¬ A → A
[[[A→B]→A]→A]→¬B→¬¬A→A [[A→B]→A]→A ¬B ¬¬A =
[[A→B]→A]→A λ A→B → contradiction (flip _∘′_ A→B ¬B) ¬¬A
module _ {a b} {A : Set a} {B : Set b} where
contraposition : (A → B) → ¬ B → ¬ A
contraposition = flip _∘′_
-- variant of contraposition
[A→¬¬B]→¬B→¬A : (A → ¬ ¬ B) → ¬ B → ¬ A
[A→¬¬B]→¬B→¬A f ¬B x = (f x) ¬B
[¬A→¬B]→¬¬[B→A] : (¬ A → ¬ B) → ¬ ¬ (B → A)
[¬A→¬B]→¬¬[B→A] ¬A→¬B ¬[B→A] = ¬[B→A] λ y → ⊥-elim $ ¬A→¬B (¬[A→B]→¬B ¬[B→A]) y
[A→¬B]→¬¬A→¬B : (A → ¬ B) → ¬ ¬ A → ¬ B
[A→¬B]→¬¬A→¬B A→¬B ¬¬A y = ¬¬A λ x → A→¬B x y
module _ {a} {A : Set a} where
-- introduction for double negation
DN-intro : A → ¬ ¬ A
DN-intro = flip _$_
-- triple negation to negation
TN-to-N : ¬ ¬ ¬ A → ¬ A
TN-to-N = contraposition DN-intro
-- Double negation of excluded middle
DN-Dec⊎ : ¬ ¬ Dec⊎ A
DN-Dec⊎ = λ f → (f ∘ inj₂) (f ∘ inj₁)
-- eliminator for ⊥
⊥-stable : ¬ ¬ ⊥ → ⊥
⊥-stable f = f id
-- Double negation is monad
module _ {a} {A : Set a} where
DN-join : ¬ ¬ ¬ ¬ A → ¬ ¬ A
DN-join = TN-to-N
module _ {a b} {A : Set a} {B : Set b} where
DN-map : (A → B) → ¬ ¬ A → ¬ ¬ B
DN-map = contraposition ∘′ contraposition
module _ {a b} {A : Set a} {B : Set b} where
DN-bind : (A → ¬ ¬ B) → ¬ ¬ A → ¬ ¬ B
DN-bind f = DN-join ∘′ DN-map f
DN-bind⁻¹ : (¬ ¬ A → ¬ ¬ B) → A → ¬ ¬ B
DN-bind⁻¹ f = f ∘′ DN-intro
module _ {a b} {A : Set a} {B : Set b} where
DN-ap : ¬ ¬ (A → B) → ¬ ¬ A → ¬ ¬ B
DN-ap ff fx = DN-bind (λ f → DN-map f fx) ff
DN-ap⁻¹ : (¬ ¬ A → ¬ ¬ B) → ¬ ¬ (A → B)
DN-ap⁻¹ f ¬[A→B] = ¬[A→B]→¬[A→¬¬B] ¬[A→B] (DN-bind⁻¹ f)
-- distributive properties
DN-distrib-× : ¬ ¬ (A × B) → ¬ ¬ A × ¬ ¬ B
DN-distrib-× ¬¬A×B = DN-map proj₁ ¬¬A×B , DN-map proj₂ ¬¬A×B
DN-undistrib-× : ¬ ¬ A × ¬ ¬ B → ¬ ¬ (A × B)
DN-undistrib-× = [A→¬¬B]→¬B→¬A ¬[A×B]→¬¬[¬A⊎¬B] ∘′ ¬A׬B→¬[A⊎B]
DN-undistrib-⊎ : ¬ ¬ A ⊎ ¬ ¬ B → ¬ ¬ (A ⊎ B)
DN-undistrib-⊎ = Sum.[ DN-map inj₁ , DN-map inj₂ ]
stable-undistrib-× : Stable A × Stable B → Stable (A × B)
stable-undistrib-× (A-stable , B-stable) ¬¬[A×B] =
Prod.map A-stable B-stable $ DN-distrib-× ¬¬[A×B]
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
ip-⊎-DN : (A → (B ⊎ C)) → ¬ ¬ ((A → B) ⊎ (A → C))
ip-⊎-DN f =
DN-map Sum.[ (Sum.map const const ∘ f) , (λ ¬A → inj₁ λ x → ⊥-elim (¬A x)) ]
DN-Dec⊎
DN-ip : ∀ {p q r} {P : Set p} {Q : Set q} {R : Q → Set r} →
Q → (P → Σ Q R) → ¬ ¬ (Σ Q λ x → (P → R x))
DN-ip q f =
DN-map Sum.[ (λ x → Prod.map₂ const (f x)) ,
(λ ¬P → q , λ P → ⊥-elim $ ¬P P) ] DN-Dec⊎
-- Properties of Dec⊎
module _ {a} {A : Set a} where
dec⊎⇒dec : Dec⊎ A → Dec A
dec⊎⇒dec (inj₁ x) = yes x
dec⊎⇒dec (inj₂ y) = no y
dec⇒dec⊎ : Dec A → Dec⊎ A
dec⇒dec⊎ (yes p) = inj₁ p
dec⇒dec⊎ (no ¬p) = inj₂ ¬p
¬-dec⊎ : Dec⊎ A → Dec⊎ (¬ A)
¬-dec⊎ (inj₁ x) = inj₂ (DN-intro x)
¬-dec⊎ (inj₂ y) = inj₁ y
module _ {a b} {A : Set a} {B : Set b} where
dec⊎-map : (A → B) → (B → A) → Dec⊎ A → Dec⊎ B
dec⊎-map f g dec⊎ = Sum.map f (contraposition g) dec⊎
dec⊎-⊎ : Dec⊎ A → Dec⊎ B → Dec⊎ (A ⊎ B)
dec⊎-⊎ (inj₁ x) _ = inj₁ (inj₁ x)
dec⊎-⊎ (inj₂ ¬x) (inj₁ y) = inj₁ (inj₂ y)
dec⊎-⊎ (inj₂ ¬x) (inj₂ ¬y) = inj₂ (¬A׬B→¬[A⊎B] (¬x , ¬y))
dec⊎-× : Dec⊎ A → Dec⊎ B → Dec⊎ (A × B)
dec⊎-× (inj₁ x) (inj₁ y) = inj₁ (x , y)
dec⊎-× (inj₁ x) (inj₂ ¬y) = inj₂ (¬y ∘ proj₂)
dec⊎-× (inj₂ ¬x) _ = inj₂ (¬x ∘ proj₁)
-- Properties of Stable
module _ {a} {A : Set a} where
dec⇒stable : Dec A → Stable A
dec⇒stable (yes p) ¬¬A = p
dec⇒stable (no ¬p) ¬¬A = ⊥-elim (¬¬A ¬p)
¬-stable : Stable (¬ A)
¬-stable = TN-to-N
dec⊎⇒stable : Dec⊎ A → Stable A
dec⊎⇒stable dec⊎ = dec⇒stable (dec⊎⇒dec dec⊎)
module _ {a p} {A : Set a} {P : A → Set p} where
DecU⇒stable : DecU P → ∀ x → Stable (P x)
DecU⇒stable P? x = dec⊎⇒stable (P? x)
-- Properties of DecU
¬-DecU : DecU P → DecU (λ x → ¬ (P x))
¬-DecU P? x = ¬-dec⊎ (P? x)
DecU⇒decidable : DecU P → U.Decidable P
DecU⇒decidable P? x = dec⊎⇒dec (P? x)
decidable⇒DecU : U.Decidable P → DecU P
decidable⇒DecU P? x = dec⇒dec⊎ (P? x)
DecU-map : ∀ {a b p} {A : Set a} {B : Set b} {P : A → Set p} →
(f : B → A) → DecU P → DecU (λ x → P (f x))
DecU-map f P? x = dec⊎-map id id (P? (f x))
module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where
DecU-⊎ : DecU P → DecU Q → DecU (λ x → P x ⊎ Q x)
DecU-⊎ P? Q? x = dec⊎-⊎ (P? x) (Q? x)
DecU-× : DecU P → DecU Q → DecU (λ x → P x × Q x)
DecU-× P? Q? x = dec⊎-× (P? x) (Q? x)
-- Quantifier
module _ {a p} {A : Set a} {P : A → Set p} where
∃P→¬∀¬P : ∃ P → ¬ (∀ x → ¬ (P x))
∃P→¬∀¬P = flip uncurry
∀P→¬∃¬P : (∀ x → P x) → ¬ ∃ λ x → ¬ (P x)
∀P→¬∃¬P f (x , ¬Px) = ¬Px (f x)
¬∃P→∀¬P : ¬ ∃ P → ∀ x → ¬ (P x)
¬∃P→∀¬P = curry
∀¬P→¬∃P : (∀ x → ¬ (P x)) → ¬ ∃ P
∀¬P→¬∃P = uncurry
∃¬P→¬∀P : ∃ (λ x → ¬ (P x)) → ¬ (∀ x → P x)
∃¬P→¬∀P (x , ¬Px) ∀P = ¬Px (∀P x)
¬∀¬P→¬¬∃P : ¬ (∀ x → ¬ P x) → ¬ ¬ ∃ P
¬∀¬P→¬¬∃P ¬∀¬P = contraposition ¬∃P→∀¬P ¬∀¬P
¬¬∃P→¬∀¬P : ¬ ¬ ∃ P → ¬ (∀ x → ¬ P x)
¬¬∃P→¬∀¬P ¬¬∃P = contraposition ∀¬P→¬∃P ¬¬∃P
¬¬∀P→¬∃¬P : ¬ ¬ (∀ x → P x) → ¬ ∃ λ x → ¬ (P x)
¬¬∀P→¬∃¬P ¬¬∀P = contraposition ∃¬P→¬∀P ¬¬∀P
¬¬∃P<=>¬∀¬P : ¬ ¬ ∃ P <=> ¬ (∀ x → ¬ P x)
¬¬∃P<=>¬∀¬P = mk<=> ¬¬∃P→¬∀¬P ¬∀¬P→¬¬∃P
-- remove?
∀¬¬P→¬∃¬P : (∀ x → ¬ ¬ P x) → ¬ ∃ λ x → ¬ (P x)
∀¬¬P→¬∃¬P = uncurry
-- converse of DNS
¬¬∀P→∀¬¬P : ¬ ¬ (∀ x → P x) → ∀ x → ¬ ¬ P x
¬¬∀P→∀¬¬P f x = DN-map (λ ∀P → ∀P x) f
∃¬¬P→¬¬∃P : (∃ λ x → ¬ ¬ P x) → ¬ ¬ ∃ λ x → P x
∃¬¬P→¬¬∃P (x , ¬¬Px) = DN-map (λ Px → x , Px) ¬¬Px
¬¬∃¬P→¬∀P : ¬ ¬ ∃ (λ x → ¬ (P x)) → ¬ (∀ x → P x)
¬¬∃¬P→¬∀P = contraposition ∀P→¬∃¬P
¬∃¬P→∀¬¬P : ¬ ∃ (λ x → ¬ P x) → ∀ x → ¬ ¬ P x
¬∃¬P→∀¬¬P = curry
∀P→∀¬¬P : (∀ x → P x) → ∀ x → ¬ ¬ P x
∀P→∀¬¬P ∀P x = DN-intro (∀P x)
∃P→∃¬¬P : ∃ P → ∃ λ x → ¬ ¬ P x
∃P→∃¬¬P (x , Px) = x , DN-intro Px
module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where
[∀¬P→∀¬Q]→¬¬[∃Q→∃P] : ((∀ x → ¬ P x) → (∀ x → ¬ Q x)) → ¬ ¬ (∃ Q → ∃ P)
[∀¬P→∀¬Q]→¬¬[∃Q→∃P] ∀¬P→∀¬Q =
DN-ap⁻¹ (¬∀¬P→¬¬∃P ∘ contraposition ∀¬P→∀¬Q ∘ ¬¬∃P→¬∀¬P)
-- Quantifier rearrangement for stable predicate
module _ {a p} {A : Set a} {P : A → Set p} (P-stable : ∀ x → Stable (P x)) where
P-stable⇒∃¬¬P→∃P : ∃ (λ x → ¬ ¬ P x) → ∃ P
P-stable⇒∃¬¬P→∃P (x , ¬¬Px) = x , P-stable x ¬¬Px
P-stable⇒∀¬¬P→∀P : (∀ x → ¬ ¬ P x) → ∀ x → P x
P-stable⇒∀¬¬P→∀P ∀¬¬P x = P-stable x (∀¬¬P x)
P-stable⇒¬¬∀P→∀P : ¬ ¬ (∀ x → P x) → ∀ x → P x
P-stable⇒¬¬∀P→∀P = P-stable⇒∀¬¬P→∀P ∘′ ¬¬∀P→∀¬¬P
P-stable⇒¬∃¬P→∀P : ¬ ∃ (λ x → ¬ P x) → ∀ x → P x
P-stable⇒¬∃¬P→∀P ¬∃¬P = P-stable⇒∀¬¬P→∀P (¬∃¬P→∀¬¬P ¬∃¬P)
P-stable⇒¬∀P→¬¬∃¬P : ¬ (∀ x → P x) → ¬ ¬ ∃ (λ x → ¬ (P x))
P-stable⇒¬∀P→¬¬∃¬P ¬∀P = contraposition P-stable⇒¬∃¬P→∀P ¬∀P
module _ {a p} {A : Set a} {P : A → Set p} (P? : DecU P) where
P?⇒∃¬¬P→∃P : ∃ (λ x → ¬ ¬ P x) → ∃ P
P?⇒∃¬¬P→∃P = P-stable⇒∃¬¬P→∃P (DecU⇒stable P?)
P?⇒∀¬¬P→∀P : (∀ x → ¬ ¬ P x) → ∀ x → P x
P?⇒∀¬¬P→∀P = P-stable⇒∀¬¬P→∀P (DecU⇒stable P?)
P?⇒¬¬∀P→∀P : ¬ ¬ (∀ x → P x) → ∀ x → P x
P?⇒¬¬∀P→∀P = P-stable⇒¬¬∀P→∀P (DecU⇒stable P?)
P?⇒¬∃¬P→∀P : ¬ ∃ (λ x → ¬ P x) → ∀ x → P x
P?⇒¬∃¬P→∀P = P-stable⇒¬∃¬P→∀P (DecU⇒stable P?)
P?⇒¬∀P→¬¬∃¬P : ¬ (∀ x → P x) → ¬ ¬ ∃ (λ x → ¬ P x)
P?⇒¬∀P→¬¬∃¬P = P-stable⇒¬∀P→¬¬∃¬P (DecU⇒stable P?)
-- call/cc
P?⇒[¬∀P→∀P]→∀P : (¬ (∀ x → P x) → ∀ x → P x) → ∀ x → P x
P?⇒[¬∀P→∀P]→∀P ¬∀P→∀P = P?⇒¬¬∀P→∀P λ ¬∀P → ¬∀P (¬∀P→∀P ¬∀P)
P?⇒[∃¬P→∀P]→∀P : (∃ (λ x → ¬ P x) → ∀ x → P x) → ∀ x → P x
P?⇒[∃¬P→∀P]→∀P ∃¬P→∀P =
P?⇒¬¬∀P→∀P λ ¬∀P → P?⇒¬∀P→¬¬∃¬P ¬∀P λ ∃¬P → ¬∀P (∃¬P→∀P ∃¬P)
-- [∀¬P→¬∀Q]→¬∃¬Q→¬¬∃P
module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where
P?⇒[∃¬P→∃¬Q]→∀Q→∀P : DecU P → (∃ (λ x → ¬ P x) → ∃ (λ x → ¬ Q x)) →
(∀ x → Q x) → ∀ x → P x
P?⇒[∃¬P→∃¬Q]→∀Q→∀P P? ∃¬P→∃¬Q =
P?⇒¬∃¬P→∀P P? ∘ contraposition ∃¬P→∃¬Q ∘ ∀P→¬∃¬P
P?⇒[∃Q→∀P]→¬∀¬Q→∀P : DecU P → (∃ Q → ∀ x → P x) → ¬ (∀ x → ¬ Q x) → ∀ x → P x
P?⇒[∃Q→∀P]→¬∀¬Q→∀P P? ∃Q→∀P ¬∀¬Q = P?⇒¬¬∀P→∀P P? (DN-map ∃Q→∀P (¬∀¬P→¬¬∃P ¬∀¬Q))
¬[¬∀P⊎¬∀Q]→∀P×∀Q : DecU P → DecU Q → ¬ (¬ (∀ x → P x) ⊎ ¬ (∀ x → Q x)) →
(∀ x → P x) × (∀ x → Q x)
¬[¬∀P⊎¬∀Q]→∀P×∀Q P? Q? ¬[¬∀P⊎¬∀Q] =
Prod.map (P?⇒¬¬∀P→∀P P?) (P?⇒¬¬∀P→∀P Q?) (¬[A⊎B]→¬A׬B ¬[¬∀P⊎¬∀Q])
module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where
∃-undistrib-⊎ : ∃ P ⊎ ∃ Q → ∃ (λ x → P x ⊎ Q x)
∃-undistrib-⊎ (inj₁ (x , Px)) = x , inj₁ Px
∃-undistrib-⊎ (inj₂ (x , Qx)) = x , inj₂ Qx
∃-distrib-⊎ : ∃ (λ x → P x ⊎ Q x) → ∃ P ⊎ ∃ Q
∃-distrib-⊎ (x , inj₁ Px) = inj₁ (x , Px)
∃-distrib-⊎ (x , inj₂ Qx) = inj₂ (x , Qx)
∃-distrib-× : ∃ (λ x → P x × Q x) → ∃ P × ∃ Q
∃-distrib-× (x , Px , Qx) = (x , Px) , (x , Qx)
∀-undistrib-× : (∀ x → P x) × (∀ x → Q x) → ∀ x → P x × Q x
∀-undistrib-× (∀P , ∀Q) x = ∀P x , ∀Q x
∀-distrib-× : (∀ x → P x × Q x) → (∀ x → P x) × (∀ x → Q x)
∀-distrib-× ∀x→Px×Qx = proj₁ ∘ ∀x→Px×Qx , proj₂ ∘ ∀x→Px×Qx
∀-undistrib-⊎ : (∀ x → P x) ⊎ (∀ x → Q x) → ∀ x → P x ⊎ Q x
∀-undistrib-⊎ (inj₁ ∀P) x = inj₁ (∀P x)
∀-undistrib-⊎ (inj₂ ∀Q) x = inj₂ (∀Q x)
¬[¬∃P׬∃Q]→¬¬∃x→Px⊎Qx : ¬ (¬ ∃ P × ¬ ∃ Q) → ¬ ¬ ∃ λ x → P x ⊎ Q x
¬[¬∃P׬∃Q]→¬¬∃x→Px⊎Qx = DN-map ∃-undistrib-⊎ ∘′ contraposition ¬[A⊎B]→¬A׬B
[¬¬∃x→Px⊎Qx]→¬[¬∃P׬∃Q] : (¬ ¬ ∃ λ x → P x ⊎ Q x) → ¬ (¬ ∃ P × ¬ ∃ Q)
[¬¬∃x→Px⊎Qx]→¬[¬∃P׬∃Q] = contraposition ¬A׬B→¬[A⊎B] ∘′ DN-map ∃-distrib-⊎
¬∀¬P׬∀¬Q→¬¬[∃P×∃Q] : ¬ (∀ x → ¬ P x) × ¬ (∀ x → ¬ Q x) → ¬ ¬ (∃ P × ∃ Q)
¬∀¬P׬∀¬Q→¬¬[∃P×∃Q] = DN-undistrib-× ∘′ Prod.map ¬∀¬P→¬¬∃P ¬∀¬P→¬¬∃P
¬¬[∃P×∃Q]→¬∀¬P׬∀¬Q : ¬ ¬ (∃ P × ∃ Q) → ¬ (∀ x → ¬ P x) × ¬ (∀ x → ¬ Q x)
¬¬[∃P×∃Q]→¬∀¬P׬∀¬Q = Prod.map ¬¬∃P→¬∀¬P ¬¬∃P→¬∀¬P ∘′ DN-distrib-×
[∀x→Px→Qx]→∀P→∀Q : (∀ x → P x → Q x) → (∀ x → P x) → ∀ x → Q x
[∀x→Px→Qx]→∀P→∀Q f g x = f x (g x)
|
algebraic-stack_agda0000_doc_6779 | module Sessions.Semantics.Commands where
open import Prelude
open import Data.Fin
open import Sessions.Syntax.Types
open import Sessions.Syntax.Values
mutual
data Cmd : Pred RCtx 0ℓ where
fork : ∀[ Comp unit ⇒ Cmd ]
mkchan : ∀ α → ε[ Cmd ]
send : ∀ {a α} → ∀[ (Endptr (a ! α) ✴ Val a) ⇒ Cmd ]
receive : ∀ {a α} → ∀[ Endptr (a ¿ α) ⇒ Cmd ]
close : ∀[ Endptr end ⇒ Cmd ]
δ : ∀ {Δ} → Cmd Δ → Pred RCtx 0ℓ
δ (fork {α} _) = Emp
δ (mkchan α) = Endptr α ✴ Endptr (α ⁻¹)
δ (send {α = α} _) = Endptr α
δ (receive {a} {α} _) = Val a ✴ Endptr α
δ (close _) = Emp
open import Relation.Ternary.Separation.Monad.Free Cmd δ renaming (Cont to Cont')
open import Relation.Ternary.Separation.Monad.Error
Comp : Type → Pred RCtx _
Comp a = ErrorT Free (Val a)
|
algebraic-stack_agda0000_doc_6780 | {-# OPTIONS --cubical --safe #-}
module Relation.Nullary.Decidable.Properties where
open import Relation.Nullary.Decidable
open import Level
open import Relation.Nullary.Stable
open import Data.Empty
open import HLevels
open import Data.Empty.Properties using (isProp¬)
open import Data.Unit
open import Data.Empty
Dec→Stable : ∀ {ℓ} (A : Type ℓ) → Dec A → Stable A
Dec→Stable A (yes x) = λ _ → x
Dec→Stable A (no x) = λ f → ⊥-elim (f x)
isPropDec : (Aprop : isProp A) → isProp (Dec A)
isPropDec Aprop (yes a) (yes a') i = yes (Aprop a a' i)
isPropDec Aprop (yes a) (no ¬a) = ⊥-elim (¬a a)
isPropDec Aprop (no ¬a) (yes a) = ⊥-elim (¬a a)
isPropDec {A = A} Aprop (no ¬a) (no ¬a') i = no (isProp¬ A ¬a ¬a' i)
True : Dec A → Type
True (yes _) = ⊤
True (no _) = ⊥
toWitness : {x : Dec A} → True x → A
toWitness {x = yes p} _ = p
open import Path
open import Data.Bool.Base
from-reflects : ∀ b → (d : Dec A) → Reflects A b → does d ≡ b
from-reflects false (no y) r = refl
from-reflects false (yes y) r = ⊥-elim (r y)
from-reflects true (no y) r = ⊥-elim (y r)
from-reflects true (yes y) r = refl
|
algebraic-stack_agda0000_doc_6781 |
-- Semantics of syntactic traversal and substitution
module Semantics.Substitution.Traversal where
open import Syntax.Types
open import Syntax.Context renaming (_,_ to _,,_)
open import Syntax.Terms
open import Syntax.Substitution.Kits
open import Syntax.Substitution.Instances
open import Semantics.Types
open import Semantics.Context
open import Semantics.Terms
open import Semantics.Substitution.Kits
open import CategoryTheory.Categories using (Category ; ext)
open import CategoryTheory.Functor
open import CategoryTheory.NatTrans
open import CategoryTheory.Monad
open import CategoryTheory.Comonad
open import CategoryTheory.Instances.Reactive renaming (top to ⊤)
open import TemporalOps.Diamond
open import TemporalOps.Box
open import TemporalOps.OtherOps
open import TemporalOps.Linear
open import TemporalOps.StrongMonad
open import Data.Sum
open import Data.Product using (_,_)
open import Relation.Binary.PropositionalEquality as ≡
using (_≡_ ; refl ; sym ; trans ; cong ; cong₂ ; subst)
open ≡.≡-Reasoning
private module F-□ = Functor F-□
private module F-◇ = Functor F-◇
open Comonad W-□
open Monad M-◇
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
module _ {𝒮} {k : Kit 𝒮} (⟦k⟧ : ⟦Kit⟧ k) where
open ⟦Kit⟧ ⟦k⟧
open Kit k
open ⟦K⟧ ⟦k⟧
open K k
-- Soundness of syntactic traversal:
-- Denotation of a term M traversed with substitution σ is
-- the same as the denotation of σ followed by the denotation of M
traverse-sound : ∀{Γ Δ A} (σ : Subst 𝒮 Γ Δ) (M : Γ ⊢ A)
-> ⟦ traverse σ M ⟧ₘ ≈ ⟦ M ⟧ₘ ∘ ⟦subst⟧ σ
traverse′-sound : ∀{Γ Δ A} (σ : Subst 𝒮 Γ Δ) (C : Γ ⊨ A)
-> ⟦ traverse′ σ C ⟧ᵐ ≈ ⟦ C ⟧ᵐ ∘ ⟦subst⟧ σ
traverse-sound ● (var ())
traverse-sound (σ ▸ T) (var top) = ⟦𝓉⟧ T
traverse-sound (σ ▸ T) (var (pop x)) = traverse-sound σ (var x)
traverse-sound σ (lam {Γ} {A} M) {n} {⟦Δ⟧} = ext lemma
where
lemma : ∀(⟦A⟧ : ⟦ A ⟧ₜ n) →
Λ ⟦ traverse (σ ↑ k) M ⟧ₘ n ⟦Δ⟧ ⟦A⟧ ≡ (Λ ⟦ M ⟧ₘ ∘ ⟦subst⟧ σ) n ⟦Δ⟧ ⟦A⟧
lemma ⟦A⟧ rewrite traverse-sound (σ ↑ k) M {n} {⟦Δ⟧ , ⟦A⟧}
| ⟦↑⟧ (A now) σ {n} {⟦Δ⟧ , ⟦A⟧} = refl
traverse-sound σ (M $ N) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧}
| traverse-sound σ N {n} {⟦Δ⟧} = refl
traverse-sound σ unit = refl
traverse-sound σ [ M ,, N ] {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧}
| traverse-sound σ N {n} {⟦Δ⟧} = refl
traverse-sound σ (fst M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (snd M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (inl M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (inr M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (case M inl↦ N₁ ||inr↦ N₂) {n} {⟦Δ⟧}
rewrite traverse-sound σ M {n} {⟦Δ⟧} with ⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)
traverse-sound σ (case_inl↦_||inr↦_ {A = A} M N₁ N₂) {n} {⟦Δ⟧} | inj₁ ⟦A⟧
rewrite traverse-sound (σ ↑ k) N₁ {n} {⟦Δ⟧ , ⟦A⟧}
| ⟦↑⟧ (A now) σ {n} {⟦Δ⟧ , ⟦A⟧} = refl
traverse-sound σ (case_inl↦_||inr↦_ {B = B} M N₁ N₂) {n} {⟦Δ⟧} | inj₂ ⟦B⟧
rewrite traverse-sound (σ ↑ k) N₂ {n} {⟦Δ⟧ , ⟦B⟧}
| ⟦↑⟧ (B now) σ {n} {⟦Δ⟧ , ⟦B⟧} = refl
traverse-sound σ (sample M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound {Γ} {Δ} {A} σ (stable M) {n} {⟦Δ⟧} = ext lemma
where
lemma : ∀ l -> ⟦ traverse {Γ} σ (stable M) ⟧ₘ n ⟦Δ⟧ l
≡ (⟦ stable {Γ} M ⟧ₘ ∘ ⟦subst⟧ σ) n ⟦Δ⟧ l
lemma l rewrite traverse-sound (σ ↓ˢ k) M {l} {⟦ Δ ˢ⟧□ n ⟦Δ⟧ l}
| □-≡ n l (⟦↓ˢ⟧ σ {n} {⟦Δ⟧}) l = refl
traverse-sound σ (sig M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (letSig_In_ {A = A} M N) {n} {⟦Δ⟧}
rewrite traverse-sound σ M {n} {⟦Δ⟧}
| traverse-sound (σ ↑ k) N {n} {⟦Δ⟧ , ⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)}
| ⟦↑⟧ (A always) σ {n} {⟦Δ⟧ , (⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))} = refl
traverse-sound σ (event E) = traverse′-sound σ E
traverse′-sound σ (pure M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse′-sound σ (letSig_InC_ {A = A} S C) {n} {⟦Δ⟧}
rewrite traverse-sound σ S {n} {⟦Δ⟧}
| traverse′-sound (σ ↑ k) C {n} {⟦Δ⟧ , ⟦ S ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)}
| ⟦↑⟧ (A always) σ {n} {⟦Δ⟧ , (⟦ S ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))} = refl
traverse′-sound {Γ} {Δ} σ (letEvt_In_ {A = A} {B} E C) {n} {⟦Δ⟧}
rewrite traverse-sound σ E {n} {⟦Δ⟧}
| (ext λ m → ext λ b → traverse′-sound (σ ↓ˢ k ↑ k) C {m} {b}) =
begin
μ.at ⟦ B ⟧ₜ n
(F-◇.fmap (⟦ C ⟧ᵐ ∘ ⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))
≡⟨ cong (μ.at ⟦ B ⟧ₜ n) (F-◇.fmap-∘ {g = ⟦ C ⟧ᵐ} {⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id}
{n} {st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))}) ⟩
μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ) n
(F-◇.fmap (⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))))
≡⟨ cong (λ x → μ.at ⟦ B ⟧ₜ n (F-◇.fmap ⟦ C ⟧ᵐ n x)) (
begin
F-◇.fmap (⌞ ⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))
≡⟨ cong! (ext λ m -> ext λ b → ⟦↑⟧ (A now) (σ ↓ˢ k) {m} {b}) ⟩
F-◇.fmap (⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))
≡⟨ F-◇.fmap-∘ ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(F-◇.fmap (F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))
≡⟨ cong (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n)
(st-nat₁ (⟦subst⟧ (σ ↓ˢ k))) ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⌞ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧) ⌟
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))
≡⟨ cong! (⟦↓ˢ⟧ σ) ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧)
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))
∎
) ⟩
μ.at ⟦ B ⟧ₜ n (F-◇.fmap ⟦ C ⟧ᵐ n
(F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧)
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))))
≡⟨ cong (μ.at ⟦ B ⟧ₜ n) (sym (F-◇.fmap-∘ {g = ⟦ C ⟧ᵐ}{ε.at ⟦ Γ ˢ ⟧ₓ * id}{n}
{st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧)
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))})) ⟩
μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧)
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))
≡⟨⟩
⟦ letEvt E In C ⟧ᵐ n (⟦subst⟧ σ n ⟦Δ⟧)
∎
traverse′-sound {_} {Δ} σ (select_↦_||_↦_||both↦_ {Γ} {A} {B} {C} E₁ C₁ E₂ C₂ C₃) {n} {⟦Δ⟧}
rewrite traverse-sound σ E₁ {n} {⟦Δ⟧}
| traverse-sound σ E₂ {n} {⟦Δ⟧} =
begin
μ.at ⟦ C ⟧ₜ n
(F-◇.fmap (⌞ handle ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₁ ⟧ᵐ
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₂ ⟧ᵐ
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₃ ⟧ᵐ ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)))
≡⟨ cong! (ext λ m → ext λ b → ind-hyp m b) ⟩
μ.at ⟦ C ⟧ₜ n
(F-◇.fmap (⌞ handle
(⟦ C₁ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {Event B now} (_↑_ {A now} (σ ↓ˢ k) k) k)))
(⟦ C₂ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {Event A now} (σ ↓ˢ k) k) k)))
(⟦ C₃ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) ⌟
∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)))
≡⟨ cong! (ext λ m → ext λ b →
⟦subst⟧-handle {Δ}{Γ}{A}{B}{C} σ {⟦ C₁ ⟧ᵐ}{⟦ C₂ ⟧ᵐ}{⟦ C₃ ⟧ᵐ}{n = m} {b}) ⟩
μ.at ⟦ C ⟧ₜ n
(F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ ∘ ⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)))
≡⟨ cong (μ.at ⟦ C ⟧ₜ n) (F-◇.fmap-∘ {g = handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ}
{f = ⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id} {n}
{st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)})
⟩
μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n
⌞ (F-◇.fmap (⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ⌟)
≡⟨ cong (λ x → μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n x)) (
begin
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id ∘ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))
≡⟨ F-◇.fmap-∘ ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(F-◇.fmap (F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)))
≡⟨ cong (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n)
(st-nat₁ (⟦subst⟧ (σ ↓ˢ k))) ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⌞ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧) ⌟ , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧)))
≡⟨ cong! (⟦↓ˢ⟧ σ) ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧)))
∎
) ⟩
μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n
(F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧)))))
≡⟨ cong (μ.at ⟦ C ⟧ₜ n) (sym (F-◇.fmap-∘ {g = handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ}
{ε.at ⟦ Γ ˢ ⟧ₓ * id}{n} {st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))})) ⟩
μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))))
≡⟨⟩
⟦ select E₁ ↦ C₁ || E₂ ↦ C₂ ||both↦ C₃ ⟧ᵐ n (⟦subst⟧ σ n ⟦Δ⟧)
∎
where
ind-hyp : ∀ l c
-> handle
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₁ ⟧ᵐ
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₂ ⟧ᵐ
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₃ ⟧ᵐ l c
≡ handle
(⟦ C₁ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {Event B now} (_↑_ {A now} (σ ↓ˢ k) k) k)))
(⟦ C₂ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {Event A now} (σ ↓ˢ k) k) k)))
(⟦ C₃ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) l c
ind-hyp l c rewrite ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₁ {n} {⟦Δ⟧})))
| ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₂ {n} {⟦Δ⟧})))
| ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₃ {n} {⟦Δ⟧}))) = refl
|
algebraic-stack_agda0000_doc_6782 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Endomorphisms on a Set
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Function.Endomorphism.Propositional {a} (A : Set a) where
open import Algebra using (Magma; Semigroup; Monoid)
open import Algebra.FunctionProperties.Core using (Op₂)
open import Algebra.Morphism; open Definitions
open import Algebra.Structures using (IsMagma; IsSemigroup; IsMonoid)
open import Data.Nat.Base using (ℕ; zero; suc; _+_)
open import Data.Nat.Properties using (+-0-monoid; +-semigroup)
open import Data.Product using (_,_)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (_Preserves_⟶_)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
import Function.Endomorphism.Setoid (P.setoid A) as Setoid
Endo : Set a
Endo = A → A
------------------------------------------------------------------------
-- Conversion back and forth with the Setoid-based notion of Endomorphism
fromSetoidEndo : Setoid.Endo → Endo
fromSetoidEndo = _⟨$⟩_
toSetoidEndo : Endo → Setoid.Endo
toSetoidEndo f = record
{ _⟨$⟩_ = f
; cong = P.cong f
}
------------------------------------------------------------------------
-- N-th composition
_^_ : Endo → ℕ → Endo
f ^ zero = id
f ^ suc n = f ∘′ (f ^ n)
^-homo : ∀ f → Homomorphic₂ ℕ Endo _≡_ (f ^_) _+_ _∘′_
^-homo f zero n = refl
^-homo f (suc m) n = P.cong (f ∘′_) (^-homo f m n)
------------------------------------------------------------------------
-- Structures
∘-isMagma : IsMagma _≡_ (Op₂ Endo ∋ _∘′_)
∘-isMagma = record
{ isEquivalence = P.isEquivalence
; ∙-cong = P.cong₂ _∘′_
}
∘-magma : Magma _ _
∘-magma = record { isMagma = ∘-isMagma }
∘-isSemigroup : IsSemigroup _≡_ (Op₂ Endo ∋ _∘′_)
∘-isSemigroup = record
{ isMagma = ∘-isMagma
; assoc = λ _ _ _ → refl
}
∘-semigroup : Semigroup _ _
∘-semigroup = record { isSemigroup = ∘-isSemigroup }
∘-id-isMonoid : IsMonoid _≡_ _∘′_ id
∘-id-isMonoid = record
{ isSemigroup = ∘-isSemigroup
; identity = (λ _ → refl) , (λ _ → refl)
}
∘-id-monoid : Monoid _ _
∘-id-monoid = record { isMonoid = ∘-id-isMonoid }
------------------------------------------------------------------------
-- Homomorphism
^-isSemigroupMorphism : ∀ f → IsSemigroupMorphism +-semigroup ∘-semigroup (f ^_)
^-isSemigroupMorphism f = record
{ ⟦⟧-cong = P.cong (f ^_)
; ∙-homo = ^-homo f
}
^-isMonoidMorphism : ∀ f → IsMonoidMorphism +-0-monoid ∘-id-monoid (f ^_)
^-isMonoidMorphism f = record
{ sm-homo = ^-isSemigroupMorphism f
; ε-homo = refl
}
|
algebraic-stack_agda0000_doc_6783 | -- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness --sized-types #-}
open import Size
open import Data.Empty
open import Data.Product
open import Data.Sum
open import Data.List using ([]; _∷_; _∷ʳ_; _++_)
open import Codata.Thunk
open import Relation.Nullary
open import Relation.Nullary.Negation using (contraposition)
open import Relation.Unary using (_∈_; _⊆_)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
open import Function.Base using (case_of_)
open import Common
module Subtyping {ℙ : Set} (message : Message ℙ)
where
open Message message
open import Trace message
open import SessionType message
open import Transitions message
open import Session message
open import Compliance message
open import HasTrace message
data Sub : SessionType -> SessionType -> Size -> Set where
nil<:any : ∀{T i} -> Sub nil T i
end<:def : ∀{T S i} (e : End T) (def : Defined S) -> Sub T S i
inp<:inp : ∀{f g i} (inc : dom f ⊆ dom g) (F : (x : ℙ) -> Thunk (Sub (f x .force) (g x .force)) i) -> Sub (inp f) (inp g) i
out<:out : ∀{f g i} (W : Witness g) (inc : dom g ⊆ dom f) (F : ∀{x} (!x : x ∈ dom g) -> Thunk (Sub (f x .force) (g x .force)) i) -> Sub (out f) (out g) i
_<:_ : SessionType -> SessionType -> Set
_<:_ T S = Sub T S ∞
sub-defined : ∀{T S} -> T <: S -> Defined T -> Defined S
sub-defined (end<:def _ def) _ = def
sub-defined (inp<:inp _ _) _ = inp
sub-defined (out<:out _ _ _) _ = out
sub-sound : ∀{T S R} -> Compliance (R # T) -> T <: S -> ∞Compliance (R # S)
force (sub-sound (win#def w def) sub) = win#def w (sub-defined sub def)
force (sub-sound (out#inp (_ , !x) F) (end<:def (inp U) def)) with U _ (proj₂ (compliance->defined (F !x .force)))
... | ()
force (sub-sound (out#inp (_ , !x) F) (inp<:inp _ G)) =
out#inp (_ , !x) λ !x -> sub-sound (F !x .force) (G _ .force)
force (sub-sound (inp#out (_ , !x) F) (end<:def (out U) def)) = ⊥-elim (U _ !x)
force (sub-sound (inp#out (_ , !x) F) (out<:out {f} {g} (_ , !y) inc G)) =
inp#out (_ , !y) λ !x -> sub-sound (F (inc !x) .force) (G !x .force)
SubtypingQ : SessionType -> SessionType -> Set
SubtypingQ T S = ∀{R} -> Compliance (R # T) -> Compliance (R # S)
if-eq : ℙ -> SessionType -> SessionType -> Continuation
force (if-eq x T S y) with x ?= y
... | yes _ = T
... | no _ = S
input* : SessionType
input* = inp λ _ -> λ where .force -> win
input : ℙ -> SessionType -> SessionType -> SessionType
input x T S = inp (if-eq x T S)
input*-but : ℙ -> SessionType
input*-but x = input x nil win
output : ℙ -> SessionType -> SessionType -> SessionType
output x T S = out (if-eq x T S)
input-if-eq-comp :
∀{f x T} ->
Compliance (T # f x .force) ->
∀{y} (!y : y ∈ dom f) ->
∞Compliance (if-eq x T win y .force # f y .force)
force (input-if-eq-comp {_} {x} comp {y} !y) with x ?= y
... | yes refl = comp
... | no neq = win#def Win-win !y
output-if-eq-comp :
∀{f : Continuation}{x}{T} ->
Compliance (T # f x .force) ->
∀{y} (!y : y ∈ dom (if-eq x T nil)) ->
∞Compliance (if-eq x T nil y .force # f y .force)
force (output-if-eq-comp {_} {x} comp {y} !y) with x ?= y
... | yes refl = comp
force (output-if-eq-comp {_} {x} comp {y} ()) | no neq
input*-comp : ∀{f} (W : Witness f) -> Compliance (input* # out f)
input*-comp W = inp#out W λ !x -> λ where .force -> win#def Win-win !x
input*-but-comp :
∀{f x}
(W : Witness f)
(N : ¬ x ∈ dom f) ->
Compliance (input*-but x # out f)
input*-but-comp {f} {x} W N = inp#out W aux
where
aux : ∀{y : ℙ} -> (fy : y ∈ dom f) -> ∞Compliance (if-eq x nil win y .force # f y .force)
force (aux {y} fy) with x ?= y
... | yes refl = ⊥-elim (N fy)
... | no neq = win#def Win-win fy
∈-output-if-eq : ∀{R} (x : ℙ) -> Defined R -> x ∈ dom (if-eq x R nil)
∈-output-if-eq x def with x ?= x
... | yes refl = def
... | no neq = ⊥-elim (neq refl)
input-comp : ∀{g x R} -> Compliance (R # g x .force) -> Compliance (input x R win # out g)
input-comp {g} {x} comp = inp#out (x , proj₂ (compliance->defined comp)) (input-if-eq-comp {g} comp)
output-comp : ∀{f x R} -> Compliance (R # f x .force) -> Compliance (output x R nil # inp f)
output-comp {f} {x} comp = out#inp (_ , ∈-output-if-eq x (proj₁ (compliance->defined comp))) (output-if-eq-comp {f} comp)
sub-inp-inp :
∀{f g}
(spec : SubtypingQ (inp f) (inp g))
(x : ℙ) ->
SubtypingQ (f x .force) (g x .force)
sub-inp-inp spec x comp with spec (output-comp comp)
... | win#def (out U) def = ⊥-elim (U _ (∈-output-if-eq x (proj₁ (compliance->defined comp))))
... | out#inp (y , fy) F with F fy .force
... | comp' with x ?= y
... | yes refl = comp'
sub-inp-inp spec x comp | out#inp (y , fy) F | win#def () def | no neq
sub-out-out :
∀{f g}
(spec : SubtypingQ (out f) (out g)) ->
∀{x} -> x ∈ dom g ->
SubtypingQ (f x .force) (g x .force)
sub-out-out spec {x} gx comp with spec (input-comp comp)
... | inp#out W F with F gx .force
... | comp' with x ?= x
... | yes refl = comp'
... | no neq = ⊥-elim (neq refl)
sub-out->def :
∀{f g}
(spec : SubtypingQ (out f) (out g))
(Wf : Witness f) ->
∀{x} (gx : x ∈ dom g) ->
x ∈ dom f
sub-out->def {f} spec Wf {x} gx with x ∈? f
... | yes fx = fx
... | no nfx with spec (input*-but-comp Wf nfx)
... | inp#out W F with F gx .force
... | res with x ?= x
sub-out->def {f} spec Wf {x} gx | no nfx | inp#out W F | win#def () def | yes refl
... | no neq = ⊥-elim (neq refl)
sub-inp->def : ∀{f g} (spec : SubtypingQ (inp f) (inp g)) -> ∀{x} (fx : x ∈ dom f) -> x ∈ dom g
sub-inp->def {f} spec {x} fx with spec {output x win nil} (output-comp (win#def Win-win fx))
... | win#def (out U) def = ⊥-elim (U _ (∈-output-if-eq x out))
... | out#inp W F with F (∈-output-if-eq x out) .force
... | comp = proj₂ (compliance->defined comp)
sub-complete : ∀{T S i} -> SubtypingQ T S -> Thunk (Sub T S) i
force (sub-complete {nil} {_} spec) = nil<:any
force (sub-complete {inp f} {nil} spec) with spec {win} (win#def Win-win inp)
... | win#def _ ()
force (sub-complete {inp _} {inp _} spec) = inp<:inp (sub-inp->def spec) λ x -> sub-complete (sub-inp-inp spec x)
force (sub-complete {inp f} {out _} spec) with Empty? f
... | inj₁ U = end<:def (inp U) out
... | inj₂ (x , ?x) with spec {output x win nil} (output-comp (win#def Win-win ?x))
... | win#def (out U) def = ⊥-elim (U x (∈-output-if-eq x out))
force (sub-complete {out f} {nil} spec) with spec {win} (win#def Win-win out)
... | win#def _ ()
force (sub-complete {out f} {inp _} spec) with Empty? f
... | inj₁ U = end<:def (out U) inp
... | inj₂ W with spec {input*} (input*-comp W)
... | win#def () _
force (sub-complete {out f} {out g} spec) with Empty? f
... | inj₁ Uf = end<:def (out Uf) out
... | inj₂ Wf with Empty? g
... | inj₂ Wg = out<:out Wg (sub-out->def spec Wf) λ !x -> sub-complete (sub-out-out spec !x)
... | inj₁ Ug with spec {input*} (input*-comp Wf)
... | inp#out (_ , !x) F = ⊥-elim (Ug _ !x)
SubtypingQ->SubtypingS : ∀{T S} -> SubtypingQ T S -> SubtypingS T S
SubtypingQ->SubtypingS spec comp = compliance-sound (spec (compliance-complete comp .force))
SubtypingS->SubtypingQ : ∀{T S} -> SubtypingS T S -> SubtypingQ T S
SubtypingS->SubtypingQ spec comp = compliance-complete (spec (compliance-sound comp)) .force
sub-excluded :
∀{T S φ}
(sub : T <: S)
(tφ : T HasTrace φ)
(nsφ : ¬ S HasTrace φ) ->
∃[ ψ ] ∃[ x ]
(ψ ⊑ φ × T HasTrace ψ × S HasTrace ψ × T HasTrace (ψ ∷ʳ O x) × ¬ S HasTrace (ψ ∷ʳ O x))
sub-excluded nil<:any tφ nsφ = ⊥-elim (nil-has-no-trace tφ)
sub-excluded (end<:def e def) tφ nsφ with end-has-empty-trace e tφ
... | eq rewrite eq = ⊥-elim (nsφ (_ , def , refl))
sub-excluded (inp<:inp inc F) (_ , tdef , refl) nsφ =
⊥-elim (nsφ (_ , inp , refl))
sub-excluded (inp<:inp {f} {g} inc F) (_ , tdef , step inp tr) nsφ =
let ψ , x , pre , tψ , sψ , tψx , nψx = sub-excluded (F _ .force) (_ , tdef , tr) (contraposition inp-has-trace nsφ) in
_ , _ , some pre , inp-has-trace tψ , inp-has-trace sψ , inp-has-trace tψx , inp-has-no-trace nψx
sub-excluded (out<:out W inc F) (_ , tdef , refl) nsφ =
⊥-elim (nsφ (_ , out , refl))
sub-excluded (out<:out {f} {g} W inc F) (_ , tdef , step (out {_} {x} fx) tr) nsφ with x ∈? g
... | yes gx =
let ψ , x , pre , tψ , sψ , tψx , nψx = sub-excluded (F gx .force) (_ , tdef , tr) (contraposition out-has-trace nsφ) in
_ , _ , some pre , out-has-trace tψ , out-has-trace sψ , out-has-trace tψx , out-has-no-trace nψx
... | no ngx =
[] , _ , none , (_ , out , refl) , (_ , out , refl) , (_ , fx , step (out fx) refl) , λ { (_ , _ , step (out gx) _) → ⊥-elim (ngx gx) }
sub-after : ∀{T S φ} (tφ : T HasTrace φ) (sφ : S HasTrace φ) -> T <: S -> after tφ <: after sφ
sub-after (_ , _ , refl) (_ , _ , refl) sub = sub
sub-after tφ@(_ , _ , step inp _) (_ , _ , step inp _) (end<:def e _) with end-has-empty-trace e tφ
... | ()
sub-after (_ , tdef , step inp tr) (_ , sdef , step inp sr) (inp<:inp _ F) =
sub-after (_ , tdef , tr) (_ , sdef , sr) (F _ .force)
sub-after tφ@(_ , _ , step (out _) _) (_ , _ , step (out _) _) (end<:def e _) with end-has-empty-trace e tφ
... | ()
sub-after (_ , tdef , step (out _) tr) (_ , sdef , step (out gx) sr) (out<:out _ _ F) =
sub-after (_ , tdef , tr) (_ , sdef , sr) (F gx .force)
sub-simulation :
∀{R R' T S S' φ}
(comp : Compliance (R # T))
(sub : T <: S)
(rr : Transitions R (co-trace φ) R')
(sr : Transitions S φ S') ->
∃[ T' ] (Transitions T φ T' × T' <: S')
sub-simulation comp sub refl refl = _ , refl , sub
sub-simulation (win#def (out U) def) sub (step (out hx) rr) (step inp sr) = ⊥-elim (U _ hx)
sub-simulation (out#inp W F) (end<:def (inp U) def) (step (out hx) rr) (step inp sr) with F hx .force
... | comp = ⊥-elim (U _ (proj₂ (compliance->defined comp)))
sub-simulation (out#inp W F) (inp<:inp inc G) (step (out hx) rr) (step inp sr) =
let _ , tr , sub = sub-simulation (F hx .force) (G _ . force) rr sr in
_ , step inp tr , sub
sub-simulation (inp#out {h} {f} (_ , fx) F) (end<:def (out U) def) (step inp rr) (step (out gx) sr) with F fx .force
... | comp = ⊥-elim (U _ (proj₂ (compliance->defined comp)))
sub-simulation (inp#out W F) (out<:out W₁ inc G) (step inp rr) (step (out fx) sr) =
let _ , tr , sub = sub-simulation (F (inc fx) .force) (G fx .force) rr sr in
_ , step (out (inc fx)) tr , sub
|
algebraic-stack_agda0000_doc_14672 | {-# OPTIONS --without-K #-}
module Util.HoTT.Univalence.Axiom where
open import Util.HoTT.Equiv
open import Util.HoTT.Univalence.Statement
open import Util.Prelude
open import Util.Relation.Binary.PropositionalEquality using (Σ-≡⁻)
private
variable
α β γ : Level
A B C : Set α
postulate
univalence : ∀ {α} → Univalence α
≃→≡ : A ≃ B → A ≡ B
≃→≡ A≃B = univalence A≃B .proj₁ .proj₁
≡→≃∘≃→≡ : (p : A ≃ B) → ≡→≃ (≃→≡ p) ≡ p
≡→≃∘≃→≡ p = univalence p .proj₁ .proj₂
≃→≡∘≡→≃ : (p : A ≡ B) → ≃→≡ (≡→≃ p) ≡ p
≃→≡∘≡→≃ p = Σ-≡⁻ (univalence (≡→≃ p) .proj₂ (p , refl)) .proj₁
≃→≡-≡→≃-coh : (p : A ≡ B)
→ subst (λ q → ≡→≃ q ≡ ≡→≃ p) (≃→≡∘≡→≃ p) (≡→≃∘≃→≡ (≡→≃ p)) ≡ refl
≃→≡-≡→≃-coh p = Σ-≡⁻ (univalence (≡→≃ p) .proj₂ (p , refl)) .proj₂
≅→≡ : A ≅ B → A ≡ B
≅→≡ = ≃→≡ ∘ ≅→≃
|
algebraic-stack_agda0000_doc_14673 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- IO
------------------------------------------------------------------------
module IO where
open import Coinduction
open import Data.Unit
open import Data.String
open import Data.Colist
open import Function
import IO.Primitive as Prim
open import Level
------------------------------------------------------------------------
-- The IO monad
-- One cannot write "infinitely large" computations with the
-- postulated IO monad in IO.Primitive without turning off the
-- termination checker (or going via the FFI, or perhaps abusing
-- something else). The following coinductive deep embedding is
-- introduced to avoid this problem. Possible non-termination is
-- isolated to the run function below.
infixl 1 _>>=_ _>>_
data IO {a} (A : Set a) : Set (suc a) where
lift : (m : Prim.IO A) → IO A
return : (x : A) → IO A
_>>=_ : {B : Set a} (m : ∞ (IO B)) (f : (x : B) → ∞ (IO A)) → IO A
_>>_ : {B : Set a} (m₁ : ∞ (IO B)) (m₂ : ∞ (IO A)) → IO A
{-# NON_TERMINATING #-}
run : ∀ {a} {A : Set a} → IO A → Prim.IO A
run (lift m) = m
run (return x) = Prim.return x
run (m >>= f) = Prim._>>=_ (run (♭ m )) λ x → run (♭ (f x))
run (m₁ >> m₂) = Prim._>>=_ (run (♭ m₁)) λ _ → run (♭ m₂)
------------------------------------------------------------------------
-- Utilities
sequence : ∀ {a} {A : Set a} → Colist (IO A) → IO (Colist A)
sequence [] = return []
sequence (c ∷ cs) = ♯ c >>= λ x →
♯ (♯ sequence (♭ cs) >>= λ xs →
♯ return (x ∷ ♯ xs))
-- The reason for not defining sequence′ in terms of sequence is
-- efficiency (the unused results could cause unnecessary memory use).
sequence′ : ∀ {a} {A : Set a} → Colist (IO A) → IO (Lift ⊤)
sequence′ [] = return _
sequence′ (c ∷ cs) = ♯ c >>
♯ (♯ sequence′ (♭ cs) >>
♯ return _)
mapM : ∀ {a b} {A : Set a} {B : Set b} →
(A → IO B) → Colist A → IO (Colist B)
mapM f = sequence ∘ map f
mapM′ : {A B : Set} → (A → IO B) → Colist A → IO (Lift ⊤)
mapM′ f = sequence′ ∘ map f
------------------------------------------------------------------------
-- Simple lazy IO
-- Note that the functions below produce commands which, when
-- executed, may raise exceptions.
-- Note also that the semantics of these functions depends on the
-- version of the Haskell base library. If the version is 4.2.0.0 (or
-- later?), then the functions use the character encoding specified by
-- the locale. For older versions of the library (going back to at
-- least version 3) the functions use ISO-8859-1.
getContents : IO Costring
getContents = lift Prim.getContents
readFile : String → IO Costring
readFile f = lift (Prim.readFile f)
-- Reads a finite file. Raises an exception if the file path refers to
-- a non-physical file (like "/dev/zero").
readFiniteFile : String → IO String
readFiniteFile f = lift (Prim.readFiniteFile f)
writeFile∞ : String → Costring → IO ⊤
writeFile∞ f s =
♯ lift (Prim.writeFile f s) >>
♯ return _
writeFile : String → String → IO ⊤
writeFile f s = writeFile∞ f (toCostring s)
appendFile∞ : String → Costring → IO ⊤
appendFile∞ f s =
♯ lift (Prim.appendFile f s) >>
♯ return _
appendFile : String → String → IO ⊤
appendFile f s = appendFile∞ f (toCostring s)
putStr∞ : Costring → IO ⊤
putStr∞ s =
♯ lift (Prim.putStr s) >>
♯ return _
putStr : String → IO ⊤
putStr s = putStr∞ (toCostring s)
putStrLn∞ : Costring → IO ⊤
putStrLn∞ s =
♯ lift (Prim.putStrLn s) >>
♯ return _
putStrLn : String → IO ⊤
putStrLn s = putStrLn∞ (toCostring s)
|
algebraic-stack_agda0000_doc_14674 | -- {-# OPTIONS -v tc.cover.cover:10 -v tc.cover.splittree:100 -v tc.cover.strategy:100 -v tc.cc:100 #-}
module Issue365 where
{- Basic data types -}
data Nat : Set where
zero : Nat
succ : Nat -> Nat
data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (succ n)
fsucc : {n : Nat} -> Fin n -> Fin (succ n)
data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (succ n)
data _==_ {A : Set} (x : A) : A -> Set where
refl : x == x
{- Function composition -}
_◦_ : {A : Set} {B : A -> Set} {C : (x : A) -> B x -> Set}
(f : {x : A} (y : B x) -> C x y) (g : (x : A) -> B x)
(x : A) -> C x (g x)
(f ◦ g) x = f (g x)
{- Indexing and tabulating -}
_!_ : {n : Nat} {A : Set} -> Vec A n -> Fin n -> A
[] ! ()
(x :: xs) ! fzero = x
(x :: xs) ! (fsucc i) = xs ! i
tabulate : {n : Nat} {A : Set} -> (Fin n -> A) -> Vec A n
tabulate {zero} f = []
tabulate {succ n} f = f fzero :: tabulate (f ◦ fsucc)
lem-tab-! : forall {A n} (xs : Vec A n) -> tabulate (_!_ xs) == xs
lem-tab-! {A} {zero} [] = refl
lem-tab-! {A} {succ n} (x :: xs) with tabulate (_!_ xs) | lem-tab-! xs
lem-tab-! {A} {succ _} (x :: xs) | .xs | refl = refl
|
algebraic-stack_agda0000_doc_14675 | module Operator.Equals {ℓ} where
import Lvl
open import Data.Boolean
open import Functional
open import Relator.Equals{ℓ}
open import Type{ℓ}
-- Type class for run-time checking of equality
record Equals(T : Type) : Type where
infixl 100 _==_
field
_==_ : T → T → Bool
field
⦃ completeness ⦄ : ∀{a b : T} → (a ≡ b) → (a == b ≡ 𝑇)
open Equals ⦃ ... ⦄ using (_==_) public
|
algebraic-stack_agda0000_doc_14676 | open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ )
open import Relation.Unary using ( _∈_ )
open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ) renaming
( Interp to Interp′ ; emp to emp′ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.Util using ( False ; id )
module Web.Semantic.DL.ABox.Interp where
infixr 4 _,_
infixr 5 _*_
{-
An interpretation of a signature Σ (made of concept and role names)
over a set X of individuals consists of
- a Signature interpreation I
- a mapping from X do Δ I, the domain of interpretation of I
Note: In RDF the members of X are sets of IRIs, BNodes or Literals, but
IRIs can also refer to TBox elements.
-}
data Interp (Σ : Signature) (X : Set) : Set₁ where
-- I is a full Interpreation (Interp')
-- The function X → Δ {Σ} I interprets the variables in X
_,_ : ∀ I → (X → Δ {Σ} I) → (Interp Σ X)
-- extract the Signature Interpretation, forgetting the interpretation of variables
⌊_⌋ : ∀ {Σ X} → Interp Σ X → Interp′ Σ
⌊ I , i ⌋ = I
-- return the individuals function for an interpretation
ind : ∀ {Σ X} → (I : Interp Σ X) → X → Δ ⌊ I ⌋
ind (I , i) = i
-- paired individuals function for an interpretation, useful for relations/roles
ind² : ∀ {Σ X} → (I : Interp Σ X) → (X × X) → (Δ ⌊ I ⌋ × Δ ⌊ I ⌋)
ind² I (x , y) = (ind I x , ind I y)
-- why * ?
_*_ : ∀ {Σ X Y} → (Y → X) → Interp Σ X → Interp Σ Y
f * I = (⌊ I ⌋ , λ y → ind I (f y))
-- Empty interpretation
emp : ∀ {Σ} → Interp Σ False
emp = (emp′ , id)
data Surjective {Σ X} (I : Interp Σ X) : Set where
-- y is a variable i.e. y : X
-- (ind I y), x : Δ
-- all elements x of the domain Δ, have a variable y that it is an interpretation of
surj : (∀ x → ∃ λ y → ⌊ I ⌋ ⊨ x ≈ ind I y) → (I ∈ Surjective)
ind⁻¹ : ∀ {Σ X} {I : Interp Σ X} → (I ∈ Surjective) → (Δ ⌊ I ⌋ → X)
ind⁻¹ (surj i) x = proj₁ (i x)
surj✓ : ∀ {Σ X} {I : Interp Σ X} (I∈Surj : I ∈ Surjective) → ∀ x → (⌊ I ⌋ ⊨ x ≈ ind I (ind⁻¹ I∈Surj x))
surj✓ (surj i) x = proj₂ (i x)
|
algebraic-stack_agda0000_doc_14677 | {-# OPTIONS --cubical #-}
module Cubical.Categories.Everything where
import Cubical.Categories.Category
import Cubical.Categories.Functor
import Cubical.Categories.NaturalTransformation
import Cubical.Categories.Presheaves
import Cubical.Categories.Sets
import Cubical.Categories.Type
|
algebraic-stack_agda0000_doc_14678 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors defined by recursion
------------------------------------------------------------------------
-- What is the point of this module? The n-ary products below are intended
-- to be used with a fixed n, in which case the nil constructor can be
-- avoided: pairs are represented as pairs (x , y), not as triples
-- (x , y , unit).
-- Additionally, vectors defined by recursion enjoy η-rules. That is to say
-- that two vectors of known length are definitionally equal whenever their
-- elements are.
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Recursive where
open import Level using (Level; Lift; lift)
open import Data.Nat.Base as Nat using (ℕ; zero; suc)
open import Data.Empty
open import Data.Fin.Base as Fin using (Fin; zero; suc)
open import Data.Product as Prod using (_×_; _,_; proj₁; proj₂)
open import Data.Sum.Base as Sum using (_⊎_)
open import Data.Unit.Base
open import Data.Vec.Base as Vec using (Vec; _∷_)
open import Function
open import Relation.Unary
open import Agda.Builtin.Equality using (_≡_)
private
variable
a b c p : Level
A : Set a
B : Set b
C : Set c
-- Types and patterns
------------------------------------------------------------------------
pattern 2+_ n = suc (suc n)
infix 8 _^_
_^_ : Set a → ℕ → Set a
A ^ 0 = Lift _ ⊤
A ^ 1 = A
A ^ 2+ n = A × A ^ suc n
pattern [] = lift tt
infix 3 _∈[_]_
_∈[_]_ : {A : Set a} → A → ∀ n → A ^ n → Set a
a ∈[ 0 ] as = Lift _ ⊥
a ∈[ 1 ] a′ = a ≡ a′
a ∈[ 2+ n ] a′ , as = a ≡ a′ ⊎ a ∈[ suc n ] as
-- Basic operations
------------------------------------------------------------------------
cons : ∀ n → A → A ^ n → A ^ suc n
cons 0 a _ = a
cons (suc n) a as = a , as
uncons : ∀ n → A ^ suc n → A × A ^ n
uncons 0 a = a , lift tt
uncons (suc n) (a , as) = a , as
head : ∀ n → A ^ suc n → A
head n as = proj₁ (uncons n as)
tail : ∀ n → A ^ suc n → A ^ n
tail n as = proj₂ (uncons n as)
fromVec : ∀[ Vec A ⇒ (A ^_) ]
fromVec = Vec.foldr (_ ^_) (cons _) _
toVec : Π[ (A ^_) ⇒ Vec A ]
toVec 0 as = Vec.[]
toVec (suc n) as = head n as ∷ toVec n (tail n as)
lookup : ∀ {n} (k : Fin n) → A ^ n → A
lookup zero = head _
lookup (suc {n} k) = lookup k ∘′ tail n
replicate : ∀ n → A → A ^ n
replicate n a = fromVec (Vec.replicate a)
tabulate : ∀ n → (Fin n → A) → A ^ n
tabulate n f = fromVec (Vec.tabulate f)
append : ∀ m n → A ^ m → A ^ n → A ^ (m Nat.+ n)
append 0 n xs ys = ys
append 1 n x ys = cons n x ys
append (2+ m) n (x , xs) ys = x , append (suc m) n xs ys
splitAt : ∀ m n → A ^ (m Nat.+ n) → A ^ m × A ^ n
splitAt 0 n xs = [] , xs
splitAt (suc m) n xs =
let (ys , zs) = splitAt m n (tail (m Nat.+ n) xs) in
cons m (head (m Nat.+ n) xs) ys , zs
-- Manipulating N-ary products
------------------------------------------------------------------------
map : (A → B) → ∀ n → A ^ n → B ^ n
map f 0 as = lift tt
map f 1 a = f a
map f (2+ n) (a , as) = f a , map f (suc n) as
ap : ∀ n → (A → B) ^ n → A ^ n → B ^ n
ap 0 fs ts = []
ap 1 f t = f t
ap (2+ n) (f , fs) (t , ts) = f t , ap (suc n) fs ts
module _ {P : ℕ → Set p} where
foldr : P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) →
∀ n → A ^ n → P n
foldr p0 p1 p2+ 0 as = p0
foldr p0 p1 p2+ 1 a = p1 a
foldr p0 p1 p2+ (2+ n) (a , as) = p2+ n a (foldr p0 p1 p2+ (suc n) as)
foldl : (P : ℕ → Set p) →
P 0 → (A → P 1) → (∀ n → A → P (suc n) → P (2+ n)) →
∀ n → A ^ n → P n
foldl P p0 p1 p2+ 0 as = p0
foldl P p0 p1 p2+ 1 a = p1 a
foldl P p0 p1 p2+ (2+ n) (a , as) = let p1′ = p1 a in
foldl (P ∘′ suc) p1′ (λ a → p2+ 0 a p1′) (p2+ ∘ suc) (suc n) as
reverse : ∀ n → A ^ n → A ^ n
reverse = foldl (_ ^_) [] id (λ n → _,_)
zipWith : (A → B → C) → ∀ n → A ^ n → B ^ n → C ^ n
zipWith f 0 as bs = []
zipWith f 1 a b = f a b
zipWith f (2+ n) (a , as) (b , bs) = f a b , zipWith f (suc n) as bs
unzipWith : (A → B × C) → ∀ n → A ^ n → B ^ n × C ^ n
unzipWith f 0 as = [] , []
unzipWith f 1 a = f a
unzipWith f (2+ n) (a , as) = Prod.zip _,_ _,_ (f a) (unzipWith f (suc n) as)
zip : ∀ n → A ^ n → B ^ n → (A × B) ^ n
zip = zipWith _,_
unzip : ∀ n → (A × B) ^ n → A ^ n × B ^ n
unzip = unzipWith id
|
algebraic-stack_agda0000_doc_14679 | open import Prelude
open import RW.Utils.Monads
-- Some Error monad utilities, a là Haskell.
module RW.Utils.Error where
open import Data.String
open Monad {{...}}
-- Error Typeclass
record IsError {a}(A : Set a) : Set a where
field
showError : A → String
open IsError {{...}}
instance
IsError-String : IsError String
IsError-String = record { showError = λ s → s }
-- Error Monad
Err : ∀{a} → (E : Set a) ⦃ isErr : IsError E ⦄
→ Set a → Set a
Err e a = e ⊎ a
throwError : ∀{a}{E A : Set a} ⦃ isErr : IsError E ⦄
→ E → Err E A
throwError = i1
catchError : ∀{a}{E A : Set a} ⦃ isErr : IsError E ⦄
→ Err E A → (E → Err E A) → Err E A
catchError (i2 a) _ = i2 a
catchError (i1 e) f = f e
instance
MonadError : ∀{e}{E : Set e} ⦃ isErr : IsError E ⦄
→ Monad (Err E)
MonadError = record
{ return = i2
; _>>=_ = λ { (i1 err) _ → i1 err
; (i2 x ) f → f x
}
}
runErr : ∀{a}{E A : Set a} ⦃ isErr : IsError E ⦄
→ Err E A → String ⊎ A
runErr (i2 a) = i2 a
runErr ⦃ s ⦄ (i1 e) = i1 (IsError.showError s e)
|
algebraic-stack_agda0000_doc_14680 | -- Andreas, 2018-04-10, issue #3581, reported by 3abc, test case by Andrea
-- Regression in the termination checker introduced together
-- with collecting function calls also in the type signatures
-- (fix of #1556).
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
I = Bool
i0 = true
i1 = false
record PathP {l} (A : I → Set l) (x : A i0) (y : A i1) : Set l where
field
apply : ∀ i → A i
open PathP
_[_≡_] = PathP
_≡_ : ∀ {l} {A : Set l} → A → A → Set l
_≡_ {A = A} = PathP (\ _ → A)
refl : ∀ {l} {A : Set l} {x : A} → x ≡ x
refl {x = x} .apply _ = x
cong' : ∀ {l ℓ'} {A : Set l}{B : A → Set ℓ'} (f : (a : A) → B a) {x y} (p : x ≡ y)
→ PathP (λ i → B (p .apply i)) (f (p .apply i0)) (f (p .apply i1))
cong' f p .apply = λ i → f (p .apply i)
foo : Nat → Nat
foo zero = zero
foo (suc n) = Z .apply true .apply true
where
postulate
Z : (\ _ → foo n ≡ foo n) [ (cong' foo (refl {x = n})) ≡ (\ { .apply i → cong' foo (refl {x = n}) .apply i }) ]
|
algebraic-stack_agda0000_doc_14681 | ------------------------------------------------------------------------------
-- Testing Agda internal terms: @Var Nat Args@ when @Args = []@
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module AgdaInternalTerms.VarEmptyArgumentsTerm where
postulate D : Set
postulate id : (P : D → Set)(x : D) → P x → P x
{-# ATP prove id #-}
|
algebraic-stack_agda0000_doc_14682 | {-# OPTIONS --universe-polymorphism #-}
module Categories.Groupoid where
open import Level
open import Categories.Category
import Categories.Morphisms
record Groupoid {o ℓ e} (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where
private module C = Category C
open C using (_⇒_)
open Categories.Morphisms C
field
_⁻¹ : ∀ {A B} → (A ⇒ B) → (B ⇒ A)
iso : ∀ {A B} {f : A ⇒ B} → Iso f (f ⁻¹)
|
algebraic-stack_agda0000_doc_14683 | ------------------------------------------------------------------------
-- Lemmas
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --exact-split #-}
module Math.Combinatorics.ListFunction.Properties.Lemma where
open import Data.List hiding (_∷ʳ_)
import Data.List.Properties as Lₚ
open import Data.List.Relation.Binary.Sublist.Propositional using (_⊆_; []; _∷_; _∷ʳ_)
open import Data.Product as Prod using (proj₁; proj₂; _×_; _,_)
open import Function
open import Relation.Binary.PropositionalEquality
module _ {a} {A : Set a} where
[]⊆xs : ∀ (xs : List A) → [] ⊆ xs
[]⊆xs [] = []
[]⊆xs (x ∷ xs) = x ∷ʳ []⊆xs xs
module _ {a b} {A : Set a} {B : Set b} where
lemma₁ : ∀ (f : A → B) (x : A) (xss : List (List A)) →
map (λ ys → f x ∷ ys) (map (map f) xss) ≡ map (map f) (map (λ ys → x ∷ ys) xss)
lemma₁ f x xss = begin
map (λ ys → f x ∷ ys) (map (map f) xss) ≡⟨ sym $ Lₚ.map-compose xss ⟩
map (λ ys → f x ∷ map f ys) xss ≡⟨ Lₚ.map-compose xss ⟩
map (map f) (map (λ ys → x ∷ ys) xss) ∎
where open ≡-Reasoning
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
proj₁-map₁ : ∀ (f : A → B) (t : A × C) → proj₁ (Prod.map₁ f t) ≡ f (Prod.proj₁ t)
proj₁-map₁ _ _ = refl
module _ {a b} {A : Set a} {B : Set b} where
proj₁-map₂ : ∀ (f : B → B) (t : A × B) → proj₁ (Prod.map₂ f t) ≡ proj₁ t
proj₁-map₂ _ _ = refl
proj₁′ : A × B → A
proj₁′ = proj₁
|
algebraic-stack_agda0000_doc_14684 |
module _ where
open import Agda.Builtin.Equality using (_≡_; refl)
-- First example --
module M (A : Set) where
record R : Set where
data D : Set where
open R (record {})
postulate
x : A
F : D → Set₁
F _ rewrite refl {x = x} = Set
-- Second example --
record ⊤ : Set where
no-eta-equality
constructor tt
data Box (A : Set) : Set where
[_] : A → Box A
Unit : Set
Unit = Box ⊤
F : Unit → Set → Set
F [ _ ] x = x
G : {P : Unit → Set} → ((x : ⊤) → P [ x ]) → ((x : Unit) → P x)
G f [ x ] = f x
record R : Set₁ where
no-eta-equality
field
f : (x : Unit) → Box (F x ⊤)
data ⊥ : Set where
r : R
r = record { f = G [_] }
open R r
H : ⊥ → Set₁
H _ rewrite refl {x = tt} = Set
|
algebraic-stack_agda0000_doc_14685 | {-# OPTIONS --sized-types #-}
open import FRP.JS.Bool using ( Bool ; true ; false ) renaming ( _≟_ to _≟b_ )
open import FRP.JS.Nat using ( ℕ )
open import FRP.JS.Float using ( ℝ ) renaming ( _≟_ to _≟n_ )
open import FRP.JS.String using ( String ) renaming ( _≟_ to _≟s_ )
open import FRP.JS.Array using ( Array ) renaming ( lookup? to alookup? ; _≟[_]_ to _≟a[_]_ )
open import FRP.JS.Object using ( Object ) renaming ( lookup? to olookup? ; _≟[_]_ to _≟o[_]_ )
open import FRP.JS.Maybe using ( Maybe ; just ; nothing )
open import FRP.JS.Size using ( Size ; ↑_ )
module FRP.JS.JSON where
data JSON : {σ : Size} → Set where
null : ∀ {σ} → JSON {σ}
string : ∀ {σ} → String → JSON {σ}
float : ∀ {σ} → ℝ → JSON {σ}
bool : ∀ {σ} → Bool → JSON {σ}
array : ∀ {σ} → Array (JSON {σ}) → JSON {↑ σ}
object : ∀ {σ} → Object (JSON {σ}) → JSON {↑ σ}
{-# COMPILED_JS JSON function(x,v) {
if (x === null) { return v.null(null); }
else if (x.constructor === String) { return v.string(null,x); }
else if (x.constructor === Number) { return v.float(null,x); }
else if (x.constructor === Boolean) { return v.bool(null,x); }
else if (x.constructor === Array) { return v.array(null,x); }
else { return v.object(null,x); }
} #-}
{-# COMPILED_JS null function() { return null; } #-}
{-# COMPILED_JS string function() { return function(x) { return x; }; } #-}
{-# COMPILED_JS float function() { return function(x) { return x; }; } #-}
{-# COMPILED_JS bool function() { return function(x) { return x; }; } #-}
{-# COMPILED_JS array function() { return function(x) { return x; }; } #-}
{-# COMPILED_JS object function() { return function(x) { return x; }; } #-}
postulate
show : JSON → String
parse : String → Maybe JSON
{-# COMPILED_JS show JSON.stringify #-}
{-# COMPILED_JS parse require("agda.box").handle(JSON.parse) #-}
Key : Bool → Set
Key true = String
Key false = ℕ
lookup? : ∀ {σ} → Maybe (JSON {↑ σ}) → ∀ {b} → Key b → Maybe (JSON {σ})
lookup? (just (object js)) {true} k = olookup? js k
lookup? (just (array js)) {false} i = alookup? js i
lookup? _ _ = nothing
_≟_ : ∀ {σ τ} → JSON {σ} → JSON {τ} → Bool
null ≟ null = true
string s ≟ string t = s ≟s t
float m ≟ float n = m ≟n n
bool b ≟ bool c = b ≟b c
array js ≟ array ks = js ≟a[ _≟_ ] ks
object js ≟ object ks = js ≟o[ _≟_ ] ks
_ ≟ _ = false
|
algebraic-stack_agda0000_doc_14686 | -- Testing the version option on a file with errors.
--
-- N.B. It is necessary to change the Issue1244a.out file when using
-- different versions of Agda.
foo : Set → Set
foo a = b
|
algebraic-stack_agda0000_doc_14687 | module Luau.Addr where
open import Agda.Builtin.Bool using (true; false)
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Nat using (Nat; _==_)
open import Agda.Builtin.String using (String)
open import Agda.Builtin.TrustMe using (primTrustMe)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Equality using (_≢_)
Addr : Set
Addr = Nat
_≡ᴬ_ : (a b : Addr) → Dec (a ≡ b)
a ≡ᴬ b with a == b
a ≡ᴬ b | false = no p where postulate p : (a ≢ b)
a ≡ᴬ b | true = yes primTrustMe
|
algebraic-stack_agda0000_doc_14320 | {-# OPTIONS --rewriting #-}
open import Common.Prelude
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
postulate
f g : Nat → Nat
f-zero : f zero ≡ g zero
f-suc : ∀ n → f n ≡ g n → f (suc n) ≡ g (suc n)
r : (n : Nat) → f n ≡ g n
r zero = f-zero
r (suc n) = f-suc n refl
where
rn : f n ≡ g n
rn = r n
{-# REWRITE rn #-}
|
algebraic-stack_agda0000_doc_14321 | {-# OPTIONS --cubical-compatible #-}
module Common.Equality where
open import Agda.Builtin.Equality public
open import Common.Level
subst : ∀ {a p}{A : Set a}(P : A → Set p){x y : A} → x ≡ y → P x → P y
subst P refl t = t
cong : ∀ {a b}{A : Set a}{B : Set b}(f : A → B){x y : A} → x ≡ y → f x ≡ f y
cong f refl = refl
sym : ∀ {a}{A : Set a}{x y : A} → x ≡ y → y ≡ x
sym refl = refl
trans : ∀ {a}{A : Set a}{x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
|
algebraic-stack_agda0000_doc_14322 |
module _ {T : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
instance
PredSet-setLike : SetLike{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)
SetLike._⊆_ PredSet-setLike = _⊆_
SetLike._≡_ PredSet-setLike = _≡_
SetLike.[⊆]-membership PredSet-setLike = [↔]-intro intro _⊆_.proof
SetLike.[≡]-membership PredSet-setLike = [↔]-intro intro _≡_.proof
instance
PredSet-emptySet : SetLike.EmptySet{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)
SetLike.EmptySet.∅ PredSet-emptySet = ∅
SetLike.EmptySet.membership PredSet-emptySet ()
instance
PredSet-universalSet : SetLike.UniversalSet{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)
SetLike.UniversalSet.𝐔 PredSet-universalSet = 𝐔
SetLike.UniversalSet.membership PredSet-universalSet = record {}
instance
PredSet-unionOperator : SetLike.UnionOperator{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)
SetLike.UnionOperator._∪_ PredSet-unionOperator = _∪_
SetLike.UnionOperator.membership PredSet-unionOperator = [↔]-intro id id
instance
PredSet-intersectionOperator : SetLike.IntersectionOperator{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)
SetLike.IntersectionOperator._∩_ PredSet-intersectionOperator = _∩_
SetLike.IntersectionOperator.membership PredSet-intersectionOperator = [↔]-intro id id
instance
PredSet-complementOperator : SetLike.ComplementOperator{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)
SetLike.ComplementOperator.∁ PredSet-complementOperator = ∁_
SetLike.ComplementOperator.membership PredSet-complementOperator = [↔]-intro id id
module _ {T : Type{ℓ}} ⦃ equiv : Equiv{ℓ}(T) ⦄ where -- TODO: Levels in SetLike
instance
PredSet-mapFunction : SetLike.MapFunction{C₁ = PredSet{ℓ}(T) ⦃ equiv ⦄}{C₂ = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)(_∈_)
SetLike.MapFunction.map PredSet-mapFunction f = map f
SetLike.MapFunction.membership PredSet-mapFunction = [↔]-intro id id
instance
PredSet-unmapFunction : SetLike.UnmapFunction{C₁ = PredSet{ℓ}(T) ⦃ equiv ⦄}{C₂ = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_)(_∈_)
SetLike.UnmapFunction.unmap PredSet-unmapFunction = unmap
SetLike.UnmapFunction.membership PredSet-unmapFunction = [↔]-intro id id
instance
PredSet-unapplyFunction : SetLike.UnapplyFunction{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) {O = T}
SetLike.UnapplyFunction.unapply PredSet-unapplyFunction = unapply
SetLike.UnapplyFunction.membership PredSet-unapplyFunction = [↔]-intro id id
instance
PredSet-filterFunction : SetLike.FilterFunction{C = PredSet{ℓ}(T) ⦃ equiv ⦄} (_∈_) {ℓ}{ℓ}
SetLike.FilterFunction.filter PredSet-filterFunction = filter
SetLike.FilterFunction.membership PredSet-filterFunction = [↔]-intro id id
{- TODO: SetLike is not general enough
module _ {T : Type{ℓ}} ⦃ equiv : Equiv{ℓ}(T) ⦄ where
instance
-- PredSet-bigUnionOperator : SetLike.BigUnionOperator{Cₒ = PredSet(PredSet(T) ⦃ {!!} ⦄) ⦃ {!!} ⦄} {Cᵢ = PredSet(T) ⦃ {!!} ⦄} (_∈_)(_∈_)
SetLike.BigUnionOperator.⋃ PredSet-bigUnionOperator = {!⋃!}
SetLike.BigUnionOperator.membership PredSet-bigUnionOperator = {!!}
-}
|
algebraic-stack_agda0000_doc_14323 | {-# OPTIONS --cubical --safe #-}
module Cubical.Structures.CommRing where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS)
open import Cubical.Structures.NAryOp
open import Cubical.Structures.Pointed
open import Cubical.Structures.Ring hiding (⟨_⟩)
private
variable
ℓ ℓ' : Level
comm-ring-axioms : (X : Type ℓ) (s : raw-ring-structure X) → Type ℓ
comm-ring-axioms X (_+_ , ₁ , _·_) = (ring-axioms X (_+_ , ₁ , _·_)) ×
((x y : X) → x · y ≡ y · x)
comm-ring-structure : Type ℓ → Type ℓ
comm-ring-structure = add-to-structure raw-ring-structure comm-ring-axioms
CommRing : Type (ℓ-suc ℓ)
CommRing {ℓ} = TypeWithStr ℓ comm-ring-structure
comm-ring-iso : StrIso comm-ring-structure ℓ
comm-ring-iso = add-to-iso (join-iso (nAryFunIso 2) (join-iso pointed-iso (nAryFunIso 2))) comm-ring-axioms
comm-ring-axioms-isProp : (X : Type ℓ) (s : raw-ring-structure X) → isProp (comm-ring-axioms X s)
comm-ring-axioms-isProp X (_·_ , ₀ , _+_) = isPropΣ (ring-axioms-isProp X (_·_ , ₀ , _+_))
λ ((((isSetX , _) , _) , _) , _) → isPropΠ2 λ _ _ → isSetX _ _
comm-ring-is-SNS : SNS {ℓ} comm-ring-structure comm-ring-iso
comm-ring-is-SNS = add-axioms-SNS _ comm-ring-axioms-isProp raw-ring-is-SNS
CommRingPath : (M N : CommRing {ℓ}) → (M ≃[ comm-ring-iso ] N) ≃ (M ≡ N)
CommRingPath = SIP comm-ring-is-SNS
-- CommRing is Ring
CommRing→Ring : CommRing {ℓ} → Ring
CommRing→Ring (R , str , isRing , ·comm) = R , str , isRing
-- CommRing Extractors
⟨_⟩ : CommRing {ℓ} → Type ℓ
⟨ R , _ ⟩ = R
module _ (R : CommRing {ℓ}) where
commring+-operation = ring+-operation (CommRing→Ring R)
commring-is-set = ring-is-set (CommRing→Ring R)
commring+-assoc = ring+-assoc (CommRing→Ring R)
commring+-id = ring+-id (CommRing→Ring R)
commring+-rid = ring+-rid (CommRing→Ring R)
commring+-lid = ring+-lid (CommRing→Ring R)
commring+-inv = ring+-inv (CommRing→Ring R)
commring+-rinv = ring+-rinv (CommRing→Ring R)
commring+-linv = ring+-linv (CommRing→Ring R)
commring+-comm = ring+-comm (CommRing→Ring R)
commring·-operation = ring·-operation (CommRing→Ring R)
commring·-assoc = ring·-assoc (CommRing→Ring R)
commring·-id = ring·-id (CommRing→Ring R)
commring·-rid = ring·-rid (CommRing→Ring R)
commring·-lid = ring·-lid (CommRing→Ring R)
commring-ldist = ring-ldist (CommRing→Ring R)
commring-rdist = ring-rdist (CommRing→Ring R)
module commring-operation-syntax where
commring+-operation-syntax : (R : CommRing {ℓ}) → ⟨ R ⟩ → ⟨ R ⟩ → ⟨ R ⟩
commring+-operation-syntax R = commring+-operation R
infixr 14 commring+-operation-syntax
syntax commring+-operation-syntax G x y = x +⟨ G ⟩ y
commring·-operation-syntax : (R : CommRing {ℓ}) → ⟨ R ⟩ → ⟨ R ⟩ → ⟨ R ⟩
commring·-operation-syntax R = commring·-operation R
infixr 18 commring·-operation-syntax
syntax commring·-operation-syntax G x y = x ·⟨ G ⟩ y
open commring-operation-syntax
commring-comm : (R : CommRing {ℓ}) (x y : ⟨ R ⟩) → x ·⟨ R ⟩ y ≡ y ·⟨ R ⟩ x
commring-comm (_ , _ , _ , P) = P
-- CommRing ·syntax
module commring-·syntax (R : CommRing {ℓ}) where
open ring-·syntax (CommRing→Ring R) public
|
algebraic-stack_agda0000_doc_14324 | {-# OPTIONS --cubical #-}
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.Empty
open import Cubical.Data.Unit
open import Cubical.Data.Prod
open import Cubical.Data.BinNat
open import Cubical.Data.Bool
open import Cubical.Relation.Nullary
open import Direction
module NNat where
-- much of this is based directly on the
-- BinNat module in the Cubical Agda library
data BNat : Type₀ where
b0 : BNat
b1 : BNat
x0 : BNat → BNat
x1 : BNat → BNat
sucBNat : BNat → BNat
sucBNat b0 = b1
sucBNat b1 = x0 b1
sucBNat (x0 bs) = x1 bs
sucBNat (x1 bs) = x0 (sucBNat bs)
BNat→ℕ : BNat → ℕ
BNat→ℕ b0 = 0
BNat→ℕ b1 = 1
BNat→ℕ (x0 x) = doubleℕ (BNat→ℕ x)
BNat→ℕ (x1 x) = suc (doubleℕ (BNat→ℕ x))
-- BNat→Binℕ : BNat → Binℕ
-- BNat→Binℕ pos0 = binℕ0
-- BNat→Binℕ pos1 = binℕpos pos1
-- BNat→Binℕ (x0 x) = {!binℕpos (x0 binℕpos (BNat→Binℕ x))!}
-- BNat→Binℕ (x1 x) = {!!}
BNat→ℕsucBNat : (b : BNat) → BNat→ℕ (sucBNat b) ≡ suc (BNat→ℕ b)
BNat→ℕsucBNat b0 = refl
BNat→ℕsucBNat b1 = refl
BNat→ℕsucBNat (x0 b) = refl
BNat→ℕsucBNat (x1 b) = λ i → doubleℕ (BNat→ℕsucBNat b i)
ℕ→BNat : ℕ → BNat
ℕ→BNat zero = b0
ℕ→BNat (suc zero) = b1
ℕ→BNat (suc (suc n)) = sucBNat (ℕ→BNat (suc n))
ℕ→BNatSuc : ∀ n → ℕ→BNat (suc n) ≡ sucBNat (ℕ→BNat n)
ℕ→BNatSuc zero = refl
ℕ→BNatSuc (suc n) = refl
bNatInd : {P : BNat → Type₀} → P b0 → ((b : BNat) → P b → P (sucBNat b)) → (b : BNat) → P b
-- prove later...
BNat→ℕ→BNat : (b : BNat) → ℕ→BNat (BNat→ℕ b) ≡ b
BNat→ℕ→BNat b = bNatInd refl hs b
where
hs : (b : BNat) → ℕ→BNat (BNat→ℕ b) ≡ b → ℕ→BNat (BNat→ℕ (sucBNat b)) ≡ sucBNat b
hs b hb =
ℕ→BNat (BNat→ℕ (sucBNat b))
≡⟨ cong ℕ→BNat (BNat→ℕsucBNat b) ⟩
ℕ→BNat (suc (BNat→ℕ b))
≡⟨ ℕ→BNatSuc (BNat→ℕ b) ⟩
sucBNat (ℕ→BNat (BNat→ℕ b))
≡⟨ cong sucBNat hb ⟩
sucBNat b
∎
ℕ→BNat→ℕ : (n : ℕ) → BNat→ℕ (ℕ→BNat n) ≡ n
ℕ→BNat→ℕ zero = refl
ℕ→BNat→ℕ (suc n) =
BNat→ℕ (ℕ→BNat (suc n))
≡⟨ cong BNat→ℕ (ℕ→BNatSuc n) ⟩
BNat→ℕ (sucBNat (ℕ→BNat n))
≡⟨ BNat→ℕsucBNat (ℕ→BNat n) ⟩
suc (BNat→ℕ (ℕ→BNat n))
≡⟨ cong suc (ℕ→BNat→ℕ n) ⟩
suc n
∎
BNat≃ℕ : BNat ≃ ℕ
BNat≃ℕ = isoToEquiv (iso BNat→ℕ ℕ→BNat ℕ→BNat→ℕ BNat→ℕ→BNat)
BNat≡ℕ : BNat ≡ ℕ
BNat≡ℕ = ua BNat≃ℕ
open NatImpl
NatImplBNat : NatImpl BNat
z NatImplBNat = b0
s NatImplBNat = sucBNat
--
data np (r : ℕ) : Type₀ where
bp : DirNum r → np r
zp : ∀ (d d′ : DirNum r) → bp d ≡ bp d′
xp : DirNum r → np r → np r
sucnp : ∀ {r} → np r → np r
sucnp {zero} (bp tt) = xp tt (bp tt)
sucnp {zero} (zp tt tt i) = xp tt (bp tt)
sucnp {zero} (xp tt n) = xp tt (sucnp n)
sucnp {suc r} (bp d) = xp (one-n (suc r)) (bp d)
sucnp {suc r} (zp d d′ i) = xp (one-n (suc r)) (zp d d′ i)
sucnp {suc r} (xp d n) with max? d
... | no _ = xp (next d) n
... | yes _ = xp (zero-n (suc r)) (sucnp n)
np→ℕ : (r : ℕ) (x : np r) → ℕ
np→ℕ r (bp x) = 0
np→ℕ r (zp d d′ i) = 0
np→ℕ zero (xp x x₁) = suc (np→ℕ zero x₁)
np→ℕ (suc r) (xp x x₁) = sucn (DirNum→ℕ x) (doublesℕ (suc r) (np→ℕ (suc r) x₁))
ℕ→np : (r : ℕ) → (n : ℕ) → np r
ℕ→np r zero = bp (zero-n r)
ℕ→np zero (suc n) = xp tt (ℕ→np zero n)
ℕ→np (suc r) (suc n) = sucnp (ℕ→np (suc r) n)
---- generalize bnat:
data N (r : ℕ) : Type₀ where
bn : DirNum r → N r
xr : DirNum r → N r → N r
-- should define induction principle for N r
-- we have 2ⁿ "unary" constructors, analogous to BNat with 2¹ (b0 and b1)
-- rename n to r
-- this likely introduces inefficiencies compared
-- to BinNat, with the max? check etc.
sucN : ∀ {n} → N n → N n
sucN {zero} (bn tt) = xr tt (bn tt)
sucN {zero} (xr tt x) = xr tt (sucN x)
sucN {suc n} (bn (↓ , ds)) = (bn (↑ , ds))
sucN {suc n} (bn (↑ , ds)) with max? ds
... | no _ = (bn (↓ , next ds))
... | yes _ = xr (zero-n (suc n)) (bn (one-n (suc n)))
sucN {suc n} (xr d x) with max? d
... | no _ = xr (next d) x
... | yes _ = xr (zero-n (suc n)) (sucN x)
sucnN : {r : ℕ} → (n : ℕ) → (N r → N r)
sucnN n = iter n sucN
doubleN : (r : ℕ) → N r → N r
doubleN zero (bn tt) = bn tt
doubleN zero (xr d x) = sucN (sucN (doubleN zero x))
doubleN (suc r) (bn x) with zero-n? x
... | yes _ = bn x
-- bad:
... | no _ = caseBool (bn (doubleDirNum (suc r) x)) (xr (zero-n (suc r)) (bn x)) (doubleable-n? x)
-- ... | no _ | doubleable = {!bn (doubleDirNum x)!}
-- ... | no _ | notdoubleable = xr (zero-n (suc r)) (bn x)
doubleN (suc r) (xr x x₁) = sucN (sucN (doubleN (suc r) x₁))
doublesN : (r : ℕ) → ℕ → N r → N r
doublesN r zero m = m
doublesN r (suc n) m = doublesN r n (doubleN r m)
N→ℕ : (r : ℕ) (x : N r) → ℕ
N→ℕ zero (bn tt) = zero
N→ℕ zero (xr tt x) = suc (N→ℕ zero x)
N→ℕ (suc r) (bn x) = DirNum→ℕ x
N→ℕ (suc r) (xr d x) = sucn (DirNum→ℕ d) (doublesℕ (suc r) (N→ℕ (suc r) x))
N→ℕsucN : (r : ℕ) (x : N r) → N→ℕ r (sucN x) ≡ suc (N→ℕ r x)
N→ℕsucN zero (bn tt) = refl
N→ℕsucN zero (xr tt x) =
suc (N→ℕ zero (sucN x))
≡⟨ cong suc (N→ℕsucN zero x) ⟩
suc (suc (N→ℕ zero x))
∎
N→ℕsucN (suc r) (bn (↓ , d)) = refl
N→ℕsucN (suc r) (bn (↑ , d)) with max? d
... | no d≠max =
doubleℕ (DirNum→ℕ (next d))
≡⟨ cong doubleℕ (next≡suc r d d≠max) ⟩
doubleℕ (suc (DirNum→ℕ d))
∎
... | yes d≡max = -- this can probably be shortened by not reducing down to zero
sucn (doubleℕ (DirNum→ℕ (zero-n r)))
(doublesℕ r (suc (suc (doubleℕ (doubleℕ (DirNum→ℕ (zero-n r)))))))
≡⟨ cong (λ x → sucn (doubleℕ x) (doublesℕ r (suc (suc (doubleℕ (doubleℕ x)))))) (zero-n→0 {r}) ⟩
sucn (doubleℕ zero) (doublesℕ r (suc (suc (doubleℕ (doubleℕ zero)))))
≡⟨ refl ⟩
doublesℕ (suc r) (suc zero) -- 2^(r+1)
≡⟨ sym (doubleDoubles r 1) ⟩
doubleℕ (doublesℕ r (suc zero)) --2*2^r
≡⟨ sym (sucPred (doubleℕ (doublesℕ r (suc zero))) (doubleDoublesOne≠0 r)) ⟩
suc (predℕ (doubleℕ (doublesℕ r (suc zero))))
≡⟨ cong suc (sym (sucPred (predℕ (doubleℕ (doublesℕ r (suc zero)))) (predDoubleDoublesOne≠0 r))) ⟩
suc (suc (predℕ (predℕ (doubleℕ (doublesℕ r (suc zero))))))
≡⟨ cong (λ x → suc (suc x)) (sym (doublePred (doublesℕ r (suc zero)))) ⟩
suc (suc (doubleℕ (predℕ (doublesℕ r (suc zero)))))
≡⟨ cong (λ x → suc (suc (doubleℕ x))) (sym (maxr≡pred2ʳ r d d≡max)) ⟩
suc (suc (doubleℕ (DirNum→ℕ d))) -- 2*(2^r - 1) + 2 = 2^(r+1) - 2 + 2 = 2^(r+1)
∎
N→ℕsucN (suc r) (xr (↓ , d) x) = refl
N→ℕsucN (suc r) (xr (↑ , d) x) with max? d
... | no d≠max =
sucn (doubleℕ (DirNum→ℕ (next d)))
(doublesℕ r (doubleℕ (N→ℕ (suc r) x)))
≡⟨ cong (λ y → sucn (doubleℕ y) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))) (next≡suc r d d≠max) ⟩
sucn (doubleℕ (suc (DirNum→ℕ d)))
(doublesℕ r (doubleℕ (N→ℕ (suc r) x)))
≡⟨ refl ⟩
suc
(suc
(iter (doubleℕ (DirNum→ℕ d)) suc
(doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
∎
... | yes d≡max =
sucn (doubleℕ (DirNum→ℕ (zero-n r)))
(doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))))
≡⟨ cong (λ z → sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))))) (zero-n≡0 {r}) ⟩
sucn (doubleℕ zero)
(doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x))))
≡⟨ refl ⟩
doublesℕ r (doubleℕ (N→ℕ (suc r) (sucN x)))
≡⟨ cong (λ x → doublesℕ r (doubleℕ x)) (N→ℕsucN (suc r) x) ⟩
doublesℕ r (doubleℕ (suc (N→ℕ (suc r) x)))
≡⟨ refl ⟩
doublesℕ r (suc (suc (doubleℕ (N→ℕ (suc r) x)))) -- 2^r * (2x + 2) = 2^(r+1)x + 2^(r+1)
≡⟨ doublesSucSuc r (doubleℕ (N→ℕ (suc r) x)) ⟩
sucn (doublesℕ (suc r) 1) -- _ + 2^(r+1)
(doublesℕ (suc r) (N→ℕ (suc r) x)) -- 2^(r+1)x + 2^(r+1)
≡⟨ H r (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩
suc
(suc
(sucn (doubleℕ (predℕ (doublesℕ r 1))) -- _ + 2(2^r - 1) + 2
(doublesℕ (suc r) (N→ℕ (suc r) x))))
≡⟨ refl ⟩
suc
(suc
(sucn (doubleℕ (predℕ (doublesℕ r 1)))
(doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
≡⟨ cong (λ z → suc (suc (sucn (doubleℕ z) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (max→ℕ r)) ⟩
suc
(suc
(sucn (doubleℕ (DirNum→ℕ (max-n r)))
(doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
≡⟨ cong (λ z → suc (suc (sucn (doubleℕ (DirNum→ℕ z)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))) (sym (d≡max)) ⟩
suc
(suc
(sucn (doubleℕ (DirNum→ℕ d))
(doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) -- (2^r*2x + (2*(2^r - 1))) + 2 = 2^(r+1)x + 2^(r+1)
∎
where
H : (n m : ℕ) → sucn (doublesℕ (suc n) 1) m ≡ suc (suc (sucn (doubleℕ (predℕ (doublesℕ n 1))) m))
H zero m = refl
H (suc n) m =
sucn (doublesℕ n 4) m
≡⟨ cong (λ z → sucn z m) (doublesSucSuc n 2) ⟩
sucn (sucn (doublesℕ (suc n) 1) (doublesℕ n 2)) m
≡⟨ refl ⟩
sucn (sucn (doublesℕ n 2) (doublesℕ n 2)) m
≡⟨ {!!} ⟩
sucn (doubleℕ (doublesℕ n 2)) m
≡⟨ {!!} ⟩ {!!}
ℕ→N : (r : ℕ) → (n : ℕ) → N r
ℕ→N r zero = bn (zero-n r)
ℕ→N zero (suc n) = xr tt (ℕ→N zero n)
ℕ→N (suc r) (suc n) = sucN (ℕ→N (suc r) n)
ℕ→Nsuc : (r : ℕ) (n : ℕ) → ℕ→N r (suc n) ≡ sucN (ℕ→N r n)
ℕ→Nsuc r n = {!!}
ℕ→Nsucn : (r : ℕ) (n m : ℕ) → ℕ→N r (sucn n m) ≡ sucnN n (ℕ→N r m)
ℕ→Nsucn r n m = {!!}
-- NℕNlemma is actually a pretty important fact;
-- this is what allows the direct isomorphism of N and ℕ to go
-- without the need for an extra datatype, e.g. Pos for BinNat,
-- since each ℕ < 2^r maps to its "numeral" in N r.
-- should rename and move elsewhere.
numeral-next : (r : ℕ) (d : DirNum r) → N (suc r)
numeral-next r d = bn (embed-next r d)
--
NℕNlemma : (r : ℕ) (d : DirNum r) → ℕ→N r (DirNum→ℕ d) ≡ bn d
NℕNlemma zero tt = refl
NℕNlemma (suc r) (↓ , ds) =
ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds))
≡⟨ {!!} ⟩ {!!}
NℕNlemma (suc r) (↑ , ds) = {!!}
N→ℕ→N : (r : ℕ) → (x : N r) → ℕ→N r (N→ℕ r x) ≡ x
N→ℕ→N zero (bn tt) = refl
N→ℕ→N zero (xr tt x) = cong (xr tt) (N→ℕ→N zero x)
N→ℕ→N (suc r) (bn (↓ , ds)) =
ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds))
≡⟨ cong (λ x → ℕ→N (suc r) x) (double-lemma ds) ⟩
ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds))
≡⟨ NℕNlemma (suc r) (↓ , ds) ⟩
bn (↓ , ds)
∎
N→ℕ→N (suc r) (bn (↑ , ds)) =
sucN (ℕ→N (suc r) (doubleℕ (DirNum→ℕ ds)))
≡⟨ cong (λ x → sucN (ℕ→N (suc r) x)) (double-lemma ds) ⟩
sucN (ℕ→N (suc r) (DirNum→ℕ {suc r} (↓ , ds)))
≡⟨ cong sucN (NℕNlemma (suc r) (↓ , ds)) ⟩
sucN (bn (↓ , ds))
≡⟨ refl ⟩
bn (↑ , ds)
∎
N→ℕ→N (suc r) (xr (↓ , ds) x) =
ℕ→N (suc r)
(sucn (doubleℕ (DirNum→ℕ ds))
(doublesℕ r (doubleℕ (N→ℕ (suc r) x))))
≡⟨ cong (λ z → ℕ→N (suc r) (sucn z (doublesℕ r (doubleℕ (N→ℕ (suc r) x))))) (double-lemma ds) ⟩
ℕ→N (suc r)
(sucn (DirNum→ℕ {suc r} (↓ , ds))
(doublesℕ r (doubleℕ (N→ℕ (suc r) x))))
≡⟨ refl ⟩
ℕ→N (suc r)
(sucn (DirNum→ℕ {suc r} (↓ , ds))
(doublesℕ (suc r) (N→ℕ (suc r) x)))
≡⟨ ℕ→Nsucn (suc r) (DirNum→ℕ {suc r} (↓ , ds)) (doublesℕ (suc r) (N→ℕ (suc r) x)) ⟩
sucnN (DirNum→ℕ {suc r} (↓ , ds))
(ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x)))
≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) z) (H (suc r) (suc r) (N→ℕ (suc r) x)) ⟩
sucnN (DirNum→ℕ {suc r} (↓ , ds))
(doublesN (suc r) (suc r) (ℕ→N (suc r) (N→ℕ (suc r) x)))
≡⟨ cong (λ z → sucnN (DirNum→ℕ {suc r} (↓ , ds)) (doublesN (suc r) (suc r) z)) (N→ℕ→N (suc r) x) ⟩
sucnN (DirNum→ℕ {suc r} (↓ , ds))
(doublesN (suc r) (suc r) x)
≡⟨ G (suc r) (↓ , ds) x snotz ⟩
xr (↓ , ds) x ∎
where
H : (r m n : ℕ) → ℕ→N r (doublesℕ m n) ≡ doublesN r m (ℕ→N r n)
H r m n = {!!}
G : (r : ℕ) (d : DirNum r) (x : N r) → ¬ (r ≡ 0) → sucnN (DirNum→ℕ {r} d) (doublesN r r x) ≡ xr d x
G zero d x 0≠0 = ⊥-elim (0≠0 refl)
G (suc r) d (bn x) r≠0 = {!!}
G (suc r) d (xr x x₁) r≠0 = {!!}
N→ℕ→N (suc r) (xr (↑ , ds) x) with max? ds
... | no ds≠max =
sucN
(ℕ→N (suc r)
(sucn (doubleℕ (DirNum→ℕ ds))
(doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
≡⟨ sym (ℕ→Nsuc (suc r)
(sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
⟩
ℕ→N (suc r)
(suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ r (doubleℕ (N→ℕ (suc r) x)))))
≡⟨ refl ⟩
ℕ→N (suc r)
(suc (sucn (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x))))
≡⟨ cong (λ z → ℕ→N (suc r) z)
(sym (sucnsuc (doubleℕ (DirNum→ℕ ds)) (doublesℕ (suc r) (N→ℕ (suc r) x))))
⟩
ℕ→N (suc r)
(sucn (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x))))
≡⟨ ℕ→Nsucn (suc r) (doubleℕ (DirNum→ℕ ds)) (suc (doublesℕ (suc r) (N→ℕ (suc r) x))) ⟩
sucnN (doubleℕ (DirNum→ℕ ds)) (ℕ→N (suc r) (suc (doublesℕ (suc r) (N→ℕ (suc r) x))))
≡⟨ cong (λ z → sucnN (doubleℕ (DirNum→ℕ ds)) z)
(ℕ→Nsuc (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x)))
⟩
-- (2^(r+1)*x + 1) + 2*ds
-- = 2*(2^r*x + ds) + 1
-- = 2*(
sucnN (doubleℕ (DirNum→ℕ ds)) (sucN (ℕ→N (suc r) (doublesℕ (suc r) (N→ℕ (suc r) x))))
≡⟨ {!!} ⟩ {!!}
... | yes ds≡max = {!!}
ℕ→N→ℕ : (r : ℕ) → (n : ℕ) → N→ℕ r (ℕ→N r n) ≡ n
ℕ→N→ℕ zero zero = refl
ℕ→N→ℕ (suc r) zero =
doubleℕ (DirNum→ℕ (zero-n r))
≡⟨ cong doubleℕ (zero-n≡0 {r}) ⟩
doubleℕ zero
≡⟨ refl ⟩
zero
∎
ℕ→N→ℕ zero (suc n) = cong suc (ℕ→N→ℕ zero n)
ℕ→N→ℕ (suc r) (suc n) =
N→ℕ (suc r) (sucN (ℕ→N (suc r) n))
≡⟨ N→ℕsucN (suc r) (ℕ→N (suc r) n) ⟩
suc (N→ℕ (suc r) (ℕ→N (suc r) n))
≡⟨ cong suc (ℕ→N→ℕ (suc r) n) ⟩
suc n
∎
N≃ℕ : (r : ℕ) → N r ≃ ℕ
N≃ℕ r = isoToEquiv (iso (N→ℕ r) (ℕ→N r) (ℕ→N→ℕ r) (N→ℕ→N r))
N≡ℕ : (r : ℕ) → N r ≡ ℕ
N≡ℕ r = ua (N≃ℕ r)
---- pos approach:
data NPos (n : ℕ) : Type₀ where
npos1 : NPos n
x⇀ : DirNum n → NPos n → NPos n
sucNPos : ∀ {n} → NPos n → NPos n
sucNPos {zero} npos1 = x⇀ tt npos1
sucNPos {zero} (x⇀ tt x) = x⇀ tt (sucNPos x)
sucNPos {suc n} npos1 = x⇀ (next (one-n (suc n))) npos1
sucNPos {suc n} (x⇀ d x) with (max? d)
... | (no _) = x⇀ (next d) x
... | (yes _) = x⇀ (zero-n (suc n)) (sucNPos x)
-- some examples for sanity check
2₂ : NPos 1
2₂ = x⇀ (↓ , tt) npos1
3₂ : NPos 1
3₂ = x⇀ (↑ , tt) npos1
4₂ : NPos 1
4₂ = x⇀ (↓ , tt) (x⇀ (↓ , tt) npos1)
2₄ : NPos 2
2₄ = x⇀ (↓ , (↑ , tt)) npos1 -- how does this make sense?
3₄ : NPos 2
3₄ = x⇀ (↑ , (↑ , tt)) npos1 -- how does this make sense?
-- sucnpos1≡x⇀one-n : ∀ {r} → sucNPos npos1 ≡ x⇀ (one-n r) npos1
-- sucnpos1≡x⇀one-n {zero} = refl
-- sucnpos1≡x⇀one-n {suc r} = {!!}
-- sucnposx⇀zero-n≡x⇀one-n : ∀ {r} {p} → sucNPos (x⇀ (zero-n r) p) ≡ x⇀ (one-n r) p
-- sucnposx⇀zero-n≡x⇀one-n {zero} {npos1} = {!!}
-- sucnposx⇀zero-n≡x⇀one-n {zero} {x⇀ x p} = {!!}
-- sucnposx⇀zero-n≡x⇀one-n {suc r} {p} = refl
nPosInd : ∀ {r} {P : NPos r → Type₀} →
P npos1 →
((p : NPos r) → P p → P (sucNPos p)) →
(p : NPos r) →
P p
nPosInd {r} {P} h1 hs ps = f ps
where
H : (p : NPos r) → P (x⇀ (zero-n r) p) → P (x⇀ (zero-n r) (sucNPos p))
--H p hx0p = hs (x⇀ (one-n r) p) (hs (x⇀ (zero-n r) p) hx0p)
f : (ps : NPos r) → P ps
f npos1 = h1
f (x⇀ d ps) with (max? d)
... | (no _) = {!nPosInd (hs npos1 h1) H ps!}
... | (yes _) = {!hs (x⇀ (zero-n r) ps) (nPosInd (hs npos1 h1) H ps)!}
-- nPosInd {zero} {P} h1 hs ps = f ps
-- where
-- H : (p : NPos zero) → P (x⇀ (zero-n zero) p) → P (x⇀ (zero-n zero) (sucNPos p))
-- H p hx0p = hs (x⇀ tt (x⇀ (zero-n zero) p)) (hs (x⇀ (zero-n zero) p) hx0p)
-- f : (ps : NPos zero) → P ps
-- f npos1 = h1
-- f (x⇀ tt ps) = nPosInd (hs npos1 h1) H ps
-- nPosInd {suc r} {P} h1 hs ps = f ps
-- where
-- H : (p : NPos (suc r)) → P (x⇀ (zero-n (suc r)) p) → P (x⇀ (zero-n (suc r)) (sucNPos p))
-- --H p hx0p = hs (x⇀ (one-n r) p) (hs (x⇀ (zero-n r) p) hx0p)
-- f : (ps : NPos (suc r)) → P ps
-- f npos1 = h1
-- f (x⇀ d ps) = {!!}
NPos→ℕ : ∀ r → NPos r → ℕ
NPos→ℕ zero npos1 = suc zero
NPos→ℕ zero (x⇀ tt x) = suc (NPos→ℕ zero x)
NPos→ℕ (suc r) npos1 = suc zero
NPos→ℕ (suc r) (x⇀ d x) with max? d
... | no _ = sucn (DirNum→ℕ (next d)) (doublesℕ (suc r) (NPos→ℕ (suc r) x))
... | yes _ = sucn (DirNum→ℕ (next d)) (doublesℕ (suc r) (suc (NPos→ℕ (suc r) x)))
-- NPos→ℕ (suc r) (x⇀ d x) =
-- sucn (DirNum→ℕ d) (doublesℕ (suc r) (NPos→ℕ (suc r) x))
NPos→ℕsucNPos : ∀ r → (p : NPos r) → NPos→ℕ r (sucNPos p) ≡ suc (NPos→ℕ r p)
NPos→ℕsucNPos zero npos1 = refl
NPos→ℕsucNPos zero (x⇀ d p) = cong suc (NPos→ℕsucNPos zero p)
NPos→ℕsucNPos (suc r) npos1 = {!!}
sucn (doubleℕ (DirNum→ℕ (zero-n r))) (doublesℕ r 2)
≡⟨ cong (λ y → sucn y (doublesℕ r 2)) (zero-n→0) ⟩
sucn (doubleℕ zero) (doublesℕ r 2)
≡⟨ refl ⟩
doublesℕ r 2
≡⟨ {!!} ⟩ {!!}
NPos→ℕsucNPos (suc r) (x⇀ d p) with max? d
... | no _ = {!!}
... | yes _ = {!!}
-- zero≠NPos→ℕ : ∀ {r} → (p : NPos r) → ¬ (zero ≡ NPos→ℕ r p)
-- zero≠NPos→ℕ {r} p = {!!}
ℕ→NPos : ∀ r → ℕ → NPos r
ℕ→NPos zero zero = npos1
ℕ→NPos zero (suc zero) = npos1
ℕ→NPos zero (suc (suc n)) = sucNPos (ℕ→NPos zero (suc n))
ℕ→NPos (suc r) zero = npos1
ℕ→NPos (suc r) (suc zero) = npos1
ℕ→NPos (suc r) (suc (suc n)) = sucNPos (ℕ→NPos (suc r) (suc n))
lemma : ∀ {r} → (ℕ→NPos r (NPos→ℕ r npos1)) ≡ npos1
lemma {zero} = refl
lemma {suc r} = refl
NPos→ℕ→NPos : ∀ r → (p : NPos r) → ℕ→NPos r (NPos→ℕ r p) ≡ p
NPos→ℕ→NPos r p = nPosInd lemma hs p
where
hs : (p : NPos r) → ℕ→NPos r (NPos→ℕ r p) ≡ p → ℕ→NPos r (NPos→ℕ r (sucNPos p)) ≡ (sucNPos p)
hs p hp =
ℕ→NPos r (NPos→ℕ r (sucNPos p))
≡⟨ {!!} ⟩
ℕ→NPos r (suc (NPos→ℕ r p))
≡⟨ {!!} ⟩
sucNPos (ℕ→NPos r (NPos→ℕ r p))
≡⟨ cong sucNPos hp ⟩
sucNPos p
∎
-- note: the cases for zero and suc r are almost identical
-- (why) does this need to split?
ℕ→NPos→ℕ : ∀ r → (n : ℕ) → NPos→ℕ r (ℕ→NPos r (suc n)) ≡ (suc n)
ℕ→NPos→ℕ zero zero = refl
ℕ→NPos→ℕ zero (suc n) =
NPos→ℕ zero (sucNPos (ℕ→NPos zero (suc n)))
≡⟨ {!!} ⟩
suc (NPos→ℕ zero (ℕ→NPos zero (suc n)))
≡⟨ cong suc (ℕ→NPos→ℕ zero n) ⟩
suc (suc n)
∎
ℕ→NPos→ℕ (suc r) zero = refl
ℕ→NPos→ℕ (suc r) (suc n) =
NPos→ℕ (suc r) (sucNPos (ℕ→NPos (suc r) (suc n)))
≡⟨ {!!} ⟩
suc (NPos→ℕ (suc r) (ℕ→NPos (suc r) (suc n)))
≡⟨ cong suc (ℕ→NPos→ℕ (suc r) n) ⟩
suc (suc n)
∎
|
algebraic-stack_agda0000_doc_14325 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use `Data.Vec.Functional` instead.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- Disabled to prevent warnings from other Table modules
{-# OPTIONS --warn=noUserWarning #-}
module Data.Table.Properties where
{-# WARNING_ON_IMPORT
"Data.Table.Properties was deprecated in v1.2.
Use Data.Vec.Functional.Properties instead."
#-}
open import Data.Table
open import Data.Table.Relation.Binary.Equality
open import Data.Bool.Base using (true; false; if_then_else_)
open import Data.Nat.Base using (zero; suc)
open import Data.Empty using (⊥-elim)
open import Data.Fin using (Fin; suc; zero; _≟_; punchIn)
import Data.Fin.Properties as FP
open import Data.Fin.Permutation as Perm using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
open import Data.List.Base as L using (List; _∷_; [])
open import Data.List.Relation.Unary.Any using (here; there; index)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.Product as Product using (Σ; ∃; _,_; proj₁; proj₂)
open import Data.Vec.Base as V using (Vec; _∷_; [])
import Data.Vec.Properties as VP
open import Level using (Level)
open import Function.Base using (_∘_; flip)
open import Function.Inverse using (Inverse)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; cong)
open import Relation.Nullary using (does)
open import Relation.Nullary.Decidable using (dec-true; dec-false)
open import Relation.Nullary.Negation using (contradiction)
private
variable
a : Level
A : Set a
------------------------------------------------------------------------
-- select
-- Selecting from any table is the same as selecting from a constant table.
select-const : ∀ {n} (z : A) (i : Fin n) t →
select z i t ≗ select z i (replicate (lookup t i))
select-const z i t j with does (j ≟ i)
... | true = refl
... | false = refl
-- Selecting an element from a table then looking it up is the same as looking
-- up the index in the original table
select-lookup : ∀ {n x i} (t : Table A n) →
lookup (select x i t) i ≡ lookup t i
select-lookup {i = i} t rewrite dec-true (i ≟ i) refl = refl
-- Selecting an element from a table then removing the same element produces a
-- constant table
select-remove : ∀ {n x} i (t : Table A (suc n)) →
remove i (select x i t) ≗ replicate {n = n} x
select-remove i t j rewrite dec-false (punchIn i j ≟ i) (FP.punchInᵢ≢i _ _)
= refl
------------------------------------------------------------------------
-- permute
-- Removing an index 'i' from a table permuted with 'π' is the same as
-- removing the element, then permuting with 'π' minus 'i'.
remove-permute : ∀ {m n} (π : Permutation (suc m) (suc n))
i (t : Table A (suc n)) →
remove (π ⟨$⟩ˡ i) (permute π t)
≗ permute (Perm.remove (π ⟨$⟩ˡ i) π) (remove i t)
remove-permute π i t j = P.cong (lookup t) (Perm.punchIn-permute′ π i j)
------------------------------------------------------------------------
-- fromList
fromList-∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → lookup (fromList xs) i ∈ xs
fromList-∈ {xs = x ∷ xs} zero = here refl
fromList-∈ {xs = x ∷ xs} (suc i) = there (fromList-∈ i)
index-fromList-∈ : ∀ {xs : List A} {i} → index (fromList-∈ {xs = xs} i) ≡ i
index-fromList-∈ {xs = x ∷ xs} {zero} = refl
index-fromList-∈ {xs = x ∷ xs} {suc i} = cong suc index-fromList-∈
fromList-index : ∀ {xs} {x : A} (x∈xs : x ∈ xs) → lookup (fromList xs) (index x∈xs) ≡ x
fromList-index (here px) = sym px
fromList-index (there x∈xs) = fromList-index x∈xs
------------------------------------------------------------------------
-- There exists an isomorphism between tables and vectors.
↔Vec : ∀ {n} → Inverse (≡-setoid A n) (P.setoid (Vec A n))
↔Vec = record
{ to = record { _⟨$⟩_ = toVec ; cong = VP.tabulate-cong }
; from = P.→-to-⟶ fromVec
; inverse-of = record
{ left-inverse-of = VP.lookup∘tabulate ∘ lookup
; right-inverse-of = VP.tabulate∘lookup
}
}
------------------------------------------------------------------------
-- Other
lookup∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → ∃ λ x → x ∈ xs
lookup∈ i = _ , fromList-∈ i
|
algebraic-stack_agda0000_doc_14326 |
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Unit
open import Oscar.Class.Leftunit
module Oscar.Class.Leftunit.ToUnit where
module _
{𝔞} {𝔄 : Ø 𝔞} {𝔢} {𝔈 : Ø 𝔢} {ℓ}
{_↦_ : 𝔄 → 𝔄 → Ø ℓ} (let _↦_ = _↦_; infix 4 _↦_)
{ε : 𝔈}
{_◃_ : 𝔈 → 𝔄 → 𝔄} (let _◃_ = _◃_; infix 16 _◃_)
{x : 𝔄}
⦃ _ : Leftunit.class _↦_ ε _◃_ x ⦄
where
instance
Leftunit--Unit : Unit.class (ε ◃ x ↦ x)
Leftunit--Unit .⋆ = leftunit
|
algebraic-stack_agda0000_doc_14327 | module Lectures.One where
-- Check background color
-- Check fontsize
-- Ask questions at *any* time
data ⊤ : Set where
tt : ⊤
data ⊥ : Set where
absurd : ⊥ → {P : Set} → P
absurd ()
-- Introduce most common key bindings
-- C-c C-l load
-- C-c C-, show context
-- C-c C-. show context + type
-- C-c C-SPACE input
-- C-c C-A auto
-- C-c C-r refine
-- C-c C-d type inference
-- C-c C-c pattern match
-- Briefly introduce syntax
-- Introduce Set 0
modus-ponens : {P Q : Set} → P → (P → Q) → Q
modus-ponens p f = f p
-- Introduce misfix operators
¬_ : Set → Set
¬ P = P → ⊥
contra-elim : {P : Set} → P → ¬ P → ⊥
contra-elim = modus-ponens
-- no-dne : {P : Set} → ¬ ¬ P → P
-- no-dne ¬¬P = {!!}
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
_isEven : ℕ → Set
zero isEven = ⊤
suc zero isEven = ⊥
suc (suc n) isEven = n isEven
half : (n : ℕ) → n isEven → ℕ
half zero tt = zero
half (suc (suc n)) p = suc (half n p)
_ : ℕ
_ = half 8 tt
-- Comment on termination checking
-- brexit : ⊥
-- brexit = brexit
|
algebraic-stack_agda0000_doc_14328 | {-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-}
module 13-propositional-truncation where
import 12-univalence
open 12-univalence public
-- Section 13 Propositional truncations, the image of a map, and the replacement axiom
-- Section 13.1 Propositional truncations
-- Definition 13.1.1
type-hom-Prop :
{ l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → UU (l1 ⊔ l2)
type-hom-Prop P Q = type-Prop P → type-Prop Q
hom-Prop :
{ l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU-Prop (l1 ⊔ l2)
hom-Prop P Q =
pair
( type-hom-Prop P Q)
( is-prop-function-type (type-Prop P) (type-Prop Q) (is-prop-type-Prop Q))
is-prop-type-hom-Prop :
{ l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → is-prop (type-hom-Prop P Q)
is-prop-type-hom-Prop P Q =
is-prop-function-type
( type-Prop P)
( type-Prop Q)
( is-prop-type-Prop Q)
equiv-Prop :
{ l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → UU (l1 ⊔ l2)
equiv-Prop P Q = (type-Prop P) ≃ (type-Prop Q)
precomp-Prop :
{ l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) →
(A → type-Prop P) → (Q : UU-Prop l3) →
(type-hom-Prop P Q) → (A → type-Prop Q)
precomp-Prop P f Q g = g ∘ f
is-propositional-truncation :
( l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) →
( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2)
is-propositional-truncation l P f =
(Q : UU-Prop l) → is-equiv (precomp-Prop P f Q)
universal-property-propositional-truncation :
( l : Level) {l1 l2 : Level} {A : UU l1}
(P : UU-Prop l2) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2)
universal-property-propositional-truncation l {A = A} P f =
(Q : UU-Prop l) (g : A → type-Prop Q) →
is-contr (Σ (type-hom-Prop P Q) (λ h → (h ∘ f) ~ g))
-- Some unnumbered remarks after Definition 13.1.3
universal-property-is-propositional-truncation :
(l : Level) {l1 l2 : Level} {A : UU l1}
(P : UU-Prop l2) (f : A → type-Prop P) →
is-propositional-truncation l P f →
universal-property-propositional-truncation l P f
universal-property-is-propositional-truncation l P f is-ptr-f Q g =
is-contr-equiv'
( Σ (type-hom-Prop P Q) (λ h → Id (h ∘ f) g))
( equiv-tot (λ h → equiv-funext))
( is-contr-map-is-equiv (is-ptr-f Q) g)
map-is-propositional-truncation :
{l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) →
({l : Level} → is-propositional-truncation l P f) →
(Q : UU-Prop l3) (g : A → type-Prop Q) → type-hom-Prop P Q
map-is-propositional-truncation P f is-ptr-f Q g =
pr1
( center
( universal-property-is-propositional-truncation _ P f is-ptr-f Q g))
htpy-is-propositional-truncation :
{l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) →
(is-ptr-f : {l : Level} → is-propositional-truncation l P f) →
(Q : UU-Prop l3) (g : A → type-Prop Q) →
((map-is-propositional-truncation P f is-ptr-f Q g) ∘ f) ~ g
htpy-is-propositional-truncation P f is-ptr-f Q g =
pr2
( center
( universal-property-is-propositional-truncation _ P f is-ptr-f Q g))
is-propositional-truncation-universal-property :
(l : Level) {l1 l2 : Level} {A : UU l1}
(P : UU-Prop l2) (f : A → type-Prop P) →
universal-property-propositional-truncation l P f →
is-propositional-truncation l P f
is-propositional-truncation-universal-property l P f up-f Q =
is-equiv-is-contr-map
( λ g → is-contr-equiv
( Σ (type-hom-Prop P Q) (λ h → (h ∘ f) ~ g))
( equiv-tot (λ h → equiv-funext))
( up-f Q g))
-- Remark 13.1.2
is-propositional-truncation' :
( l : Level) {l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) →
( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2)
is-propositional-truncation' l {A = A} P f =
(Q : UU-Prop l) → (A → type-Prop Q) → (type-hom-Prop P Q)
is-propositional-truncation-simpl :
{ l1 l2 : Level} {A : UU l1} (P : UU-Prop l2)
( f : A → type-Prop P) →
( (l : Level) → is-propositional-truncation' l P f) →
( (l : Level) → is-propositional-truncation l P f)
is-propositional-truncation-simpl P f up-P l Q =
is-equiv-is-prop
( is-prop-Π (λ x → is-prop-type-Prop Q))
( is-prop-Π (λ x → is-prop-type-Prop Q))
( up-P l Q)
-- Example 13.1.3
is-propositional-truncation-const-star :
{ l1 : Level} (A : UU-pt l1)
( l : Level) → is-propositional-truncation l unit-Prop (const (type-UU-pt A) unit star)
is-propositional-truncation-const-star A =
is-propositional-truncation-simpl
( unit-Prop)
( const (type-UU-pt A) unit star)
( λ l P f → const unit (type-Prop P) (f (pt-UU-pt A)))
-- Example 13.1.4
is-propositional-truncation-id :
{ l1 : Level} (P : UU-Prop l1) →
( l : Level) → is-propositional-truncation l P id
is-propositional-truncation-id P l Q =
is-equiv-id (type-hom-Prop P Q)
-- Proposition 13.1.5
abstract
is-equiv-is-equiv-precomp-Prop :
{l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (f : type-hom-Prop P Q) →
((l : Level) (R : UU-Prop l) →
is-equiv (precomp-Prop Q f R)) → is-equiv f
is-equiv-is-equiv-precomp-Prop P Q f is-equiv-precomp-f =
is-equiv-is-equiv-precomp-subuniverse id (λ l → is-prop) P Q f
is-equiv-precomp-f
triangle-3-for-2-is-ptruncation :
{l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3)
(f : A → type-Prop P) (f' : A → type-Prop P')
(h : type-hom-Prop P P') (H : (h ∘ f) ~ f') →
{l : Level} (Q : UU-Prop l) →
( precomp-Prop P' f' Q) ~
( (precomp-Prop P f Q) ∘ (precomp h (type-Prop Q)))
triangle-3-for-2-is-ptruncation P P' f f' h H Q g =
eq-htpy (λ p → inv (ap g (H p)))
is-equiv-is-ptruncation-is-ptruncation :
{l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3)
(f : A → type-Prop P) (f' : A → type-Prop P')
(h : type-hom-Prop P P') (H : (h ∘ f) ~ f') →
((l : Level) → is-propositional-truncation l P f) →
((l : Level) → is-propositional-truncation l P' f') →
is-equiv h
is-equiv-is-ptruncation-is-ptruncation P P' f f' h H is-ptr-P is-ptr-P' =
is-equiv-is-equiv-precomp-Prop P P' h
( λ l Q →
is-equiv-right-factor
( precomp-Prop P' f' Q)
( precomp-Prop P f Q)
( precomp h (type-Prop Q))
( triangle-3-for-2-is-ptruncation P P' f f' h H Q)
( is-ptr-P l Q)
( is-ptr-P' l Q))
is-ptruncation-is-ptruncation-is-equiv :
{l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3)
(f : A → type-Prop P) (f' : A → type-Prop P')
(h : type-hom-Prop P P') (H : (h ∘ f) ~ f') →
is-equiv h →
((l : Level) → is-propositional-truncation l P f) →
((l : Level) → is-propositional-truncation l P' f')
is-ptruncation-is-ptruncation-is-equiv P P' f f' h H is-equiv-h is-ptr-f l Q =
is-equiv-comp
( precomp-Prop P' f' Q)
( precomp-Prop P f Q)
( precomp h (type-Prop Q))
( triangle-3-for-2-is-ptruncation P P' f f' h H Q)
( is-equiv-precomp-is-equiv h is-equiv-h (type-Prop Q))
( is-ptr-f l Q)
is-ptruncation-is-equiv-is-ptruncation :
{l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3)
(f : A → type-Prop P) (f' : A → type-Prop P')
(h : type-hom-Prop P P') (H : (h ∘ f) ~ f') →
((l : Level) → is-propositional-truncation l P' f') →
is-equiv h →
((l : Level) → is-propositional-truncation l P f)
is-ptruncation-is-equiv-is-ptruncation P P' f f' h H is-ptr-f' is-equiv-h l Q =
is-equiv-left-factor
( precomp-Prop P' f' Q)
( precomp-Prop P f Q)
( precomp h (type-Prop Q))
( triangle-3-for-2-is-ptruncation P P' f f' h H Q)
( is-ptr-f' l Q)
( is-equiv-precomp-is-equiv h is-equiv-h (type-Prop Q))
-- Corollary 13.1.6
is-uniquely-unique-propositional-truncation :
{l1 l2 l3 : Level} {A : UU l1} (P : UU-Prop l2) (P' : UU-Prop l3)
(f : A → type-Prop P) (f' : A → type-Prop P') →
({l : Level} → is-propositional-truncation l P f) →
({l : Level} → is-propositional-truncation l P' f') →
is-contr (Σ (equiv-Prop P P') (λ e → (map-equiv e ∘ f) ~ f'))
is-uniquely-unique-propositional-truncation P P' f f' is-ptr-f is-ptr-f' =
is-contr-total-Eq-substructure
( universal-property-is-propositional-truncation _ P f is-ptr-f P' f')
( is-subtype-is-equiv)
( map-is-propositional-truncation P f is-ptr-f P' f')
( htpy-is-propositional-truncation P f is-ptr-f P' f')
( is-equiv-is-ptruncation-is-ptruncation P P' f f'
( map-is-propositional-truncation P f is-ptr-f P' f')
( htpy-is-propositional-truncation P f is-ptr-f P' f')
( λ l → is-ptr-f)
( λ l → is-ptr-f'))
-- Axiom 13.1.8
postulate trunc-Prop : {l : Level} → UU l → UU-Prop l
type-trunc-Prop : {l : Level} → UU l → UU l
type-trunc-Prop A = pr1 (trunc-Prop A)
is-prop-type-trunc-Prop : {l : Level} (A : UU l) → is-prop (type-trunc-Prop A)
is-prop-type-trunc-Prop A = pr2 (trunc-Prop A)
postulate unit-trunc-Prop : {l : Level} (A : UU l) → A → type-Prop (trunc-Prop A)
postulate is-propositional-truncation-trunc-Prop : {l1 l2 : Level} (A : UU l1) → is-propositional-truncation l2 (trunc-Prop A) (unit-trunc-Prop A)
universal-property-trunc-Prop : {l1 l2 : Level} (A : UU l1) →
universal-property-propositional-truncation l2
( trunc-Prop A)
( unit-trunc-Prop A)
universal-property-trunc-Prop A =
universal-property-is-propositional-truncation _
( trunc-Prop A)
( unit-trunc-Prop A)
( is-propositional-truncation-trunc-Prop A)
map-universal-property-trunc-Prop :
{l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) →
(A → type-Prop P) → type-hom-Prop (trunc-Prop A) P
map-universal-property-trunc-Prop {A = A} P f =
map-is-propositional-truncation
( trunc-Prop A)
( unit-trunc-Prop A)
( is-propositional-truncation-trunc-Prop A)
( P)
( f)
-- Proposition 13.1.9
unique-functor-trunc-Prop :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-contr
( Σ ( type-hom-Prop (trunc-Prop A) (trunc-Prop B))
( λ h → (h ∘ (unit-trunc-Prop A)) ~ ((unit-trunc-Prop B) ∘ f)))
unique-functor-trunc-Prop {l1} {l2} {A} {B} f =
universal-property-trunc-Prop A (trunc-Prop B) ((unit-trunc-Prop B) ∘ f)
functor-trunc-Prop :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
(A → B) → type-hom-Prop (trunc-Prop A) (trunc-Prop B)
functor-trunc-Prop f =
pr1 (center (unique-functor-trunc-Prop f))
htpy-functor-trunc-Prop :
{ l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
( (functor-trunc-Prop f) ∘ (unit-trunc-Prop A)) ~ ((unit-trunc-Prop B) ∘ f)
htpy-functor-trunc-Prop f =
pr2 (center (unique-functor-trunc-Prop f))
htpy-uniqueness-functor-trunc-Prop :
{ l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
( h : type-hom-Prop (trunc-Prop A) (trunc-Prop B)) →
( ( h ∘ (unit-trunc-Prop A)) ~ ((unit-trunc-Prop B) ∘ f)) →
(functor-trunc-Prop f) ~ h
htpy-uniqueness-functor-trunc-Prop f h H =
htpy-eq (ap pr1 (contraction (unique-functor-trunc-Prop f) (pair h H)))
id-functor-trunc-Prop :
{ l1 : Level} {A : UU l1} → functor-trunc-Prop (id {A = A}) ~ id
id-functor-trunc-Prop {l1} {A} =
htpy-uniqueness-functor-trunc-Prop id id refl-htpy
comp-functor-trunc-Prop :
{ l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3}
( g : B → C) (f : A → B) →
( functor-trunc-Prop (g ∘ f)) ~
( (functor-trunc-Prop g) ∘ (functor-trunc-Prop f))
comp-functor-trunc-Prop g f =
htpy-uniqueness-functor-trunc-Prop
( g ∘ f)
( (functor-trunc-Prop g) ∘ (functor-trunc-Prop f))
( ( (functor-trunc-Prop g) ·l (htpy-functor-trunc-Prop f)) ∙h
( ( htpy-functor-trunc-Prop g) ·r f))
-- Section 13.2 Propositional truncations as higher inductive types
-- Definition 13.2.1
case-paths-induction-principle-propositional-truncation :
{ l : Level} {l1 l2 : Level} {A : UU l1}
( P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) →
( B : type-Prop P → UU l) → UU (l ⊔ l2)
case-paths-induction-principle-propositional-truncation P α f B =
(p q : type-Prop P) (x : B p) (y : B q) → Id (tr B (α p q) x) y
induction-principle-propositional-truncation :
(l : Level) {l1 l2 : Level} {A : UU l1}
(P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) →
UU (lsuc l ⊔ l1 ⊔ l2)
induction-principle-propositional-truncation l {l1} {l2} {A} P α f =
( B : type-Prop P → UU l) →
( g : (x : A) → (B (f x))) →
( β : case-paths-induction-principle-propositional-truncation P α f B) →
Σ ((p : type-Prop P) → B p) (λ h → (x : A) → Id (h (f x)) (g x))
-- Lemma 13.2.2
is-prop-case-paths-induction-principle-propositional-truncation :
{ l : Level} {l1 l2 : Level} {A : UU l1}
( P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) →
( B : type-Prop P → UU l) →
case-paths-induction-principle-propositional-truncation P α f B →
( p : type-Prop P) → is-prop (B p)
is-prop-case-paths-induction-principle-propositional-truncation P α f B β p =
is-prop-is-contr-if-inh (λ x → pair (tr B (α p p) x) (β p p x))
case-paths-induction-principle-propositional-truncation-is-prop :
{ l : Level} {l1 l2 : Level} {A : UU l1}
( P : UU-Prop l2) (α : (p q : type-Prop P) → Id p q) (f : A → type-Prop P) →
( B : type-Prop P → UU l) →
( (p : type-Prop P) → is-prop (B p)) →
case-paths-induction-principle-propositional-truncation P α f B
case-paths-induction-principle-propositional-truncation-is-prop
P α f B is-prop-B p q x y =
is-prop'-is-prop (is-prop-B q) (tr B (α p q) x) y
-- Definition 13.2.3
dependent-universal-property-propositional-truncation :
( l : Level) {l1 l2 : Level} {A : UU l1}
( P : UU-Prop l2) (f : A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2)
dependent-universal-property-propositional-truncation l {l1} {l2} {A} P f =
( Q : type-Prop P → UU-Prop l) → is-equiv (precomp-Π f (type-Prop ∘ Q))
-- Theorem 13.2.4
abstract
dependent-universal-property-is-propositional-truncation :
{ l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) →
( {l : Level} → is-propositional-truncation l P f) →
( {l : Level} → dependent-universal-property-propositional-truncation l P f)
dependent-universal-property-is-propositional-truncation
{l1} {l2} {A} P f is-ptr-f Q =
is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map
( λ (g : A → type-Prop P) → (x : A) → type-Prop (Q (g x)))
( precomp f (type-Prop P))
( λ h → precomp-Π f (λ p → type-Prop (Q (h p))))
( is-ptr-f P)
( is-equiv-top-is-equiv-bottom-square
( inv-choice-∞
{ C = λ (x : type-Prop P) (p : type-Prop P) → type-Prop (Q p)})
( inv-choice-∞
{ C = λ (x : A) (p : type-Prop P) → type-Prop (Q p)})
( toto
( λ (g : A → type-Prop P) → (x : A) → type-Prop (Q (g x)))
( precomp f (type-Prop P))
( λ h → precomp-Π f (λ p → type-Prop (Q (h p)))))
( precomp f (Σ (type-Prop P) (λ p → type-Prop (Q p))))
( ind-Σ (λ h h' → refl))
( is-equiv-inv-choice-∞)
( is-equiv-inv-choice-∞)
( is-ptr-f (Σ-Prop P Q)))
( id {A = type-Prop P})
dependent-universal-property-trunc-Prop :
{l l1 : Level} (A : UU l1) →
dependent-universal-property-propositional-truncation l
( trunc-Prop A)
( unit-trunc-Prop A)
dependent-universal-property-trunc-Prop A =
dependent-universal-property-is-propositional-truncation
( trunc-Prop A)
( unit-trunc-Prop A)
( is-propositional-truncation-trunc-Prop A)
abstract
is-propositional-truncation-dependent-universal-property :
{ l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) →
( {l : Level} →
dependent-universal-property-propositional-truncation l P f) →
( {l : Level} → is-propositional-truncation l P f)
is-propositional-truncation-dependent-universal-property P f dup-f Q =
dup-f (λ p → Q)
abstract
induction-principle-dependent-universal-property-propositional-truncation :
{ l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) →
( {l : Level} →
dependent-universal-property-propositional-truncation l P f) →
( {l : Level} → induction-principle-propositional-truncation l P
( is-prop'-is-prop (is-prop-type-Prop P)) f)
induction-principle-dependent-universal-property-propositional-truncation
P f dup-f B g α =
tot
( λ h → htpy-eq)
( center
( is-contr-map-is-equiv
( dup-f
( λ p →
pair
( B p)
( is-prop-case-paths-induction-principle-propositional-truncation
( P)
( is-prop'-is-prop (is-prop-type-Prop P))
f B α p)))
( g)))
abstract
dependent-universal-property-induction-principle-propositional-truncation :
{ l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P) →
( {l : Level} → induction-principle-propositional-truncation l P
( is-prop'-is-prop (is-prop-type-Prop P)) f) →
( {l : Level} → dependent-universal-property-propositional-truncation l P f)
dependent-universal-property-induction-principle-propositional-truncation
P f ind-f Q =
is-equiv-is-prop
( is-prop-Π (λ p → is-prop-type-Prop (Q p)))
( is-prop-Π (λ a → is-prop-type-Prop (Q (f a))))
( λ g →
pr1
( ind-f
( λ p → type-Prop (Q p))
( g)
( case-paths-induction-principle-propositional-truncation-is-prop
( P)
( is-prop'-is-prop (is-prop-type-Prop P))
( f)
( λ p → type-Prop (Q p))
( λ p → is-prop-type-Prop (Q p)))))
-- Exercises
-- Exercise 13.1
is-propositional-truncation-retract :
{l l1 l2 : Level} {A : UU l1} (P : UU-Prop l2) →
(R : (type-Prop P) retract-of A) →
is-propositional-truncation l P (retraction-retract-of R)
is-propositional-truncation-retract {A = A} P R Q =
is-equiv-is-prop
( is-prop-function-type
( type-Prop P)
( type-Prop Q)
( is-prop-type-Prop Q))
( is-prop-function-type
( A)
( type-Prop Q)
( is-prop-type-Prop Q))
( λ g → g ∘ (section-retract-of R))
-- Exercise 13.2
is-propositional-truncation-prod :
{l1 l2 l3 l4 : Level}
{A : UU l1} (P : UU-Prop l2) (f : A → type-Prop P)
{A' : UU l3} (P' : UU-Prop l4) (f' : A' → type-Prop P') →
({l : Level} → is-propositional-truncation l P f) →
({l : Level} → is-propositional-truncation l P' f') →
{l : Level} → is-propositional-truncation l (prod-Prop P P') (functor-prod f f')
is-propositional-truncation-prod P f P' f' is-ptr-f is-ptr-f' Q =
is-equiv-top-is-equiv-bottom-square
( ev-pair)
( ev-pair)
( precomp (functor-prod f f') (type-Prop Q))
( λ h a a' → h (f a) (f' a'))
( refl-htpy)
( is-equiv-ev-pair)
( is-equiv-ev-pair)
( is-equiv-comp'
( λ h a a' → h a (f' a'))
( λ h a p' → h (f a) p')
( is-ptr-f (pair (type-hom-Prop P' Q) (is-prop-type-hom-Prop P' Q)))
( is-equiv-postcomp-Π
( λ a g a' → g (f' a'))
( λ a → is-ptr-f' Q)))
equiv-prod-trunc-Prop :
{l1 l2 : Level} (A : UU l1) (A' : UU l2) →
equiv-Prop (trunc-Prop (A × A')) (prod-Prop (trunc-Prop A) (trunc-Prop A'))
equiv-prod-trunc-Prop A A' =
pr1
( center
( is-uniquely-unique-propositional-truncation
( trunc-Prop (A × A'))
( prod-Prop (trunc-Prop A) (trunc-Prop A'))
( unit-trunc-Prop (A × A'))
( functor-prod (unit-trunc-Prop A) (unit-trunc-Prop A'))
( is-propositional-truncation-trunc-Prop (A × A'))
( is-propositional-truncation-prod
( trunc-Prop A)
( unit-trunc-Prop A)
( trunc-Prop A')
( unit-trunc-Prop A')
( is-propositional-truncation-trunc-Prop A)
( is-propositional-truncation-trunc-Prop A'))))
-- Exercise 13.3
-- Exercise 13.3(a)
conj-Prop = prod-Prop
disj-Prop :
{l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU-Prop (l1 ⊔ l2)
disj-Prop P Q = trunc-Prop (coprod (type-Prop P) (type-Prop Q))
inl-disj-Prop :
{l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) →
type-hom-Prop P (disj-Prop P Q)
inl-disj-Prop P Q =
(unit-trunc-Prop (coprod (type-Prop P) (type-Prop Q))) ∘ inl
inr-disj-Prop :
{l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) →
type-hom-Prop Q (disj-Prop P Q)
inr-disj-Prop P Q =
(unit-trunc-Prop (coprod (type-Prop P) (type-Prop Q))) ∘ inr
-- Exercise 13.3(b)
ev-disj-Prop :
{l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) →
type-hom-Prop
( hom-Prop (disj-Prop P Q) R)
( conj-Prop (hom-Prop P R) (hom-Prop Q R))
ev-disj-Prop P Q R h =
pair (h ∘ (inl-disj-Prop P Q)) (h ∘ (inr-disj-Prop P Q))
inv-ev-disj-Prop :
{l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) →
type-hom-Prop
( conj-Prop (hom-Prop P R) (hom-Prop Q R))
( hom-Prop (disj-Prop P Q) R)
inv-ev-disj-Prop P Q R (pair f g) =
map-universal-property-trunc-Prop R (ind-coprod (λ t → type-Prop R) f g)
is-equiv-ev-disj-Prop :
{l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) →
is-equiv (ev-disj-Prop P Q R)
is-equiv-ev-disj-Prop P Q R =
is-equiv-is-prop
( is-prop-type-Prop (hom-Prop (disj-Prop P Q) R))
( is-prop-type-Prop (conj-Prop (hom-Prop P R) (hom-Prop Q R)))
( inv-ev-disj-Prop P Q R)
-- Exercise 13.5
{-
impredicative-trunc-Prop :
{l : Level} → UU l → UU-Prop (lsuc l)
impredicative-trunc-Prop {l} A =
(P : UU-Prop l) → (A → type-Prop P) → type-Prop P
-}
|
algebraic-stack_agda0000_doc_14329 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for reasoning with a partial setoid
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.PartialSetoid
{s₁ s₂} (S : PartialSetoid s₁ s₂) where
open PartialSetoid S
import Relation.Binary.Reasoning.Base.Partial _≈_ trans as Base
------------------------------------------------------------------------
-- Re-export the contents of the base module
open Base public
hiding (step-∼)
------------------------------------------------------------------------
-- Additional reasoning combinators
infixr 2 step-≈ step-≈˘
-- A step using an equality
step-≈ = Base.step-∼
syntax step-≈ x y≈z x≈y = x ≈⟨ x≈y ⟩ y≈z
-- A step using a symmetric equality
step-≈˘ : ∀ x {y z} → y IsRelatedTo z → y ≈ x → x IsRelatedTo z
step-≈˘ x y∼z y≈x = x ≈⟨ sym y≈x ⟩ y∼z
syntax step-≈˘ x y≈z y≈x = x ≈˘⟨ y≈x ⟩ y≈z
|
algebraic-stack_agda0000_doc_14330 |
module Issue1232.Fin where
data Fin : Set where
zero : Fin
|
algebraic-stack_agda0000_doc_14331 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote
import LibraBFT.Impl.Consensus.ConsensusTypes.TimeoutCertificate as TimeoutCertificate
open import LibraBFT.Impl.OBM.Rust.RustTypes
import LibraBFT.Impl.Types.CryptoProxies as CryptoProxies
import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures
import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Util.Crypto
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.Hash
import Util.KVMap as Map
open import Util.Prelude
module LibraBFT.Impl.Consensus.PendingVotes where
insertVoteM : Vote → ValidatorVerifier → LBFT VoteReceptionResult
insertVoteM vote vv = do
let liDigest = hashLI (vote ^∙ vLedgerInfo)
atv ← use (lPendingVotes ∙ pvAuthorToVote)
caseMD Map.lookup (vote ^∙ vAuthor) atv of λ where
(just previouslySeenVote) →
ifD liDigest ≟Hash (hashLI (previouslySeenVote ^∙ vLedgerInfo))
then (do
let newTimeoutVote = Vote.isTimeout vote ∧ not (Vote.isTimeout previouslySeenVote)
if not newTimeoutVote
then pure DuplicateVote
else continue1 liDigest)
else
pure EquivocateVote
nothing →
continue1 liDigest
where
continue2 : U64 → LBFT VoteReceptionResult
continue1 : HashValue → LBFT VoteReceptionResult
continue1 liDigest = do
pv ← use lPendingVotes
lPendingVotes ∙ pvAuthorToVote %= Map.kvm-insert-Haskell (vote ^∙ vAuthor) vote
let liWithSig = CryptoProxies.addToLi (vote ^∙ vAuthor) (vote ^∙ vSignature)
(fromMaybe (LedgerInfoWithSignatures∙new (vote ^∙ vLedgerInfo) Map.empty)
(Map.lookup liDigest (pv ^∙ pvLiDigestToVotes)))
lPendingVotes ∙ pvLiDigestToVotes %= Map.kvm-insert-Haskell liDigest liWithSig
case⊎D ValidatorVerifier.checkVotingPower vv (Map.kvm-keys (liWithSig ^∙ liwsSignatures)) of λ where
(Right unit) →
pure (NewQuorumCertificate (QuorumCert∙new (vote ^∙ vVoteData) liWithSig))
(Left (ErrVerify (TooLittleVotingPower votingPower _))) →
continue2 votingPower
(Left _) →
pure VRR_TODO
continue2 qcVotingPower =
caseMD vote ^∙ vTimeoutSignature of λ where
(just timeoutSignature) → do
pv ← use lPendingVotes
let partialTc = TimeoutCertificate.addSignature (vote ^∙ vAuthor) timeoutSignature
(fromMaybe (TimeoutCertificate∙new (Vote.timeout vote))
(pv ^∙ pvMaybePartialTC))
lPendingVotes ∙ pvMaybePartialTC %= const (just partialTc)
case⊎D ValidatorVerifier.checkVotingPower vv (Map.kvm-keys (partialTc ^∙ tcSignatures)) of λ where
(Right unit) →
pure (NewTimeoutCertificate partialTc)
(Left (ErrVerify (TooLittleVotingPower votingPower _))) →
pure (TCVoteAdded votingPower)
(Left _) →
pure VRR_TODO
nothing →
pure (QCVoteAdded qcVotingPower)
|
algebraic-stack_agda0000_doc_14332 | {-# OPTIONS --without-K --safe #-}
module Polynomial.Simple.AlmostCommutativeRing where
import Algebra.Solver.Ring.AlmostCommutativeRing as Complex
open import Level
open import Relation.Binary
open import Algebra
open import Algebra.Structures
open import Algebra.FunctionProperties
import Algebra.Morphism as Morphism
open import Function
open import Level
open import Data.Maybe as Maybe using (Maybe; just; nothing)
record IsAlmostCommutativeRing
{a ℓ} {A : Set a} (_≈_ : Rel A ℓ)
(_+_ _*_ : A → A → A) (-_ : A → A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1#
-‿cong : -_ Preserves _≈_ ⟶ _≈_
-‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y))
-‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y))
open IsCommutativeSemiring isCommutativeSemiring public
import Polynomial.Exponentiation as Exp
record AlmostCommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
infixr 8 _^_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
0≟_ : (x : Carrier) → Maybe (0# ≈ x)
1# : Carrier
isAlmostCommutativeRing :
IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1#
open IsAlmostCommutativeRing isAlmostCommutativeRing hiding (refl) public
open import Data.Nat as ℕ using (ℕ)
commutativeSemiring : CommutativeSemiring _ _
commutativeSemiring =
record { isCommutativeSemiring = isCommutativeSemiring }
open CommutativeSemiring commutativeSemiring public
using ( +-semigroup; +-monoid; +-commutativeMonoid
; *-semigroup; *-monoid; *-commutativeMonoid
; semiring
)
rawRing : RawRing _ _
rawRing = record
{ Carrier = Carrier
; _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; -_ = -_
; 0# = 0#
; 1# = 1#
}
_^_ : Carrier → ℕ → Carrier
_^_ = Exp._^_ rawRing
{-# NOINLINE _^_ #-}
refl : ∀ {x} → x ≈ x
refl = IsAlmostCommutativeRing.refl isAlmostCommutativeRing
flipped : ∀ {c ℓ} → AlmostCommutativeRing c ℓ → AlmostCommutativeRing c ℓ
flipped rng = record
{ Carrier = Carrier
; _≈_ = _≈_
; _+_ = flip _+_
; _*_ = flip _*_
; -_ = -_
; 0# = 0#
; 0≟_ = 0≟_
; 1# = 1#
; isAlmostCommutativeRing = record
{ -‿cong = -‿cong
; -‿*-distribˡ = λ x y → *-comm y (- x) ⟨ trans ⟩ (-‿*-distribˡ x y ⟨ trans ⟩ -‿cong (*-comm x y))
; -‿+-comm = λ x y → -‿+-comm y x
; isCommutativeSemiring = record
{ +-isCommutativeMonoid = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = flip (+-cong )
}
; assoc = λ x y z → sym (+-assoc z y x)
}
; identityˡ = +-identityʳ
; comm = λ x y → +-comm y x
}
; *-isCommutativeMonoid = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = flip (*-cong )
}
; assoc = λ x y z → sym (*-assoc z y x)
}
; identityˡ = *-identityʳ
; comm = λ x y → *-comm y x
}
; distribʳ = λ x y z → distribˡ _ _ _
; zeroˡ = zeroʳ
}
}
} where open AlmostCommutativeRing rng
record _-Raw-AlmostCommutative⟶_
{c r₁ r₂ r₃}
(From : RawRing c r₁)
(To : AlmostCommutativeRing r₂ r₃) : Set (c ⊔ r₁ ⊔ r₂ ⊔ r₃) where
private
module F = RawRing From
module T = AlmostCommutativeRing To
open Morphism.Definitions F.Carrier T.Carrier T._≈_
field
⟦_⟧ : Morphism
+-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_
*-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_
-‿homo : Homomorphic₁ ⟦_⟧ F.-_ T.-_
0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0#
1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1#
-raw-almostCommutative⟶
: ∀ {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) →
AlmostCommutativeRing.rawRing R -Raw-AlmostCommutative⟶ R
-raw-almostCommutative⟶ R = record
{ ⟦_⟧ = id
; +-homo = λ _ _ → refl
; *-homo = λ _ _ → refl
; -‿homo = λ _ → refl
; 0-homo = refl
; 1-homo = refl
}
where open AlmostCommutativeRing R
-- A homomorphism induces a notion of equivalence on the raw ring.
Induced-equivalence :
∀ {c₁ c₂ ℓ₁ ℓ₂} {Coeff : RawRing c₁ ℓ₁} {R : AlmostCommutativeRing c₂ ℓ₂} →
Coeff -Raw-AlmostCommutative⟶ R → Rel (RawRing.Carrier Coeff) ℓ₂
Induced-equivalence {R = R} morphism a b = ⟦ a ⟧ ≈ ⟦ b ⟧
where
open AlmostCommutativeRing R
open _-Raw-AlmostCommutative⟶_ morphism
------------------------------------------------------------------------
-- Conversions
-- Commutative rings are almost commutative rings.
fromCommutativeRing : ∀ {r₁ r₂} → (CR : CommutativeRing r₁ r₂) → (∀ x → Maybe ((CommutativeRing._≈_ CR) (CommutativeRing.0# CR) x)) → AlmostCommutativeRing _ _
fromCommutativeRing CR 0≟_ = record
{ isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿cong = -‿cong
; -‿*-distribˡ = -‿*-distribˡ
; -‿+-comm = ⁻¹-∙-comm
}
; 0≟_ = 0≟_
}
where
open CommutativeRing CR
import Algebra.Properties.Ring as R; open R ring
import Algebra.Properties.AbelianGroup as AG; open AG +-abelianGroup
fromCommutativeSemiring : ∀ {r₁ r₂} → (CS : CommutativeSemiring r₁ r₂) → (∀ x → Maybe ((CommutativeSemiring._≈_ CS) (CommutativeSemiring.0# CS) x)) → AlmostCommutativeRing _ _
fromCommutativeSemiring CS 0≟_ = record
{ -_ = id
; isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿cong = id
; -‿*-distribˡ = λ _ _ → refl
; -‿+-comm = λ _ _ → refl
}
; 0≟_ = 0≟_
}
where open CommutativeSemiring CS
|
algebraic-stack_agda0000_doc_14333 | {-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Bool
open import lib.types.Empty
open import lib.types.Paths
open import lib.types.Pi
open import lib.types.Sigma
{-
This file contains various lemmas that rely on lib.types.Paths or
functional extensionality for pointed maps.
-}
module lib.types.Pointed where
{- Sequences of pointed maps and paths between their compositions -}
infixr 80 _◃⊙∘_
data ⊙FunctionSeq {i} : Ptd i → Ptd i → Type (lsucc i) where
⊙idf-seq : {X : Ptd i} → ⊙FunctionSeq X X
_◃⊙∘_ : {X Y Z : Ptd i} (g : Y ⊙→ Z) (fs : ⊙FunctionSeq X Y) → ⊙FunctionSeq X Z
infix 30 _⊙–→_
_⊙–→_ = ⊙FunctionSeq
infix 90 _◃⊙idf
_◃⊙idf : ∀ {i} {X Y : Ptd i} → (X ⊙→ Y) → X ⊙–→ Y
_◃⊙idf fs = fs ◃⊙∘ ⊙idf-seq
⊙compose : ∀ {i} {X Y : Ptd i} → (X ⊙–→ Y) → X ⊙→ Y
⊙compose ⊙idf-seq = ⊙idf _
⊙compose (g ◃⊙∘ fs) = g ⊙∘ ⊙compose fs
record _=⊙∘_ {i} {X Y : Ptd i} (fs gs : X ⊙–→ Y) : Type i where
constructor =⊙∘-in
field
=⊙∘-out : ⊙compose fs == ⊙compose gs
open _=⊙∘_ public
{- Pointed maps -}
⊙→-level : ∀ {i j} (X : Ptd i) (Y : Ptd j)
{n : ℕ₋₂}
→ has-level n (de⊙ Y)
→ has-level n (X ⊙→ Y)
⊙→-level X Y Y-level =
Σ-level
(Π-level (λ _ → Y-level))
(λ f' → =-preserves-level Y-level)
⊙app= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y}
→ f == g → f ⊙∼ g
⊙app= {X = X} {Y = Y} p =
app= (fst= p) , ↓-ap-in (_== pt Y) (λ u → u (pt X)) (snd= p)
-- function extensionality for pointed maps
⊙λ= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y}
→ f ⊙∼ g → f == g
⊙λ= {g = g} (p , α) = pair= (λ= p)
(↓-app=cst-in (↓-idf=cst-out α ∙ ap (_∙ snd g) (! (app=-β p _))))
⊙λ=' : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : X ⊙→ Y}
(p : fst f ∼ fst g)
(α : snd f == snd g [ (λ y → y == pt Y) ↓ p (pt X) ])
→ f == g
⊙λ=' {g = g} = curry ⊙λ=
-- associativity of pointed maps
⊙∘-assoc-pt : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
{a₁ a₂ : A} (f : A → B) {b : B} (g : B → C) {c : C}
(p : a₁ == a₂) (q : f a₂ == b) (r : g b == c)
→ ⊙∘-pt (g ∘ f) p (⊙∘-pt g q r) == ⊙∘-pt g (⊙∘-pt f p q) r
⊙∘-assoc-pt _ _ idp _ _ = idp
⊙∘-assoc : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(h : Z ⊙→ W) (g : Y ⊙→ Z) (f : X ⊙→ Y)
→ ((h ⊙∘ g) ⊙∘ f) ⊙∼ (h ⊙∘ (g ⊙∘ f))
⊙∘-assoc (h , hpt) (g , gpt) (f , fpt) = (λ _ → idp) , ⊙∘-assoc-pt g h fpt gpt hpt
⊙∘-cst-l : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ (f : X ⊙→ Y) → (⊙cst :> (Y ⊙→ Z)) ⊙∘ f ⊙∼ ⊙cst
⊙∘-cst-l {Z = Z} f = (λ _ → idp) , ap (_∙ idp) (ap-cst (pt Z) (snd f))
⊙∘-cst-r : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
→ (f : Y ⊙→ Z) → f ⊙∘ (⊙cst :> (X ⊙→ Y)) ⊙∼ ⊙cst
⊙∘-cst-r {X = X} f = (λ _ → snd f) , ↓-idf=cst-in' idp
private
⊙coe-pt : ∀ {i} {X Y : Ptd i} (p : X == Y)
→ coe (ap de⊙ p) (pt X) == pt Y
⊙coe-pt idp = idp
⊙coe : ∀ {i} {X Y : Ptd i}
→ X == Y → X ⊙→ Y
⊙coe p = coe (ap de⊙ p) , ⊙coe-pt p
⊙coe-equiv : ∀ {i} {X Y : Ptd i}
→ X == Y → X ⊙≃ Y
⊙coe-equiv p = ⊙coe p , snd (coe-equiv (ap de⊙ p))
transport-post⊙∘ : ∀ {i} {j} (X : Ptd i) {Y Z : Ptd j} (p : Y == Z)
(f : X ⊙→ Y)
→ transport (X ⊙→_) p f == ⊙coe p ⊙∘ f
transport-post⊙∘ X p@idp f = ! (⊙λ= (⊙∘-unit-l f))
⊙coe-∙ : ∀ {i} {X Y Z : Ptd i} (p : X == Y) (q : Y == Z)
→ ⊙coe (p ∙ q) ◃⊙idf =⊙∘ ⊙coe q ◃⊙∘ ⊙coe p ◃⊙idf
⊙coe-∙ p@idp q = =⊙∘-in idp
private
⊙coe'-pt : ∀ {i} {X Y : Ptd i} (p : de⊙ X == de⊙ Y) (q : pt X == pt Y [ idf _ ↓ p ])
→ coe p (pt X) == pt Y
⊙coe'-pt p@idp q = q
⊙coe' : ∀ {i} {X Y : Ptd i} (p : de⊙ X == de⊙ Y) (q : pt X == pt Y [ idf _ ↓ p ])
→ X ⊙→ Y
⊙coe' p q = coe p , ⊙coe'-pt p q
private
⊙transport-pt : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y : A} (p : x == y)
→ transport (de⊙ ∘ B) p (pt (B x)) == pt (B y)
⊙transport-pt B idp = idp
⊙transport : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y : A} (p : x == y)
→ (B x ⊙→ B y)
⊙transport B p = transport (de⊙ ∘ B) p , ⊙transport-pt B p
⊙transport-∙ : ∀ {i j} {A : Type i} (B : A → Ptd j)
{x y z : A} (p : x == y) (q : y == z)
→ ⊙transport B (p ∙ q) ◃⊙idf =⊙∘ ⊙transport B q ◃⊙∘ ⊙transport B p ◃⊙idf
⊙transport-∙ B p@idp q = =⊙∘-in idp
⊙transport-⊙coe : ∀ {i j} {A : Type i} (B : A → Ptd j) {x y : A} (p : x == y)
→ ⊙transport B p == ⊙coe (ap B p)
⊙transport-⊙coe B p@idp = idp
⊙transport-natural : ∀ {i j k} {A : Type i} {B : A → Ptd j} {C : A → Ptd k}
{x y : A} (p : x == y)
(h : ∀ a → B a ⊙→ C a)
→ h y ⊙∘ ⊙transport B p == ⊙transport C p ⊙∘ h x
⊙transport-natural p@idp h = ! (⊙λ= (⊙∘-unit-l (h _)))
{- This requires that B and C have the same universe level -}
⊙transport-natural-=⊙∘ : ∀ {i j} {A : Type i} {B C : A → Ptd j}
{x y : A} (p : x == y)
(h : ∀ a → B a ⊙→ C a)
→ h y ◃⊙∘ ⊙transport B p ◃⊙idf =⊙∘ ⊙transport C p ◃⊙∘ h x ◃⊙idf
⊙transport-natural-=⊙∘ p h = =⊙∘-in (⊙transport-natural p h)
{- Pointed equivalences -}
-- Extracting data from an pointed equivalence
module _ {i j} {X : Ptd i} {Y : Ptd j} (⊙e : X ⊙≃ Y) where
⊙≃-to-≃ : de⊙ X ≃ de⊙ Y
⊙≃-to-≃ = fst (fst ⊙e) , snd ⊙e
⊙–> : X ⊙→ Y
⊙–> = fst ⊙e
⊙–>-pt = snd ⊙–>
⊙<– : Y ⊙→ X
⊙<– = is-equiv.g (snd ⊙e) , lemma ⊙e where
lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y) → is-equiv.g (snd ⊙e) (pt Y) == pt X
lemma ((f , idp) , f-ise) = is-equiv.g-f f-ise (pt X)
⊙<–-pt = snd ⊙<–
infix 120 _⊙⁻¹
_⊙⁻¹ : Y ⊙≃ X
_⊙⁻¹ = ⊙<– , is-equiv-inverse (snd ⊙e)
module _ {i j} {X : Ptd i} {Y : Ptd j} where
⊙<–-inv-l : (⊙e : X ⊙≃ Y) → ⊙<– ⊙e ⊙∘ ⊙–> ⊙e == ⊙idf _
⊙<–-inv-l ⊙e = ⊙λ= (<–-inv-l (⊙≃-to-≃ ⊙e) , ↓-idf=cst-in' (lemma ⊙e)) where
lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y)
→ snd (⊙<– ⊙e ⊙∘ ⊙–> ⊙e) == is-equiv.g-f (snd ⊙e) (pt X)
lemma ((f , idp) , f-ise) = idp
⊙<–-inv-r : (⊙e : X ⊙≃ Y) → ⊙–> ⊙e ⊙∘ ⊙<– ⊙e == ⊙idf _
⊙<–-inv-r ⊙e = ⊙λ= (<–-inv-r (⊙≃-to-≃ ⊙e) , ↓-idf=cst-in' (lemma ⊙e)) where
lemma : {Y : Ptd j} (⊙e : X ⊙≃ Y)
→ snd (⊙–> ⊙e ⊙∘ ⊙<– ⊙e) == is-equiv.f-g (snd ⊙e) (pt Y)
lemma ((f , idp) , f-ise) = ∙-unit-r _ ∙ is-equiv.adj f-ise (pt X)
module _ {i} {X Y : Ptd i} where
⊙<–-inv-l-=⊙∘ : (⊙e : X ⊙≃ Y) → ⊙<– ⊙e ◃⊙∘ ⊙–> ⊙e ◃⊙idf =⊙∘ ⊙idf-seq
⊙<–-inv-l-=⊙∘ ⊙e = =⊙∘-in (⊙<–-inv-l ⊙e)
⊙<–-inv-r-=⊙∘ : (⊙e : X ⊙≃ Y) → ⊙–> ⊙e ◃⊙∘ ⊙<– ⊙e ◃⊙idf =⊙∘ ⊙idf-seq
⊙<–-inv-r-=⊙∘ ⊙e = =⊙∘-in (⊙<–-inv-r ⊙e)
module _ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (⊙e : X ⊙≃ Y) where
post⊙∘-is-equiv : is-equiv (λ (k : Z ⊙→ X) → ⊙–> ⊙e ⊙∘ k)
post⊙∘-is-equiv = is-eq (⊙–> ⊙e ⊙∘_) (⊙<– ⊙e ⊙∘_) (to-from ⊙e) (from-to ⊙e) where
abstract
to-from : ∀ {Y} (⊙e : X ⊙≃ Y) (k : Z ⊙→ Y) → ⊙–> ⊙e ⊙∘ (⊙<– ⊙e ⊙∘ k) == k
to-from ((f , idp) , f-ise) (k , k-pt) = ⊙λ=' (f.f-g ∘ k) (↓-idf=cst-in' $ lemma k-pt)
where
module f = is-equiv f-ise
lemma : ∀ {y₀} (k-pt : y₀ == f (pt X))
→ ⊙∘-pt f (⊙∘-pt f.g k-pt (f.g-f _)) idp == f.f-g y₀ ∙' k-pt
lemma idp = ∙-unit-r _ ∙ f.adj _
from-to : ∀ {Y} (⊙e : X ⊙≃ Y) (k : Z ⊙→ X) → ⊙<– ⊙e ⊙∘ (⊙–> ⊙e ⊙∘ k) == k
from-to ((f , idp) , f-ise) (k , idp) = ⊙λ=' (f.g-f ∘ k) $ ↓-idf=cst-in' idp
where module f = is-equiv f-ise
post⊙∘-equiv : (Z ⊙→ X) ≃ (Z ⊙→ Y)
post⊙∘-equiv = _ , post⊙∘-is-equiv
pre⊙∘-is-equiv : is-equiv (λ (k : Y ⊙→ Z) → k ⊙∘ ⊙–> ⊙e)
pre⊙∘-is-equiv = is-eq (_⊙∘ ⊙–> ⊙e) (_⊙∘ ⊙<– ⊙e) (to-from ⊙e) (from-to ⊙e) where
abstract
to-from : ∀ {Z} (⊙e : X ⊙≃ Y) (k : X ⊙→ Z) → (k ⊙∘ ⊙<– ⊙e) ⊙∘ ⊙–> ⊙e == k
to-from ((f , idp) , f-ise) (k , idp) = ⊙λ=' (ap k ∘ f.g-f) $ ↓-idf=cst-in' $ ∙-unit-r _
where module f = is-equiv f-ise
from-to : ∀ {Z} (⊙e : X ⊙≃ Y) (k : Y ⊙→ Z) → (k ⊙∘ ⊙–> ⊙e) ⊙∘ ⊙<– ⊙e == k
from-to ((f , idp) , f-ise) (k , idp) = ⊙λ=' (ap k ∘ f.f-g) $ ↓-idf=cst-in' $
∙-unit-r _ ∙ ap-∘ k f (f.g-f (pt X)) ∙ ap (ap k) (f.adj (pt X))
where module f = is-equiv f-ise
pre⊙∘-equiv : (Y ⊙→ Z) ≃ (X ⊙→ Z)
pre⊙∘-equiv = _ , pre⊙∘-is-equiv
{- Pointed maps out of bool -}
-- intuition : [f true] is fixed and the only changable part is [f false].
⊙Bool→-to-idf : ∀ {i} {X : Ptd i}
→ ⊙Bool ⊙→ X → de⊙ X
⊙Bool→-to-idf (h , _) = h false
⊙Bool→-equiv-idf : ∀ {i} (X : Ptd i)
→ (⊙Bool ⊙→ X) ≃ de⊙ X
⊙Bool→-equiv-idf {i} X = equiv ⊙Bool→-to-idf g f-g g-f
where
g : de⊙ X → ⊙Bool ⊙→ X
g x = Bool-rec (pt X) x , idp
abstract
f-g : ∀ x → ⊙Bool→-to-idf (g x) == x
f-g x = idp
g-f : ∀ H → g (⊙Bool→-to-idf H) == H
g-f (h , hpt) = pair=
(λ= lemma)
(↓-app=cst-in $
idp
=⟨ ! (!-inv-l hpt) ⟩
! hpt ∙ hpt
=⟨ ! (app=-β lemma true) |in-ctx (λ w → w ∙ hpt) ⟩
app= (λ= lemma) true ∙ hpt
=∎)
where lemma : ∀ b → fst (g (h false)) b == h b
lemma true = ! hpt
lemma false = idp
⊙Bool→-equiv-idf-nat : ∀ {i j} {X : Ptd i} {Y : Ptd j} (F : X ⊙→ Y)
→ CommSquareEquiv
(F ⊙∘_)
(fst F)
⊙Bool→-to-idf
⊙Bool→-to-idf
⊙Bool→-equiv-idf-nat F = (comm-sqr λ _ → idp) ,
snd (⊙Bool→-equiv-idf _) , snd (⊙Bool→-equiv-idf _)
|
algebraic-stack_agda0000_doc_14334 | open import Signature
-- | One signature for terms and one for predicates.
module Logic (Σ Δ : Sig) (V : Set) where
open import Data.Empty renaming (⊥ to Ø)
open import Data.Unit
open import Data.Sum
open import Data.Product renaming (Σ to ∐)
open import Data.Nat
open import Data.Fin
FinSet : Set → Set
FinSet X = ∃ λ n → (Fin n → X)
dom : ∀{X} → FinSet X → Set
dom (n , _) = Fin n
get : ∀{X} (F : FinSet X) → dom F → X
get (_ , f) k = f k
drop : ∀{X} (F : FinSet
domEmpty : ∀{X} → FinSet X → Set
domEmpty (zero , _) = ⊤
domEmpty (suc _ , _) = Ø
open import Terms Σ
Term : Set
Term = T V
-- | An atom is either a predicate on terms or bottom.
Atom : Set
Atom = ⟪ Δ ⟫ Term -- ⊎ ⊤
{-
⊥ : Atom
⊥ = inj₂ tt
-}
Formula : Set
Formula = Atom
Sentence : Set
Sentence = FinSet Formula
data Parity : Set where
ind : Parity
coind : Parity
record Clause : Set where
constructor _⊢[_]_
field
head : Sentence
par : Parity
concl : Formula
open Clause public
Program : Set
Program = FinSet Clause
indClauses : Program → Program
indClauses (zero , P) = zero , λ ()
indClauses (suc n , P) = {!!}
|
algebraic-stack_agda0000_doc_14335 | -- Andreas, 2017-01-24, issue #2429
-- Respect subtyping also for irrelevant lambdas!
-- Subtyping: (.A → B) ≤ (A → B)
-- Where a function is expected, we can put one which does not use its argument.
id : ∀{A B : Set} → (.A → B) → A → B
id f = f
test : ∀{A B : Set} → (.A → B) → A → B
test f = λ .a → f a
-- Should work!
-- The eta-expansion should not change anything!
|
algebraic-stack_agda0000_doc_6512 | {-# OPTIONS --cubical --safe #-}
module Function.Surjective.Base where
open import Path
open import Function.Fiber
open import Level
open import HITs.PropositionalTruncation
open import Data.Sigma
Surjective : (A → B) → Type _
Surjective f = ∀ y → ∥ fiber f y ∥
SplitSurjective : (A → B) → Type _
SplitSurjective f = ∀ y → fiber f y
infixr 0 _↠!_ _↠_
_↠!_ : Type a → Type b → Type (a ℓ⊔ b)
A ↠! B = Σ (A → B) SplitSurjective
_↠_ : Type a → Type b → Type (a ℓ⊔ b)
A ↠ B = Σ (A → B) Surjective
|
algebraic-stack_agda0000_doc_6513 | module T where
postulate x : Set
postulate y : Set
postulate p : Set -> Set
e : Set
e = p y
|
algebraic-stack_agda0000_doc_6514 | open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
@0 A : Set₁
A = Set
macro
@0 m : Term → TC ⊤
m B =
bindTC (quoteTC A) λ A →
unify A B
B : Set₁
B = m
|
algebraic-stack_agda0000_doc_6515 |
module Prelude.Bool where
open import Prelude.Unit
open import Prelude.Empty
open import Prelude.Equality
open import Prelude.Decidable
open import Prelude.Function
open import Agda.Builtin.Bool public
infix 0 if_then_else_
if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A
if true then x else y = x
if false then x else y = y
{-# INLINE if_then_else_ #-}
infixr 3 _&&_
infixr 2 _||_
_||_ : Bool → Bool → Bool
true || _ = true
false || x = x
{-# INLINE _||_ #-}
_&&_ : Bool → Bool → Bool
true && x = x
false && _ = false
{-# INLINE _&&_ #-}
not : Bool → Bool
not true = false
not false = true
{-# INLINE not #-}
data IsTrue : Bool → Set where
instance true : IsTrue true
data IsFalse : Bool → Set where
instance false : IsFalse false
instance
EqBool : Eq Bool
_==_ {{EqBool}} false false = yes refl
_==_ {{EqBool}} false true = no λ ()
_==_ {{EqBool}} true false = no λ ()
_==_ {{EqBool}} true true = yes refl
decBool : ∀ b → Dec (IsTrue b)
decBool false = no λ ()
decBool true = yes true
{-# INLINE decBool #-}
isYes : ∀ {a} {A : Set a} → Dec A → Bool
isYes (yes _) = true
isYes (no _) = false
isNo : ∀ {a} {A : Set a} → Dec A → Bool
isNo = not ∘ isYes
infix 0 if′_then_else_
if′_then_else_ : ∀ {a} {A : Set a} (b : Bool) → ({{_ : IsTrue b}} → A) → ({{_ : IsFalse b}} → A) → A
if′ true then x else _ = x
if′ false then _ else y = y
|
algebraic-stack_agda0000_doc_6516 | module Prelude.Char where
open import Prelude.Bool
postulate
Char : Set
{-# BUILTIN CHAR Char #-}
private
primitive
primCharEquality : (c c' : Char) -> Bool
postulate
eof : Char
{-# COMPILED_EPIC eof () -> Int = foreign Int "eof" () #-}
charEq : Char -> Char -> Bool
charEq = primCharEquality
|
algebraic-stack_agda0000_doc_6517 | -- Andreas, 2018-06-15, issue #1086
-- Reported by Andrea
-- Fixed by Jesper in https://github.com/agda/agda/commit/242684bca62fabe43e125aefae7526be4b26a135
open import Common.Bool
open import Common.Equality
and : (a b : Bool) → Bool
and true b = b
and false b = false
test : ∀ a b → and a b ≡ true → a ≡ true
test true true refl = refl
-- Should succeed.
|
algebraic-stack_agda0000_doc_6518 | ------------------------------------------------------------------------
-- Encoder and decoder instances for Atom.χ-ℕ-atoms
------------------------------------------------------------------------
module Coding.Instances.Nat where
open import Atom
-- The code-Var and code-Const instances are hidden: they are replaced
-- by the code-ℕ instance.
open import Coding.Instances χ-ℕ-atoms public
hiding (rep-Var; rep-Const)
|
algebraic-stack_agda0000_doc_6519 | {-# OPTIONS --warning=error --without-K --guardedness --safe #-}
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Setoids.Setoids
open import Numbers.Naturals.Order
open import Vectors
module Sequences where
record Sequence {a : _} (A : Set a) : Set a where
coinductive
field
head : A
tail : Sequence A
headInjective : {a : _} {A : Set a} {s1 s2 : Sequence A} → s1 ≡ s2 → Sequence.head s1 ≡ Sequence.head s2
headInjective {s1 = s1} {.s1} refl = refl
constSequence : {a : _} {A : Set a} (k : A) → Sequence A
Sequence.head (constSequence k) = k
Sequence.tail (constSequence k) = constSequence k
index : {a : _} {A : Set a} (s : Sequence A) (n : ℕ) → A
index s zero = Sequence.head s
index s (succ n) = index (Sequence.tail s) n
funcToSequence : {a : _} {A : Set a} (f : ℕ → A) → Sequence A
Sequence.head (funcToSequence f) = f 0
Sequence.tail (funcToSequence f) = funcToSequence (λ i → f (succ i))
funcToSequenceReversible : {a : _} {A : Set a} (f : ℕ → A) → (n : ℕ) → index (funcToSequence f) n ≡ f n
funcToSequenceReversible f zero = refl
funcToSequenceReversible f (succ n) = funcToSequenceReversible (λ i → f (succ i)) n
map : {a b : _} {A : Set a} {B : Set b} (f : A → B) (s : Sequence A) → Sequence B
Sequence.head (map f s) = f (Sequence.head s)
Sequence.tail (map f s) = map f (Sequence.tail s)
apply : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) (s1 : Sequence A) (s2 : Sequence B) → Sequence C
Sequence.head (apply f s1 s2) = f (Sequence.head s1) (Sequence.head s2)
Sequence.tail (apply f s1 s2) = apply f (Sequence.tail s1) (Sequence.tail s2)
indexAndConst : {a : _} {A : Set a} (a : A) (n : ℕ) → index (constSequence a) n ≡ a
indexAndConst a zero = refl
indexAndConst a (succ n) = indexAndConst a n
mapTwice : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A → B) (g : B → C) (s : Sequence A) → {n : ℕ} → index (map g (map f s)) n ≡ index (map (λ i → g (f i)) s) n
mapTwice f g s {zero} = refl
mapTwice f g s {succ n} = mapTwice f g (Sequence.tail s) {n}
mapAndIndex : {a b : _} {A : Set a} {B : Set b} (s : Sequence A) (f : A → B) (n : ℕ) → f (index s n) ≡ index (map f s) n
mapAndIndex s f zero = refl
mapAndIndex s f (succ n) = mapAndIndex (Sequence.tail s) f n
indexExtensional : {a b c : _} {A : Set a} {B : Set b} (T : Setoid {_} {c} B) (s : Sequence A) (f g : A → B) → (extension : ∀ {x} → (Setoid._∼_ T (f x) (g x))) → {n : ℕ} → Setoid._∼_ T (index (map f s) n) (index (map g s) n)
indexExtensional T s f g extension {zero} = extension
indexExtensional T s f g extension {succ n} = indexExtensional T (Sequence.tail s) f g extension {n}
indexAndApply : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (s1 : Sequence A) (s2 : Sequence B) (f : A → B → C) → {m : ℕ} → index (apply f s1 s2) m ≡ f (index s1 m) (index s2 m)
indexAndApply s1 s2 f {zero} = refl
indexAndApply s1 s2 f {succ m} = indexAndApply (Sequence.tail s1) (Sequence.tail s2) f {m}
mapAndApply : {a b c d : _} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (s1 : Sequence A) (s2 : Sequence B) (f : A → B → C) (g : C → D) → (m : ℕ) → index (map g (apply f s1 s2)) m ≡ g (f (index s1 m) (index s2 m))
mapAndApply s1 s2 f g zero = refl
mapAndApply s1 s2 f g (succ m) = mapAndApply (Sequence.tail s1) (Sequence.tail s2) f g m
assemble : {a : _} {A : Set a} → (x : A) → (s : Sequence A) → Sequence A
Sequence.head (assemble x s) = x
Sequence.tail (assemble x s) = s
allTrue : {a : _} {A : Set a} {c : _} (pred : A → Set c) (s : Sequence A) → Set c
allTrue pred s = (n : ℕ) → pred (index s n)
tailFrom : {a : _} {A : Set a} (n : ℕ) → (s : Sequence A) → Sequence A
tailFrom zero s = s
tailFrom (succ n) s = tailFrom n (Sequence.tail s)
subsequence : {a : _} {A : Set a} (x : Sequence A) → (indices : Sequence ℕ) → ((n : ℕ) → index indices n <N index indices (succ n)) → Sequence A
Sequence.head (subsequence x selector increasing) = index x (Sequence.head selector)
Sequence.tail (subsequence x selector increasing) = subsequence (tailFrom (succ (Sequence.head selector)) x) (Sequence.tail selector) λ n → increasing (succ n)
take : {a : _} {A : Set a} (n : ℕ) (s : Sequence A) → Vec A n
take zero s = []
take (succ n) s = Sequence.head s ,- take n (Sequence.tail s)
unfold : {a : _} {A : Set a} → (A → A) → A → Sequence A
Sequence.head (unfold f a) = a
Sequence.tail (unfold f a) = unfold f (f a)
indexAndUnfold : {a : _} {A : Set a} (f : A → A) (start : A) (n : ℕ) → index (unfold f start) (succ n) ≡ f (index (unfold f start) n)
indexAndUnfold f s zero = refl
indexAndUnfold f s (succ n) = indexAndUnfold f (f s) n
|
algebraic-stack_agda0000_doc_6520 | {-
Properties and Formulae about Cardinality
This file contains:
- Relation between abstract properties and cardinality in special cases;
- Combinatorial formulae, namely, cardinality of A+B, A×B, ΣAB, ΠAB, etc;
- A general form of Pigeonhole Principle;
- Maximal value of numerical function on finite sets;
- Set truncation of FinSet is equivalent to ℕ;
- FinProp is equivalent to Bool.
-}
{-# OPTIONS --safe #-}
module Cubical.Data.FinSet.Cardinality where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_)
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Transport
open import Cubical.HITs.PropositionalTruncation as Prop
open import Cubical.HITs.SetTruncation as Set
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Unit
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Bool hiding (_≟_)
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.Fin using (Fin-inj)
open import Cubical.Data.Fin.LehmerCode as LehmerCode
open import Cubical.Data.SumFin
open import Cubical.Data.FinSet.Base
open import Cubical.Data.FinSet.Properties
open import Cubical.Data.FinSet.FiniteChoice
open import Cubical.Data.FinSet.Constructors
open import Cubical.Data.FinSet.Induction hiding (_+_)
open import Cubical.Relation.Nullary
open import Cubical.Functions.Fibration
open import Cubical.Functions.Embedding
open import Cubical.Functions.Surjection
private
variable
ℓ ℓ' ℓ'' : Level
n : ℕ
X : FinSet ℓ
Y : FinSet ℓ'
-- cardinality of finite sets
∣≃card∣ : (X : FinSet ℓ) → ∥ X .fst ≃ Fin (card X) ∥
∣≃card∣ X = X .snd .snd
-- cardinality is invariant under equivalences
cardEquiv : (X : FinSet ℓ)(Y : FinSet ℓ') → ∥ X .fst ≃ Y .fst ∥ → card X ≡ card Y
cardEquiv X Y e =
Prop.rec (isSetℕ _ _) (λ p → Fin-inj _ _ (ua p))
(∣ invEquiv (SumFin≃Fin _) ∣ ⋆̂ ∣invEquiv∣ (∣≃card∣ X) ⋆̂ e ⋆̂ ∣≃card∣ Y ⋆̂ ∣ SumFin≃Fin _ ∣)
cardInj : card X ≡ card Y → ∥ X .fst ≃ Y .fst ∥
cardInj {X = X} {Y = Y} p =
∣≃card∣ X ⋆̂ ∣ pathToEquiv (cong Fin p) ∣ ⋆̂ ∣invEquiv∣ (∣≃card∣ Y)
cardReflection : card X ≡ n → ∥ X .fst ≃ Fin n ∥
cardReflection {X = X} = cardInj {X = X} {Y = _ , isFinSetFin}
card≡MereEquiv : (card X ≡ card Y) ≡ ∥ X .fst ≃ Y .fst ∥
card≡MereEquiv {X = X} {Y = Y} =
hPropExt (isSetℕ _ _) isPropPropTrunc (cardInj {X = X} {Y = Y}) (cardEquiv X Y)
-- special properties about specific cardinality
module _
{X : FinSet ℓ} where
card≡0→isEmpty : card X ≡ 0 → ¬ X .fst
card≡0→isEmpty p x =
Prop.rec isProp⊥ (λ e → subst Fin p (e .fst x)) (∣≃card∣ X)
card>0→isInhab : card X > 0 → ∥ X .fst ∥
card>0→isInhab p =
Prop.map (λ e → invEq e (Fin>0→isInhab _ p)) (∣≃card∣ X)
card>1→hasNonEqualTerm : card X > 1 → ∥ Σ[ a ∈ X .fst ] Σ[ b ∈ X .fst ] ¬ a ≡ b ∥
card>1→hasNonEqualTerm p =
Prop.map
(λ e →
e .fst (Fin>1→hasNonEqualTerm _ p .fst) ,
e .fst (Fin>1→hasNonEqualTerm _ p .snd .fst) ,
Fin>1→hasNonEqualTerm _ p .snd .snd ∘ invEq (congEquiv e))
(∣invEquiv∣ (∣≃card∣ X))
card≡1→isContr : card X ≡ 1 → isContr (X .fst)
card≡1→isContr p =
Prop.rec isPropIsContr
(λ e → isOfHLevelRespectEquiv 0 (invEquiv (e ⋆ substEquiv Fin p)) isContrSumFin1) (∣≃card∣ X)
card≤1→isProp : card X ≤ 1 → isProp (X .fst)
card≤1→isProp p =
Prop.rec isPropIsProp (λ e → isOfHLevelRespectEquiv 1 (invEquiv e) (Fin≤1→isProp (card X) p)) (∣≃card∣ X)
card≡n : card X ≡ n → ∥ X ≡ 𝔽in n ∥
card≡n {n = n} p =
Prop.map
(λ e →
(λ i →
ua e i ,
isProp→PathP {B = λ j → isFinSet (ua e j)}
(λ _ → isPropIsFinSet) (X .snd) (𝔽in n .snd) i ))
(∣≃card∣ X ⋆̂ ∣ pathToEquiv (cong Fin p) ⋆ invEquiv (𝔽in≃Fin n) ∣)
card≡0 : card X ≡ 0 → X ≡ 𝟘
card≡0 p =
propTruncIdempotent≃
(isOfHLevelRespectEquiv
1 (FinSet≡ X 𝟘)
(isOfHLevel≡ 1
(card≤1→isProp (subst (λ a → a ≤ 1) (sym p) (≤-solver 0 1))) (isProp⊥*))) .fst
(card≡n p)
card≡1 : card X ≡ 1 → X ≡ 𝟙
card≡1 p =
propTruncIdempotent≃
(isOfHLevelRespectEquiv
1 (FinSet≡ X 𝟙)
(isOfHLevel≡ 1
(card≤1→isProp (subst (λ a → a ≤ 1) (sym p) (≤-solver 1 1))) (isPropUnit*))) .fst
(Prop.map (λ q → q ∙ 𝔽in1≡𝟙) (card≡n p))
module _
(X : FinSet ℓ) where
isEmpty→card≡0 : ¬ X .fst → card X ≡ 0
isEmpty→card≡0 p =
Prop.rec (isSetℕ _ _) (λ e → sym (isEmpty→Fin≡0 _ (p ∘ invEq e))) (∣≃card∣ X)
isInhab→card>0 : ∥ X .fst ∥ → card X > 0
isInhab→card>0 = Prop.rec2 m≤n-isProp (λ p x → isInhab→Fin>0 _ (p .fst x)) (∣≃card∣ X)
hasNonEqualTerm→card>1 : {a b : X. fst} → ¬ a ≡ b → card X > 1
hasNonEqualTerm→card>1 {a = a} {b = b} q =
Prop.rec m≤n-isProp (λ p → hasNonEqualTerm→Fin>1 _ (p .fst a) (p .fst b) (q ∘ invEq (congEquiv p))) (∣≃card∣ X)
isContr→card≡1 : isContr (X .fst) → card X ≡ 1
isContr→card≡1 p = cardEquiv X (_ , isFinSetUnit) ∣ isContr→≃Unit p ∣
isProp→card≤1 : isProp (X .fst) → card X ≤ 1
isProp→card≤1 p = isProp→Fin≤1 (card X) (Prop.rec isPropIsProp (λ e → isOfHLevelRespectEquiv 1 e p) (∣≃card∣ X))
{- formulae about cardinality -}
-- results to be used in direct induction on FinSet
card𝟘 : card (𝟘 {ℓ}) ≡ 0
card𝟘 {ℓ = ℓ} = isEmpty→card≡0 (𝟘 {ℓ}) (Empty.rec*)
card𝟙 : card (𝟙 {ℓ}) ≡ 1
card𝟙 {ℓ = ℓ} = isContr→card≡1 (𝟙 {ℓ}) isContrUnit*
card𝔽in : (n : ℕ) → card (𝔽in {ℓ} n) ≡ n
card𝔽in {ℓ = ℓ} n = cardEquiv (𝔽in {ℓ} n) (_ , isFinSetFin) ∣ 𝔽in≃Fin n ∣
-- addition/product formula
module _
(X : FinSet ℓ )
(Y : FinSet ℓ') where
card+ : card (_ , isFinSet⊎ X Y) ≡ card X + card Y
card+ = refl
card× : card (_ , isFinSet× X Y) ≡ card X · card Y
card× = refl
-- total summation/product of numerical functions from finite sets
module _
(X : FinSet ℓ)
(f : X .fst → ℕ) where
sum : ℕ
sum = card (_ , isFinSetΣ X (λ x → Fin (f x) , isFinSetFin))
prod : ℕ
prod = card (_ , isFinSetΠ X (λ x → Fin (f x) , isFinSetFin))
module _
(f : 𝟘 {ℓ} .fst → ℕ) where
sum𝟘 : sum 𝟘 f ≡ 0
sum𝟘 =
isEmpty→card≡0 (_ , isFinSetΣ 𝟘 (λ x → Fin (f x) , isFinSetFin))
((invEquiv (Σ-cong-equiv-fst (invEquiv 𝟘≃Empty)) ⋆ ΣEmpty _) .fst)
prod𝟘 : prod 𝟘 f ≡ 1
prod𝟘 =
isContr→card≡1 (_ , isFinSetΠ 𝟘 (λ x → Fin (f x) , isFinSetFin))
(isContrΠ⊥*)
module _
(f : 𝟙 {ℓ} .fst → ℕ) where
sum𝟙 : sum 𝟙 f ≡ f tt*
sum𝟙 =
cardEquiv (_ , isFinSetΣ 𝟙 (λ x → Fin (f x) , isFinSetFin))
(Fin (f tt*) , isFinSetFin) ∣ Σ-contractFst isContrUnit* ∣
prod𝟙 : prod 𝟙 f ≡ f tt*
prod𝟙 =
cardEquiv (_ , isFinSetΠ 𝟙 (λ x → Fin (f x) , isFinSetFin))
(Fin (f tt*) , isFinSetFin) ∣ ΠUnit* _ ∣
module _
(X : FinSet ℓ )
(Y : FinSet ℓ')
(f : X .fst ⊎ Y .fst → ℕ) where
sum⊎ : sum (_ , isFinSet⊎ X Y) f ≡ sum X (f ∘ inl) + sum Y (f ∘ inr)
sum⊎ =
cardEquiv (_ , isFinSetΣ (_ , isFinSet⊎ X Y) (λ x → Fin (f x) , isFinSetFin))
(_ , isFinSet⊎ (_ , isFinSetΣ X (λ x → Fin (f (inl x)) , isFinSetFin))
(_ , isFinSetΣ Y (λ y → Fin (f (inr y)) , isFinSetFin))) ∣ Σ⊎≃ ∣
∙ card+ (_ , isFinSetΣ X (λ x → Fin (f (inl x)) , isFinSetFin))
(_ , isFinSetΣ Y (λ y → Fin (f (inr y)) , isFinSetFin))
prod⊎ : prod (_ , isFinSet⊎ X Y) f ≡ prod X (f ∘ inl) · prod Y (f ∘ inr)
prod⊎ =
cardEquiv (_ , isFinSetΠ (_ , isFinSet⊎ X Y) (λ x → Fin (f x) , isFinSetFin))
(_ , isFinSet× (_ , isFinSetΠ X (λ x → Fin (f (inl x)) , isFinSetFin))
(_ , isFinSetΠ Y (λ y → Fin (f (inr y)) , isFinSetFin))) ∣ Π⊎≃ ∣
∙ card× (_ , isFinSetΠ X (λ x → Fin (f (inl x)) , isFinSetFin))
(_ , isFinSetΠ Y (λ y → Fin (f (inr y)) , isFinSetFin))
-- technical lemma
module _
(n : ℕ)(f : 𝔽in {ℓ} (1 + n) .fst → ℕ) where
sum𝔽in1+n : sum (𝔽in (1 + n)) f ≡ f (inl tt*) + sum (𝔽in n) (f ∘ inr)
sum𝔽in1+n = sum⊎ 𝟙 (𝔽in n) f ∙ (λ i → sum𝟙 (f ∘ inl) i + sum (𝔽in n) (f ∘ inr))
prod𝔽in1+n : prod (𝔽in (1 + n)) f ≡ f (inl tt*) · prod (𝔽in n) (f ∘ inr)
prod𝔽in1+n = prod⊎ 𝟙 (𝔽in n) f ∙ (λ i → prod𝟙 (f ∘ inl) i · prod (𝔽in n) (f ∘ inr))
sumConst𝔽in : (n : ℕ)(f : 𝔽in {ℓ} n .fst → ℕ)(c : ℕ)(h : (x : 𝔽in n .fst) → f x ≡ c) → sum (𝔽in n) f ≡ c · n
sumConst𝔽in 0 f c _ = sum𝟘 f ∙ 0≡m·0 c
sumConst𝔽in (suc n) f c h =
sum𝔽in1+n n f
∙ (λ i → h (inl tt*) i + sumConst𝔽in n (f ∘ inr) c (h ∘ inr) i)
∙ sym (·-suc c n)
prodConst𝔽in : (n : ℕ)(f : 𝔽in {ℓ} n .fst → ℕ)(c : ℕ)(h : (x : 𝔽in n .fst) → f x ≡ c) → prod (𝔽in n) f ≡ c ^ n
prodConst𝔽in 0 f c _ = prod𝟘 f
prodConst𝔽in (suc n) f c h =
prod𝔽in1+n n f
∙ (λ i → h (inl tt*) i · prodConst𝔽in n (f ∘ inr) c (h ∘ inr) i)
module _
(X : FinSet ℓ)
(f : X .fst → ℕ)
(c : ℕ)(h : (x : X .fst) → f x ≡ c) where
sumConst : sum X f ≡ c · card X
sumConst =
elimProp
(λ X → (f : X .fst → ℕ)(c : ℕ)(h : (x : X .fst) → f x ≡ c) → sum X f ≡ c · (card X))
(λ X → isPropΠ3 (λ _ _ _ → isSetℕ _ _))
(λ n f c h → sumConst𝔽in n f c h ∙ (λ i → c · card𝔽in {ℓ = ℓ} n (~ i))) X f c h
prodConst : prod X f ≡ c ^ card X
prodConst =
elimProp
(λ X → (f : X .fst → ℕ)(c : ℕ)(h : (x : X .fst) → f x ≡ c) → prod X f ≡ c ^ (card X))
(λ X → isPropΠ3 (λ _ _ _ → isSetℕ _ _))
(λ n f c h → prodConst𝔽in n f c h ∙ (λ i → c ^ card𝔽in {ℓ = ℓ} n (~ i))) X f c h
private
≡≤ : {m n l k r s : ℕ} → m ≤ n → l ≤ k → r ≡ m + l → s ≡ n + k → r ≤ s
≡≤ {m = m} {l = l} {k = k} p q u v = subst2 (_≤_) (sym u) (sym v) (≤-+-≤ p q)
≡< : {m n l k r s : ℕ} → m < n → l ≤ k → r ≡ m + l → s ≡ n + k → r < s
≡< {m = m} {l = l} {k = k} p q u v = subst2 (_<_) (sym u) (sym v) (<-+-≤ p q)
sum≤𝔽in : (n : ℕ)(f g : 𝔽in {ℓ} n .fst → ℕ)(h : (x : 𝔽in n .fst) → f x ≤ g x) → sum (𝔽in n) f ≤ sum (𝔽in n) g
sum≤𝔽in 0 f g _ = subst2 (_≤_) (sym (sum𝟘 f)) (sym (sum𝟘 g)) ≤-refl
sum≤𝔽in (suc n) f g h =
≡≤ (h (inl tt*)) (sum≤𝔽in n (f ∘ inr) (g ∘ inr) (h ∘ inr)) (sum𝔽in1+n n f) (sum𝔽in1+n n g)
sum<𝔽in : (n : ℕ)(f g : 𝔽in {ℓ} n .fst → ℕ)(t : ∥ 𝔽in {ℓ} n .fst ∥)(h : (x : 𝔽in n .fst) → f x < g x)
→ sum (𝔽in n) f < sum (𝔽in n) g
sum<𝔽in {ℓ = ℓ} 0 _ _ t _ = Empty.rec (<→≢ (isInhab→card>0 (𝔽in 0) t) (card𝟘 {ℓ = ℓ}))
sum<𝔽in (suc n) f g t h =
≡< (h (inl tt*)) (sum≤𝔽in n (f ∘ inr) (g ∘ inr) (<-weaken ∘ h ∘ inr)) (sum𝔽in1+n n f) (sum𝔽in1+n n g)
module _
(X : FinSet ℓ)
(f g : X .fst → ℕ) where
module _
(h : (x : X .fst) → f x ≡ g x) where
sum≡ : sum X f ≡ sum X g
sum≡ i = sum X (λ x → h x i)
prod≡ : prod X f ≡ prod X g
prod≡ i = prod X (λ x → h x i)
module _
(h : (x : X .fst) → f x ≤ g x) where
sum≤ : sum X f ≤ sum X g
sum≤ =
elimProp
(λ X → (f g : X .fst → ℕ)(h : (x : X .fst) → f x ≤ g x) → sum X f ≤ sum X g)
(λ X → isPropΠ3 (λ _ _ _ → m≤n-isProp)) sum≤𝔽in X f g h
module _
(t : ∥ X .fst ∥)
(h : (x : X .fst) → f x < g x) where
sum< : sum X f < sum X g
sum< =
elimProp
(λ X → (f g : X .fst → ℕ)(t : ∥ X .fst ∥)(h : (x : X .fst) → f x < g x) → sum X f < sum X g)
(λ X → isPropΠ4 (λ _ _ _ _ → m≤n-isProp)) sum<𝔽in X f g t h
module _
(X : FinSet ℓ)
(f : X .fst → ℕ) where
module _
(c : ℕ)(h : (x : X .fst) → f x ≤ c) where
sumBounded : sum X f ≤ c · card X
sumBounded = subst (λ a → sum X f ≤ a) (sumConst X (λ _ → c) c (λ _ → refl)) (sum≤ X f (λ _ → c) h)
module _
(c : ℕ)(h : (x : X .fst) → f x ≥ c) where
sumBoundedBelow : sum X f ≥ c · card X
sumBoundedBelow = subst (λ a → sum X f ≥ a) (sumConst X (λ _ → c) c (λ _ → refl)) (sum≤ X (λ _ → c) f h)
-- some combinatorial identities
module _
(X : FinSet ℓ )
(Y : X .fst → FinSet ℓ') where
cardΣ : card (_ , isFinSetΣ X Y) ≡ sum X (λ x → card (Y x))
cardΣ =
cardEquiv (_ , isFinSetΣ X Y) (_ , isFinSetΣ X (λ x → Fin (card (Y x)) , isFinSetFin))
(Prop.map Σ-cong-equiv-snd
(choice X (λ x → Y x .fst ≃ Fin (card (Y x))) (λ x → ∣≃card∣ (Y x))))
cardΠ : card (_ , isFinSetΠ X Y) ≡ prod X (λ x → card (Y x))
cardΠ =
cardEquiv (_ , isFinSetΠ X Y) (_ , isFinSetΠ X (λ x → Fin (card (Y x)) , isFinSetFin))
(Prop.map equivΠCod
(choice X (λ x → Y x .fst ≃ Fin (card (Y x))) (λ x → ∣≃card∣ (Y x))))
module _
(X : FinSet ℓ )
(Y : FinSet ℓ') where
card→ : card (_ , isFinSet→ X Y) ≡ card Y ^ card X
card→ = cardΠ X (λ _ → Y) ∙ prodConst X (λ _ → card Y) (card Y) (λ _ → refl)
module _
(X : FinSet ℓ ) where
cardAut : card (_ , isFinSetAut X) ≡ LehmerCode.factorial (card X)
cardAut = refl
module _
(X : FinSet ℓ )
(Y : FinSet ℓ')
(f : X .fst → Y .fst) where
sumCardFiber : card X ≡ sum Y (λ y → card (_ , isFinSetFiber X Y f y))
sumCardFiber =
cardEquiv X (_ , isFinSetΣ Y (λ y → _ , isFinSetFiber X Y f y)) ∣ totalEquiv f ∣
∙ cardΣ Y (λ y → _ , isFinSetFiber X Y f y)
-- the pigeonhole priniple
-- a logical lemma
private
¬ΠQ→¬¬ΣP : (X : Type ℓ)
(P : X → Type ℓ' )
(Q : X → Type ℓ'')
(r : (x : X) → ¬ (P x) → Q x)
→ ¬ ((x : X) → Q x) → ¬ ¬ (Σ X P)
¬ΠQ→¬¬ΣP _ _ _ r g f = g (λ x → r x (λ p → f (x , p)))
module _
(f : X .fst → Y .fst)
(n : ℕ) where
fiberCount : ((y : Y .fst) → card (_ , isFinSetFiber X Y f y) ≤ n) → card X ≤ n · card Y
fiberCount h =
subst (λ a → a ≤ _) (sym (sumCardFiber X Y f))
(sumBounded Y (λ y → card (_ , isFinSetFiber X Y f y)) n h)
module _
(p : card X > n · card Y) where
¬¬pigeonHole : ¬ ¬ (Σ[ y ∈ Y .fst ] card (_ , isFinSetFiber X Y f y) > n)
¬¬pigeonHole =
¬ΠQ→¬¬ΣP (Y .fst) (λ y → _ > n) (λ y → _ ≤ n)
(λ y → <-asym') (λ h → <-asym p (fiberCount h))
pigeonHole : ∥ Σ[ y ∈ Y .fst ] card (_ , isFinSetFiber X Y f y) > n ∥
pigeonHole = PeirceLaw (isFinSetΣ Y (λ _ → _ , isDecProp→isFinSet m≤n-isProp (≤Dec _ _))) ¬¬pigeonHole
-- a special case, proved in Cubical.Data.Fin.Properties
-- a technical lemma
private
Σ∥P∥→∥ΣP∥ : (X : Type ℓ)(P : X → Type ℓ')
→ Σ X (λ x → ∥ P x ∥) → ∥ Σ X P ∥
Σ∥P∥→∥ΣP∥ _ _ (x , p) = Prop.map (λ q → x , q) p
module _
(f : X .fst → Y .fst)
(p : card X > card Y) where
fiberNonEqualTerm : Σ[ y ∈ Y .fst ] card (_ , isFinSetFiber X Y f y) > 1
→ ∥ Σ[ y ∈ Y .fst ] Σ[ a ∈ fiber f y ] Σ[ b ∈ fiber f y ] ¬ a ≡ b ∥
fiberNonEqualTerm (y , p) = Σ∥P∥→∥ΣP∥ _ _ (y , card>1→hasNonEqualTerm {X = _ , isFinSetFiber X Y f y} p)
nonInj : Σ[ y ∈ Y .fst ] Σ[ a ∈ fiber f y ] Σ[ b ∈ fiber f y ] ¬ a ≡ b
→ Σ[ x ∈ X .fst ] Σ[ x' ∈ X .fst ] (¬ x ≡ x') × (f x ≡ f x')
nonInj (y , (x , p) , (x' , q) , t) .fst = x
nonInj (y , (x , p) , (x' , q) , t) .snd .fst = x'
nonInj (y , (x , p) , (x' , q) , t) .snd .snd .fst u =
t (λ i → u i , isSet→SquareP (λ i j → isFinSet→isSet (Y .snd)) p q (cong f u) refl i)
nonInj (y , (x , p) , (x' , q) , t) .snd .snd .snd = p ∙ sym q
pigeonHole' : ∥ Σ[ x ∈ X .fst ] Σ[ x' ∈ X .fst ] (¬ x ≡ x') × (f x ≡ f x') ∥
pigeonHole' =
Prop.map nonInj
(Prop.rec isPropPropTrunc fiberNonEqualTerm
(pigeonHole {X = X} {Y = Y} f 1 (subst (λ a → _ > a) (sym (·-identityˡ _)) p)))
-- cardinality and injection/surjection
module _
(X : FinSet ℓ )
(Y : FinSet ℓ') where
module _
(f : X .fst → Y .fst) where
card↪Inequality' : isEmbedding f → card X ≤ card Y
card↪Inequality' p =
subst2 (_≤_)
(sym (sumCardFiber X Y f))
(·-identityˡ _)
(sumBounded Y (λ y → card (_ , isFinSetFiber X Y f y)) 1
(λ y → isProp→card≤1 (_ , isFinSetFiber X Y f y)
(isEmbedding→hasPropFibers p y)))
card↠Inequality' : isSurjection f → card X ≥ card Y
card↠Inequality' p =
subst2 (_≥_)
(sym (sumCardFiber X Y f))
(·-identityˡ _)
(sumBoundedBelow Y (λ y → card (_ , isFinSetFiber X Y f y)) 1
(λ y → isInhab→card>0 (_ , isFinSetFiber X Y f y) (p y)))
card↪Inequality : ∥ X .fst ↪ Y .fst ∥ → card X ≤ card Y
card↪Inequality = Prop.rec m≤n-isProp (λ (f , p) → card↪Inequality' f p)
card↠Inequality : ∥ X .fst ↠ Y .fst ∥ → card X ≥ card Y
card↠Inequality = Prop.rec m≤n-isProp (λ (f , p) → card↠Inequality' f p)
-- maximal value of numerical functions
module _
(X : Type ℓ)
(f : X → ℕ) where
module _
(x : X) where
isMax : Type ℓ
isMax = (x' : X) → f x' ≤ f x
isPropIsMax : isProp isMax
isPropIsMax = isPropΠ (λ _ → m≤n-isProp)
uniqMax : (x x' : X) → isMax x → isMax x' → f x ≡ f x'
uniqMax x x' p q = ≤-antisym (q x) (p x')
ΣMax : Type ℓ
ΣMax = Σ[ x ∈ X ] isMax x
∃Max : Type ℓ
∃Max = ∥ ΣMax ∥
∃Max→maxValue : ∃Max → ℕ
∃Max→maxValue =
SetElim.rec→Set
isSetℕ (λ (x , p) → f x)
(λ (x , p) (x' , q) → uniqMax x x' p q)
-- lemma about maximal value on sum type
module _
(X : Type ℓ )
(Y : Type ℓ')
(f : X ⊎ Y → ℕ) where
ΣMax⊎-case : ((x , p) : ΣMax X (f ∘ inl))((y , q) : ΣMax Y (f ∘ inr))
→ Trichotomy (f (inl x)) (f (inr y)) → ΣMax (X ⊎ Y) f
ΣMax⊎-case (x , p) (y , q) (lt r) .fst = inr y
ΣMax⊎-case (x , p) (y , q) (lt r) .snd (inl x') = ≤-trans (p x') (<-weaken r)
ΣMax⊎-case (x , p) (y , q) (lt r) .snd (inr y') = q y'
ΣMax⊎-case (x , p) (y , q) (eq r) .fst = inr y
ΣMax⊎-case (x , p) (y , q) (eq r) .snd (inl x') = ≤-trans (p x') (_ , r)
ΣMax⊎-case (x , p) (y , q) (eq r) .snd (inr y') = q y'
ΣMax⊎-case (x , p) (y , q) (gt r) .fst = inl x
ΣMax⊎-case (x , p) (y , q) (gt r) .snd (inl x') = p x'
ΣMax⊎-case (x , p) (y , q) (gt r) .snd (inr y') = ≤-trans (q y') (<-weaken r)
∃Max⊎ : ∃Max X (f ∘ inl) → ∃Max Y (f ∘ inr) → ∃Max (X ⊎ Y) f
∃Max⊎ = Prop.map2 (λ p q → ΣMax⊎-case p q (_≟_ _ _))
ΣMax𝟙 : (f : 𝟙 {ℓ} .fst → ℕ) → ΣMax _ f
ΣMax𝟙 f .fst = tt*
ΣMax𝟙 f .snd x = _ , cong f (sym (isContrUnit* .snd x))
∃Max𝟙 : (f : 𝟙 {ℓ} .fst → ℕ) → ∃Max _ f
∃Max𝟙 f = ∣ ΣMax𝟙 f ∣
∃Max𝔽in : (n : ℕ)(f : 𝔽in {ℓ} n .fst → ℕ)(x : ∥ 𝔽in {ℓ} n .fst ∥) → ∃Max _ f
∃Max𝔽in {ℓ = ℓ} 0 _ x = Empty.rec (<→≢ (isInhab→card>0 (𝔽in 0) x) (card𝟘 {ℓ = ℓ}))
∃Max𝔽in 1 f _ =
subst (λ X → (f : X .fst → ℕ) → ∃Max _ f) (sym 𝔽in1≡𝟙) ∃Max𝟙 f
∃Max𝔽in (suc (suc n)) f _ =
∃Max⊎ (𝟙 .fst) (𝔽in (suc n) .fst) f (∃Max𝟙 (f ∘ inl)) (∃Max𝔽in (suc n) (f ∘ inr) ∣ * {n = n} ∣)
module _
(X : FinSet ℓ)
(f : X .fst → ℕ)
(x : ∥ X .fst ∥) where
∃MaxFinSet : ∃Max _ f
∃MaxFinSet =
elimProp
(λ X → (f : X .fst → ℕ)(x : ∥ X .fst ∥) → ∃Max _ f)
(λ X → isPropΠ2 (λ _ _ → isPropPropTrunc)) ∃Max𝔽in X f x
maxValue : ℕ
maxValue = ∃Max→maxValue _ _ ∃MaxFinSet
{- some formal consequences of card -}
-- card induces equivalence from set truncation of FinSet to natural numbers
open Iso
Iso-∥FinSet∥₂-ℕ : Iso ∥ FinSet ℓ ∥₂ ℕ
Iso-∥FinSet∥₂-ℕ .fun = Set.rec isSetℕ card
Iso-∥FinSet∥₂-ℕ .inv n = ∣ 𝔽in n ∣₂
Iso-∥FinSet∥₂-ℕ .rightInv n = card𝔽in n
Iso-∥FinSet∥₂-ℕ {ℓ = ℓ} .leftInv =
Set.elim {B = λ X → ∣ 𝔽in (Set.rec isSetℕ card X) ∣₂ ≡ X}
(λ X → isSetPathImplicit)
(elimProp (λ X → ∣ 𝔽in (card X) ∣₂ ≡ ∣ X ∣₂) (λ X → squash₂ _ _)
(λ n i → ∣ 𝔽in (card𝔽in {ℓ = ℓ} n i) ∣₂))
-- this is the definition of natural numbers you learned from school
∥FinSet∥₂≃ℕ : ∥ FinSet ℓ ∥₂ ≃ ℕ
∥FinSet∥₂≃ℕ = isoToEquiv Iso-∥FinSet∥₂-ℕ
-- FinProp is equivalent to Bool
Bool→FinProp : Bool → FinProp ℓ
Bool→FinProp true = 𝟙 , isPropUnit*
Bool→FinProp false = 𝟘 , isProp⊥*
injBool→FinProp : (x y : Bool) → Bool→FinProp {ℓ = ℓ} x ≡ Bool→FinProp y → x ≡ y
injBool→FinProp true true _ = refl
injBool→FinProp false false _ = refl
injBool→FinProp true false p = Empty.rec (snotz (cong (card ∘ fst) p))
injBool→FinProp false true p = Empty.rec (znots (cong (card ∘ fst) p))
isEmbeddingBool→FinProp : isEmbedding (Bool→FinProp {ℓ = ℓ})
isEmbeddingBool→FinProp = injEmbedding isSetBool isSetFinProp (λ {x} {y} → injBool→FinProp x y)
card-case : (P : FinProp ℓ) → {n : ℕ} → card (P .fst) ≡ n → Σ[ x ∈ Bool ] Bool→FinProp x ≡ P
card-case P {n = 0} p = false , FinProp≡ (𝟘 , isProp⊥*) P .fst (cong fst (sym (card≡0 {X = P .fst} p)))
card-case P {n = 1} p = true , FinProp≡ (𝟙 , isPropUnit*) P .fst (cong fst (sym (card≡1 {X = P .fst} p)))
card-case P {n = suc (suc n)} p =
Empty.rec (¬-<-zero (pred-≤-pred (subst (λ a → a ≤ 1) p (isProp→card≤1 (P .fst) (P .snd)))))
isSurjectionBool→FinProp : isSurjection (Bool→FinProp {ℓ = ℓ})
isSurjectionBool→FinProp P = ∣ card-case P refl ∣
FinProp≃Bool : FinProp ℓ ≃ Bool
FinProp≃Bool =
invEquiv (Bool→FinProp ,
isEmbedding×isSurjection→isEquiv (isEmbeddingBool→FinProp , isSurjectionBool→FinProp))
isFinSetFinProp : isFinSet (FinProp ℓ)
isFinSetFinProp = EquivPresIsFinSet (invEquiv FinProp≃Bool) isFinSetBool
-- a more computationally efficient version of equivalence type
module _
(X : FinSet ℓ )
(Y : FinSet ℓ') where
isFinSet≃Eff' : Dec (card X ≡ card Y) → isFinSet (X .fst ≃ Y .fst)
isFinSet≃Eff' (yes p) = factorial (card Y) ,
Prop.elim2 (λ _ _ → isPropPropTrunc {A = _ ≃ Fin _})
(λ p1 p2
→ ∣ equivComp (p1 ⋆ pathToEquiv (cong Fin p) ⋆ SumFin≃Fin _) (p2 ⋆ SumFin≃Fin _)
⋆ lehmerEquiv ⋆ lehmerFinEquiv
⋆ invEquiv (SumFin≃Fin _) ∣)
(∣≃card∣ X) (∣≃card∣ Y)
isFinSet≃Eff' (no ¬p) = 0 , ∣ uninhabEquiv (¬p ∘ cardEquiv X Y ∘ ∣_∣) (idfun _) ∣
isFinSet≃Eff : isFinSet (X .fst ≃ Y .fst)
isFinSet≃Eff = isFinSet≃Eff' (discreteℕ _ _)
module _
(X Y : FinSet ℓ) where
isFinSetType≡Eff : isFinSet (X .fst ≡ Y .fst)
isFinSetType≡Eff = EquivPresIsFinSet (invEquiv univalence) (isFinSet≃Eff X Y)
|
algebraic-stack_agda0000_doc_6521 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Decidable setoid membership over vectors.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (DecSetoid)
module Data.Vec.Membership.DecSetoid {c ℓ} (DS : DecSetoid c ℓ) where
open import Data.Vec using (Vec)
open import Data.Vec.Relation.Unary.Any using (any)
open import Relation.Nullary using (Dec)
open DecSetoid DS renaming (Carrier to A)
------------------------------------------------------------------------
-- Re-export contents of propositional membership
open import Data.Vec.Membership.Setoid setoid public
------------------------------------------------------------------------
-- Other operations
infix 4 _∈?_
_∈?_ : ∀ x {n} (xs : Vec A n) → Dec (x ∈ xs)
x ∈? xs = any (x ≟_) xs
|
algebraic-stack_agda0000_doc_6522 | module _ where
open import Agda.Primitive.Cubical
postulate
PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
{-# BUILTIN PATHP PathP #-}
|
algebraic-stack_agda0000_doc_6523 | module #8 where
{-
Define multiplication and exponentiation using recN. Verify that (N, +, 0, ×, 1) is
a semiring using only indN. You will probably also need to use symmetry and transitivity of
equality, Lemmas 2.1.1 and 2.1.2.
-}
open import Data.Nat
recₙ : ∀{c}{C : Set c} → C → (ℕ → C → C) → ℕ → C
recₙ c₀ cₛ zero = c₀
recₙ c₀ cₛ (suc n) = cₛ n (recₙ c₀ cₛ n)
mul-recₙ : ℕ → ℕ → ℕ
mul-recₙ n = recₙ 0 (λ _ z → z + n)
exp-recₙ : ℕ → ℕ → ℕ
exp-recₙ n = recₙ 1 (λ _ z → z * n)
ind-ℕ : ∀{k}{C : ℕ → Set k} → C zero → ((n : ℕ) → C n → C (suc n)) → (n : ℕ) → C n
ind-ℕ c0 cs zero = c0
ind-ℕ c0 cs (suc n) = cs n (ind-ℕ c0 cs n)
record Semiring (X : Set) : Set where
field
ε : X
_⊕_ : X → X → X
_⊛_ : X → X → X
open Semiring {{...}} public
natIsSemiring : Semiring ℕ
natIsSemiring = record { ε = zero
; _⊕_ = _+_
; _⊛_ = _*_
}
{- Semiring Laws Follow -}
|
algebraic-stack_agda0000_doc_6524 | ---------------------------------------
-- Pairs of sets
---------------------------------------
{-# OPTIONS --allow-unsolved-meta #-}
module sv20.assign2.SetTheory.Pairs where
-- Everything involving pairs, be them unordered
-- or ordered pairs. Also the definition of power set
-- and cartesian product between sets.
open import sv20.assign2.SetTheory.Logic
open import sv20.assign2.SetTheory.Algebra
open import sv20.assign2.SetTheory.Subset
open import sv20.assign2.SetTheory.ZAxioms
-- Pairs, justified by the pair axiom
_ₚ_ : 𝓢 → 𝓢 → 𝓢
x ₚ y = proj₁ (pair x y)
pair-d : (x y : 𝓢) → ∀ {z} → z ∈ x ₚ y ⇔ (z ≡ x ∨ z ≡ y)
pair-d x y = proj₂ _ (pair x y)
-- Both ∧-projections
pair-d₁ : (x y : 𝓢) → ∀ {z} → z ∈ x ₚ y → (z ≡ x ∨ z ≡ y)
pair-d₁ x y = ∧-proj₁ (pair-d x y)
pair-d₂ : (x y : 𝓢) → ∀ {z} → (z ≡ x ∨ z ≡ y) → z ∈ x ₚ y
pair-d₂ x y = ∧-proj₂ (pair-d x y)
pair-p₁ : (x y : 𝓢) → x ₚ y ≡ y ₚ x
pair-p₁ x y = equalitySubset (x ₚ y) (y ₚ x) (p₁ , p₂)
where
p₁ : (z : 𝓢) → z ∈ x ₚ y → z ∈ y ₚ x
p₁ z z∈x,y = pair-d₂ y x (∨-sym _ _ (pair-d₁ x y z∈x,y))
p₂ : (z : 𝓢) → z ∈ y ₚ x → z ∈ x ₚ y
p₂ z z∈y,x = pair-d₂ x y (∨-sym _ _ (pair-d₁ y x z∈y,x))
singleton : 𝓢 → 𝓢
singleton x = x ₚ x
singletonp : (x : 𝓢) → ∀ {z} → z ∈ singleton x → z ≡ x
singletonp x x₁ = ∨-idem _ (pair-d₁ x x x₁)
singletonp₂ : (x : 𝓢) → x ∈ singleton x
singletonp₂ x = pair-d₂ x x (inj₁ refl)
singletonp₃ : (x : 𝓢) → ∀ {y} → x ≡ y → x ∈ singleton y
singletonp₃ x x≡y = pair-d₂ _ _ (inj₁ x≡y)
singletonp₄ : (x y : 𝓢) → x ∈ singleton y → x ∩ singleton y ≡ ∅
singletonp₄ x y h = {!!}
where
p₁ : x ≡ y
p₁ = singletonp _ h
p₂ : x ∩ singleton x ≡ ∅
p₂ = {!!}
pair-prop-helper₁ : {a b c : 𝓢} → a ≡ b ∨ a ≡ c → a ≢ b → a ≡ c
pair-prop-helper₁ (inj₁ a≡b) h = ⊥-elim (h a≡b)
pair-prop-helper₁ (inj₂ refl) _ = refl
pair-prop-helper₂ : {a b : 𝓢} → a ≢ b → b ≢ a
pair-prop-helper₂ h b≡a = h (sym _ _ b≡a)
-- Theorem 44, p. 31 (Suppes, 1972).
pair-prop : (x y u v : 𝓢) → x ₚ y ≡ u ₚ v → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y)
pair-prop x y u v eq = ∨-e _ _ _ (pem (x ≡ y)) h-x≡y h-x≢y
where
u∈u,v : u ∈ (u ₚ v)
u∈u,v = ∨-prop₁ (pair-d₂ u v) refl
u∈x,y : u ∈ (x ₚ y)
u∈x,y = memberEq u (u ₚ v) (x ₚ y) (u∈u,v , (sym _ _ eq))
disj₁ : u ≡ x ∨ u ≡ y
disj₁ = pair-d₁ _ _ u∈x,y
v∈u,v : v ∈ (u ₚ v)
v∈u,v = ∨-prop₂ (pair-d₂ u v) refl
v∈x,y : v ∈ (x ₚ y)
v∈x,y = memberEq v (u ₚ v) (x ₚ y) (v∈u,v , (sym _ _ eq))
disj₂ : v ≡ x ∨ v ≡ y
disj₂ = pair-d₁ _ _ v∈x,y
x∈x,y : x ∈ (x ₚ y)
x∈x,y = ∨-prop₁ (pair-d₂ x y) refl
x∈u,v : x ∈ (u ₚ v)
x∈u,v = memberEq x (x ₚ y) (u ₚ v) (x∈x,y , eq)
disj₃ : x ≡ u ∨ x ≡ v
disj₃ = pair-d₁ _ _ x∈u,v
y∈x,y : y ∈ (x ₚ y)
y∈x,y = ∨-prop₂ (pair-d₂ x y) refl
y∈u,v : y ∈ (u ₚ v)
y∈u,v = memberEq y (x ₚ y) (u ₚ v) (y∈x,y , eq)
disj₄ : y ≡ u ∨ y ≡ v
disj₄ = pair-d₁ _ _ y∈u,v
h-x≡y : x ≡ y → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y)
h-x≡y eq₂ = inj₁ (x≡u , v≡y)
where
x≡u : u ≡ x
x≡u = ∨-idem _ disj-aux
where
disj-aux : u ≡ x ∨ u ≡ x
disj-aux = subs _ (sym _ _ eq₂) disj₁
v≡y : v ≡ y
v≡y = ∨-idem _ disj-aux
where
disj-aux : v ≡ y ∨ v ≡ y
disj-aux = subs _ eq₂ disj₂
h-x≢y : x ≢ y → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y)
h-x≢y ¬eq = ∨-e _ _ _ (pem (x ≡ u)) h₁ h₂
where
h₁ : x ≡ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y)
h₁ x≡u = ∨-e _ _ _ (pem (y ≡ u)) h₁₁ h₁₂
where
h₁₁ : y ≡ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y)
h₁₁ y≡u = ⊥-elim (¬eq (trans x≡u (sym _ _ y≡u)))
h₁₂ : y ≢ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y)
h₁₂ h = inj₁ (sym _ _ x≡u , sym _ _ (pair-prop-helper₁ disj₄ h))
h₂ : x ≢ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y)
h₂ h = inj₂ (sym _ _ (pair-prop-helper₁ disj₃ h)
,
(pair-prop-helper₁ disj₁ (pair-prop-helper₂ h)))
-- Theorem 45, p. 32 (Suppes 1960).
singleton-eq : (x y : 𝓢) → singleton x ≡ singleton y → x ≡ y
singleton-eq x y eq = sym _ _ (∧-proj₁ (∨-idem _ aux))
where
aux : ((y ≡ x) ∧ (y ≡ x)) ∨ ((y ≡ x) ∧ (y ≡ x))
aux = pair-prop x x y y eq
singleton-⊆ : (x A : 𝓢) → x ∈ A → singleton x ⊆ A
singleton-⊆ x A x∈A t t∈xₛ = subs _ (sym _ _ (singletonp _ t∈xₛ)) x∈A
prop-p₂ : (y z : 𝓢) → y ₚ z ≡ singleton y ∪ singleton z
prop-p₂ y z = equalitySubset _ _ (p₁ , p₂)
where
p₁ : (x : 𝓢) → x ∈ y ₚ z → x ∈ singleton y ∪ singleton z
p₁ _ h = ∪-d₂ _ _ (∨-prop₅ (pair-d₁ _ _ h) (singletonp₃ _) (singletonp₃ _))
p₂ : (x : 𝓢) → x ∈ singleton y ∪ singleton z → x ∈ y ₚ z
p₂ x h = pair-d₂ _ _ (∨-prop₅ (∪-d₁ _ _ h) (singletonp _) (singletonp _))
-- Ordered pairs
_ₒ_ : 𝓢 → 𝓢 → 𝓢
x ₒ y = singleton x ₚ (x ₚ y)
-- Just an abvreviation for next theorem
abv₁ : 𝓢 → 𝓢 → 𝓢 → 𝓢 → Set
abv₁ u x v y = (u ₚ u ≡ x ₚ x ∧ u ₚ v ≡ x ₚ y) ∨ (u ₚ v ≡ x ₚ x ∧ u ₚ u ≡ x ₚ y)
-- Theorem 46, p. 32 (Suppes).
ord-p : (x y u v : 𝓢) → x ₒ y ≡ u ₒ v → x ≡ u ∧ y ≡ v
ord-p x y u v eq = ∨-e _ _ _ aux a→c b→c
where
aux : (singleton u ≡ singleton x ∧ (u ₚ v) ≡ (x ₚ y)) ∨
((u ₚ v) ≡ singleton x ∧ singleton u ≡ (x ₚ y))
aux = pair-prop _ _ _ _ eq
a→c : singleton u ≡ singleton x ∧ u ₚ v ≡ x ₚ y → x ≡ u ∧ y ≡ v
a→c (eqₚ , eqₛ) = x≡u , y≡v
where
x≡u : x ≡ u
x≡u = singleton-eq _ _ (sym _ _ eqₚ)
p₁ : (x ≡ u ∧ y ≡ v) ∨ (y ≡ u ∧ x ≡ v)
p₁ = pair-prop _ _ _ _ eqₛ
p₂ : x ≡ u ∧ y ≡ v → y ≡ v
p₂ (h₁ , h₂) = h₂
p₃ : y ≡ u ∧ x ≡ v → y ≡ v
p₃ (h₁ , h₂) = subs (λ w → w ≡ v) x≡y h₂
where
x≡y : x ≡ y
x≡y = subs (λ w → x ≡ w) (sym y u h₁) x≡u
y≡v : y ≡ v
y≡v = ∨-e _ _ _ p₁ p₂ p₃
b→c : u ₚ v ≡ singleton x ∧ singleton u ≡ x ₚ y → x ≡ u ∧ y ≡ v
b→c (h₁ , h₂) = p₃ , subs (λ w → w ≡ v) p₈ p₄
where
p₁ : (x ≡ u ∧ x ≡ v) ∨ (x ≡ u ∧ x ≡ v)
p₁ = pair-prop _ _ _ _ h₁
p₂ : x ≡ u ∧ x ≡ v
p₂ = ∨-idem _ p₁
p₃ : x ≡ u
p₃ = ∧-proj₁ p₂
p₄ : x ≡ v
p₄ = ∧-proj₂ p₂
p₅ : (x ≡ u ∧ y ≡ u) ∨ (y ≡ u ∧ x ≡ u)
p₅ = pair-prop _ _ _ _ h₂
p₆ : x ≡ u ∧ y ≡ u
p₆ = ∨-∧ p₅
p₇ : y ≡ u
p₇ = ∧-proj₂ p₆
p₈ : x ≡ y
p₈ = subs (λ w → w ≡ y) (sym _ _ p₃) (sym _ _ p₇)
-- Power sets
𝓟_ : 𝓢 → 𝓢
𝓟 x = proj₁ (pow x)
-- Theorem 86, p. 47 (Suppes 1960)
𝓟-d : (x : 𝓢) → ∀ {z} → z ∈ (𝓟 x) ⇔ z ⊆ x
𝓟-d x = proj₂ _ (pow x)
-- Both projections.
𝓟-d₁ : (x : 𝓢) → ∀ {z} → z ∈ (𝓟 x) → z ⊆ x
𝓟-d₁ _ = ∧-proj₁ (𝓟-d _)
𝓟-d₂ : (x : 𝓢) → ∀ {z} → z ⊆ x → z ∈ (𝓟 x)
𝓟-d₂ _ = ∧-proj₂ (𝓟-d _)
-- Theorem 87, p. 47 (Suppes 1960).
A∈𝓟A : (A : 𝓢) → A ∈ 𝓟 A
A∈𝓟A A = 𝓟-d₂ A subsetOfItself
-- Theorem 91, p. 48 (Suppes 1960).
⊆𝓟 : (A B : 𝓢) → A ⊆ B ⇔ 𝓟 A ⊆ 𝓟 B
⊆𝓟 A B = iₗ , iᵣ
where
iₗ : A ⊆ B → 𝓟 A ⊆ 𝓟 B
iₗ A⊆B t t∈𝓟A = 𝓟-d₂ _ t⊆B
where
t⊆A : t ⊆ A
t⊆A = 𝓟-d₁ A t∈𝓟A
t⊆B : t ⊆ B
t⊆B = trans-⊆ _ _ _ (t⊆A , A⊆B)
iᵣ : 𝓟 A ⊆ 𝓟 B → A ⊆ B
iᵣ 𝓟A⊆𝓟B t t∈A = 𝓟-d₁ _ A∈𝓟B _ t∈A
where
A∈𝓟B : A ∈ 𝓟 B
A∈𝓟B = 𝓟A⊆𝓟B _ (A∈𝓟A _)
-- Theorem 92, p. 48 (Suppes 1960).
𝓟∪ : (A B : 𝓢) → (𝓟 A) ∪ (𝓟 B) ⊆ 𝓟 (A ∪ B)
𝓟∪ A B t t∈𝓟A∪𝓟B = 𝓟-d₂ _ t⊆A∪B
where
∪₁ : t ∈ 𝓟 A ∨ t ∈ 𝓟 B
∪₁ = ∪-d₁ _ _ t∈𝓟A∪𝓟B
p : t ⊆ A ∨ t ⊆ B
p = ∨-prop₄ aux₁ (𝓟-d₁ _)
where
aux₁ : t ⊆ A ∨ t ∈ 𝓟 B
aux₁ = ∨-prop₃ ∪₁ (𝓟-d₁ _)
t⊆A∪B : t ⊆ A ∪ B
t⊆A∪B = ∪-prop₂ _ _ _ p
-- Cartesian Product. First we have to prove some things using
-- the subset axiom in order to be able to define cartesian products.
-- Two abvreviations to make sub₄ shorter.
abv₂ : 𝓢 → 𝓢 → 𝓢 → Set
abv₂ z A B = z ∈ 𝓟 (𝓟 (A ∪ B))
abv₃ : 𝓢 → 𝓢 → 𝓢 → Set
abv₃ z A B = ∃ (λ y → ∃ (λ w → (y ∈ A ∧ w ∈ B) ∧ z ≡ y ₒ w))
--Instance of the subset axiom.
sub₄ : (A B : 𝓢) → ∃ (λ C → {z : 𝓢} → z ∈ C ⇔ abv₂ z A B ∧ abv₃ z A B)
sub₄ A B = sub (λ x → abv₃ x A B) (𝓟 (𝓟 (A ∪ B)))
-- Proved inside theorem 95, p. 49 (Suppes 1960)
prop₁ : (A B x : 𝓢) → abv₃ x A B → abv₂ x A B
prop₁ A B x (y , (z , ((y∈A , z∈B) , eqo))) = subs _ (sym _ _ eqo) yₒz∈𝓟𝓟A∪B
where
yₛ⊆A : singleton y ⊆ A
yₛ⊆A = singleton-⊆ _ _ y∈A
yₛ⊆A∪B : singleton y ⊆ A ∪ B
yₛ⊆A∪B t t∈yₛ = trans-⊆ _ _ _ (yₛ⊆A , (∪-prop _ _)) _ t∈yₛ
zₛ⊆B : singleton z ⊆ B
zₛ⊆B = singleton-⊆ _ _ z∈B
zₛ⊆A∪B : singleton z ⊆ A ∪ B
zₛ⊆A∪B t t∈zₛ = trans-⊆ _ _ _ (zₛ⊆B , ∪-prop₃ _ _) _ t∈zₛ
y,z⊆A∪B : y ₚ z ⊆ A ∪ B
y,z⊆A∪B t t∈y,z = ∪-prop₄ _ _ _ yₛ⊆A∪B zₛ⊆A∪B _ p
where
p : t ∈ singleton y ∪ singleton z
p = subs (λ w → t ∈ w) (prop-p₂ y z) t∈y,z
yₛ∈𝓟A∪B : singleton y ∈ 𝓟 (A ∪ B)
yₛ∈𝓟A∪B = 𝓟-d₂ _ yₛ⊆A∪B
y,z∈𝓟A∪B : y ₚ z ∈ 𝓟 (A ∪ B)
y,z∈𝓟A∪B = 𝓟-d₂ _ y,z⊆A∪B
yₒz⊆𝓟A∪B : y ₒ z ⊆ 𝓟 (A ∪ B)
yₒz⊆𝓟A∪B t t∈o = ∨-e _ _ _ (pair-d₁ _ _ t∈o) i₁ i₂
where
i₁ : t ≡ singleton y → t ∈ 𝓟 (A ∪ B)
i₁ eq = subs _ (sym t (singleton y) eq) yₛ∈𝓟A∪B
i₂ : t ≡ y ₚ z → t ∈ 𝓟 (A ∪ B)
i₂ eq = subs _ (sym t (y ₚ z) eq) y,z∈𝓟A∪B
yₒz∈𝓟𝓟A∪B : y ₒ z ∈ 𝓟 (𝓟 (A ∪ B))
yₒz∈𝓟𝓟A∪B = 𝓟-d₂ _ yₒz⊆𝓟A∪B
Aᵤ : 𝓢 → 𝓢 → 𝓢
Aᵤ A B = proj₁ (sub₄ A B)
-- Theorem 95, p 49 (Suppes 1960).
pAᵤ : (A B : 𝓢) → {z : 𝓢} → z ∈ (Aᵤ A B) ⇔ abv₂ z A B ∧ abv₃ z A B
pAᵤ A B = proj₂ _ (sub₄ A B)
crts : (A B : 𝓢) → ∃ (λ C → (z : 𝓢) → z ∈ C ⇔ abv₃ z A B)
crts A B = (Aᵤ A B) , (λ w → ⇔-p₂ w (pAᵤ A B) (prop₁ A B w))
_X_ : 𝓢 → 𝓢 → 𝓢
A X B = proj₁ (crts A B)
-- Theorem 97, p. 50 (Suppes 1960).
crts-p : (A B x : 𝓢) → x ∈ A X B ⇔ abv₃ x A B
crts-p A B x = proj₂ _ (crts A B) x
-- Both projections
crts-p₁ : (A B x : 𝓢) → x ∈ A X B → abv₃ x A B
crts-p₁ A B x = ∧-proj₁ (crts-p A B x)
crts-p₂ : (A B x : 𝓢) → abv₃ x A B → x ∈ A X B
crts-p₂ A B x = ∧-proj₂ (crts-p A B x)
crts-d₁ : (x y A B : 𝓢) → x ₒ y ∈ A X B → x ∈ A ∧ y ∈ B
crts-d₁ x y A B h = (subs (λ w → w ∈ A) (sym _ _ eq₁) aux∈A)
,
subs (λ w → w ∈ B) (sym _ _ eq₂) aux₂∈B
where
foo : ∃ (λ z → ∃ (λ w → (z ∈ A ∧ w ∈ B) ∧ (x ₒ y) ≡ (z ₒ w)))
foo = crts-p₁ A B (x ₒ y) h
aux : 𝓢
aux = proj₁ foo
aux-p : ∃ (λ w → (aux ∈ A ∧ w ∈ B) ∧ (x ₒ y) ≡ (aux ₒ w))
aux-p = proj₂ _ foo
aux₂ : 𝓢
aux₂ = proj₁ aux-p
aux₂-p : (aux ∈ A ∧ aux₂ ∈ B) ∧ (x ₒ y) ≡ (aux ₒ aux₂)
aux₂-p = proj₂ _ aux-p
aux∈A : aux ∈ A
aux∈A = ∧-proj₁ (∧-proj₁ aux₂-p)
aux₂∈B : aux₂ ∈ B
aux₂∈B = ∧-proj₂ (∧-proj₁ aux₂-p)
eq : x ₒ y ≡ aux ₒ aux₂
eq = ∧-proj₂ aux₂-p
eqs : x ≡ aux ∧ y ≡ aux₂
eqs = ord-p _ _ _ _ eq
eq₁ : x ≡ aux
eq₁ = ∧-proj₁ eqs
eq₂ : y ≡ aux₂
eq₂ = ∧-proj₂ eqs
-- References
--
-- Suppes, Patrick (1960). Axiomatic Set Theory.
-- The University Series in Undergraduate Mathematics.
-- D. Van Nostrand Company, inc.
--
-- Enderton, Herbert B. (1977). Elements of Set Theory.
-- Academic Press Inc.
|
algebraic-stack_agda0000_doc_6525 |
postulate
A : Set
I : ..(_ : A) → Set
R : A → Set
f : ∀ ..(x : A) (r : R x) → I x
-- can now be used here ^
|
algebraic-stack_agda0000_doc_6526 | module examplesPaperJFP.VariableListForDispatchOnly where
open import Data.Product hiding (map)
open import Data.List
open import NativeIO
open import StateSizedIO.GUI.WxBindingsFFI
open import Relation.Binary.PropositionalEquality
data VarList : Set₁ where
[] : VarList
addVar : (A : Set) → Var A → VarList → VarList
prod : VarList → Set
prod [] = Unit
prod (addVar A v []) = A
prod (addVar A v l) = A × prod l
takeVar : (l : VarList) → NativeIO (prod l)
takeVar [] = nativeReturn unit
takeVar (addVar A v []) =
nativeTakeVar {A} v native>>= λ a → nativeReturn a
takeVar (addVar A v (addVar B v′ l)) =
nativeTakeVar {A} v native>>= λ a →
takeVar (addVar B v′ l) native>>= λ rest → nativeReturn ( a , rest )
putVar : (l : VarList) → prod l → NativeIO Unit
putVar [] _ = nativeReturn unit
putVar (addVar A v []) a = nativePutVar {A} v a
putVar (addVar A v (addVar B v′ l)) (a , rest) =
nativePutVar {A} v a native>>= λ _ →
putVar (addVar B v′ l) rest native>>= nativeReturn
dispatch : (l : VarList) → (prod l → NativeIO (prod l)) → NativeIO Unit
dispatch l f = takeVar l native>>= λ a →
f a native>>= λ a₁ →
putVar l a₁
dispatchList : (l : VarList) → List (prod l → NativeIO (prod l)) → NativeIO Unit
dispatchList l [] = nativeReturn unit
dispatchList l (p ∷ rest) = dispatch l p native>>= λ _ →
dispatchList l rest
|
algebraic-stack_agda0000_doc_6527 | {-# OPTIONS --without-K #-}
open import lib.Basics
{-
The generic nonrecursive higher inductive type with one point constructor and
one paths constructor.
-}
module lib.types.Generic1HIT {i j} (A : Type i) (B : Type j)
(g h : B → A) where
{-
data T : Type where
cc : A → T
pp : (b : B) → cc (f' b) ≡ cc (g b)
-}
module _ where
private
data #T-aux : Type (lmax i j) where
#cc : A → #T-aux
data #T : Type (lmax i j) where
#t : #T-aux → (Unit → Unit) → #T
T : Type _
T = #T
cc : A → T
cc a = #t (#cc a) _
postulate -- HIT
pp : (b : B) → cc (g b) == cc (h b)
module Elim {k} {P : T → Type k} (cc* : (a : A) → P (cc a))
(pp* : (b : B) → cc* (g b) == cc* (h b) [ P ↓ pp b ]) where
f : Π T P
f = f-aux phantom where
f-aux : Phantom pp* → Π T P
f-aux phantom (#t (#cc a) _) = cc* a
postulate -- HIT
pp-β : (b : B) → apd f (pp b) == pp* b
open Elim public using () renaming (f to elim)
module Rec {k} {C : Type k} (cc* : A → C)
(pp* : (b : B) → cc* (g b) == cc* (h b)) where
private module M = Elim cc* (λ b → ↓-cst-in (pp* b))
f : T → C
f = M.f
pp-β : (b : B) → ap f (pp b) == pp* b
pp-β b = apd=cst-in {f = f} (M.pp-β b)
module RecType {k} (C : A → Type k) (D : (b : B) → C (g b) ≃ C (h b)) where
open Rec C (ua ∘ D) public
coe-pp-β : (b : B) (d : C (g b)) → coe (ap f (pp b)) d == –> (D b) d
coe-pp-β b d =
coe (ap f (pp b)) d =⟨ pp-β _ |in-ctx (λ u → coe u d) ⟩
coe (ua (D b)) d =⟨ coe-β (D b) d ⟩
–> (D b) d ∎
-- Dependent path in [P] over [pp b]
module _ {b : B} {d : C (g b)} {d' : C (h b)} where
↓-pp-in : –> (D b) d == d' → d == d' [ f ↓ pp b ]
↓-pp-in p = from-transp f (pp b) (coe-pp-β b d ∙' p)
↓-pp-out : d == d' [ f ↓ pp b ] → –> (D b) d == d'
↓-pp-out p = ! (coe-pp-β b d) ∙ to-transp p
↓-pp-β : (q : –> (D b) d == d') → ↓-pp-out (↓-pp-in q) == q
↓-pp-β q =
↓-pp-out (↓-pp-in q)
=⟨ idp ⟩
! (coe-pp-β b d) ∙ to-transp (from-transp f (pp b) (coe-pp-β b d ∙' q))
=⟨ to-transp-β f (pp b) (coe-pp-β b d ∙' q) |in-ctx (λ u → ! (coe-pp-β b d) ∙ u) ⟩
! (coe-pp-β b d) ∙ (coe-pp-β b d ∙' q)
=⟨ lem (coe-pp-β b d) q ⟩
q ∎ where
lem : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z)
→ ! p ∙ (p ∙' q) == q
lem idp idp = idp
|
algebraic-stack_agda0000_doc_15104 | -- Problem 2: Multiplication for matrices (from the matrix algebra DSL).
module P2 where
-- 2a: Type the variables in the text.
-- (This answer uses Agda syntax, but that is not required.)
postulate Nat : Set
postulate V : Nat -> Set -> Set
postulate Fin : Nat -> Set
Op : Set -> Set
Op a = a -> a -> a
postulate sum : {n : Nat} {a : Set} -> Op a -> V n a -> a
postulate zipWith : {n : Nat} {a : Set} -> Op a -> V n a -> V n a -> V n a
data M (m n : Nat) (a : Set) : Set where
matrix : (Fin m -> Fin n -> a) -> M m n a
record Dummy (a : Set) : Set where
field
m : Nat
n : Nat
A : M m n a
p : Nat
B : M n p a
i : Fin m
j : Fin p
-- 2b: Type |mul| and |proj|
postulate
proj : {m n : Nat} {a : Set} -> Fin m -> Fin n -> M m n a -> a
mul : {m n p : Nat} {a : Set} -> Op a -> Op a ->
M m n a -> M n p a -> M m p a
-- 2c: Implement |mul|.
postulate
row : {m n : Nat} {a : Set} -> Fin m -> M m n a -> V n a
col : {m n : Nat} {a : Set} -> Fin n -> M m n a -> V m a
mul addE mulE A B = matrix (\i j ->
sum addE (zipWith mulE (row i A) (col j B)))
|
algebraic-stack_agda0000_doc_15105 | {-# OPTIONS --without-K --safe #-}
module C where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Singleton
infixr 70 _×ᵤ_
infixr 60 _+ᵤₗ_
infixr 60 _+ᵤᵣ_
infixr 50 _⊚_
------------------------------------------------------------------------------
-- Pi
data 𝕌 : Set
⟦_⟧ : 𝕌 → Σ[ A ∈ Set ] A
data _⟷_ : 𝕌 → 𝕌 → Set
data 𝕌 where
𝟙 : 𝕌
_+ᵤₗ_ : 𝕌 → 𝕌 → 𝕌
_+ᵤᵣ_ : 𝕌 → 𝕌 → 𝕌
_×ᵤ_ : 𝕌 → 𝕌 → 𝕌
Singᵤ : 𝕌 → 𝕌
Recipᵤ : 𝕌 → 𝕌
⟦ 𝟙 ⟧ = ⊤ , tt
⟦ T₁ ×ᵤ T₂ ⟧ = zip _×_ _,_ ⟦ T₁ ⟧ ⟦ T₂ ⟧
⟦ T₁ +ᵤₗ T₂ ⟧ = zip _⊎_ (λ x _ → inj₁ x) ⟦ T₁ ⟧ ⟦ T₂ ⟧
⟦ T₁ +ᵤᵣ T₂ ⟧ = zip _⊎_ (λ _ y → inj₂ y) ⟦ T₁ ⟧ ⟦ T₂ ⟧
⟦ Singᵤ T ⟧ = < uncurry Singleton , (λ y → proj₂ y , refl) > ⟦ T ⟧
⟦ Recipᵤ T ⟧ = < uncurry Recip , (λ _ _ → tt) > ⟦ T ⟧
data _⟷_ where
swap₊₁ : {t₁ t₂ : 𝕌} → t₁ +ᵤₗ t₂ ⟷ t₂ +ᵤᵣ t₁
swap₊₂ : {t₁ t₂ : 𝕌} → t₁ +ᵤᵣ t₂ ⟷ t₂ +ᵤₗ t₁
assocl₊₁ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤₗ (t₂ +ᵤₗ t₃) ⟷ (t₁ +ᵤₗ t₂) +ᵤₗ t₃
assocl₊₂ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤₗ (t₂ +ᵤᵣ t₃) ⟷ (t₁ +ᵤₗ t₂) +ᵤₗ t₃
assocl₊₃ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤᵣ (t₂ +ᵤₗ t₃) ⟷ (t₁ +ᵤᵣ t₂) +ᵤₗ t₃
assocl₊₄ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃) ⟷ (t₁ +ᵤₗ t₂) +ᵤᵣ t₃
assocl₊₅ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃) ⟷ (t₁ +ᵤᵣ t₂) +ᵤᵣ t₃
assocr₊₁ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) +ᵤₗ t₃ ⟷ t₁ +ᵤₗ (t₂ +ᵤᵣ t₃)
assocr₊₂ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) +ᵤₗ t₃ ⟷ t₁ +ᵤₗ (t₂ +ᵤₗ t₃)
assocr₊₃ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤᵣ t₂) +ᵤₗ t₃ ⟷ t₁ +ᵤᵣ (t₂ +ᵤₗ t₃)
assocr₊₄ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) +ᵤᵣ t₃ ⟷ t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃)
assocr₊₅ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤᵣ t₂) +ᵤᵣ t₃ ⟷ t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃)
unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ⟷ t
uniti⋆l : {t : 𝕌} → t ⟷ 𝟙 ×ᵤ t
unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ⟷ t
uniti⋆r : {t : 𝕌} → t ⟷ t ×ᵤ 𝟙
swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ⟷ t₂ ×ᵤ t₁
assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) ×ᵤ t₃
assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ⟷ t₁ ×ᵤ (t₂ ×ᵤ t₃)
dist₁ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤₗ (t₂ ×ᵤ t₃)
dist₂ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤᵣ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤᵣ (t₂ ×ᵤ t₃)
factor₁ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤₗ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤₗ t₂) ×ᵤ t₃
factor₂ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤᵣ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤᵣ t₂) ×ᵤ t₃
distl₁ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤₗ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤₗ (t₁ ×ᵤ t₃)
distl₂ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤᵣ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤᵣ (t₁ ×ᵤ t₃)
factorl₁ : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤₗ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤₗ t₃)
factorl₂ : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤᵣ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤᵣ t₃)
id⟷ : {t : 𝕌} → t ⟷ t
_⊚_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_⊕₁_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤₗ t₂ ⟷ t₃ +ᵤₗ t₄)
_⊕₂_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤᵣ t₂ ⟷ t₃ +ᵤᵣ t₄)
_⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ ×ᵤ t₂ ⟷ t₃ ×ᵤ t₄)
-- monad
return : (T : 𝕌) → T ⟷ Singᵤ T
join : (T : 𝕌) → Singᵤ (Singᵤ T) ⟷ Singᵤ T
unjoin : (T : 𝕌) → Singᵤ T ⟷ Singᵤ (Singᵤ T)
tensorl : (T₁ T₂ : 𝕌) → (Singᵤ T₁ ×ᵤ T₂) ⟷ Singᵤ (T₁ ×ᵤ T₂)
tensorr : (T₁ T₂ : 𝕌) → (T₁ ×ᵤ Singᵤ T₂) ⟷ Singᵤ (T₁ ×ᵤ T₂)
tensor : (T₁ T₂ : 𝕌) → (Singᵤ T₁ ×ᵤ Singᵤ T₂) ⟷ Singᵤ (T₁ ×ᵤ T₂)
untensor : (T₁ T₂ : 𝕌) → Singᵤ (T₁ ×ᵤ T₂) ⟷ (Singᵤ T₁ ×ᵤ Singᵤ T₂)
plusl : (T₁ T₂ : 𝕌) → (Singᵤ T₁ +ᵤₗ T₂) ⟷ Singᵤ (T₁ +ᵤₗ T₂)
plusr : (T₁ T₂ : 𝕌) → (T₁ +ᵤᵣ Singᵤ T₂) ⟷ Singᵤ (T₁ +ᵤᵣ T₂)
-- comonad
extract : (T : 𝕌) → Singᵤ T ⟷ T
cojoin : (T : 𝕌) → Singᵤ T ⟷ Singᵤ (Singᵤ T)
counjoin : (T : 𝕌) → Singᵤ (Singᵤ T) ⟷ Singᵤ T
cotensorl : (T₁ T₂ : 𝕌) → Singᵤ (T₁ ×ᵤ T₂) ⟷ (Singᵤ T₁ ×ᵤ T₂)
cotensorr : (T₁ T₂ : 𝕌) → Singᵤ (T₁ ×ᵤ T₂) ⟷ (T₁ ×ᵤ Singᵤ T₂)
coplusl : (T₁ T₂ : 𝕌) → Singᵤ (T₁ +ᵤₗ T₂) ⟷ (Singᵤ T₁ +ᵤₗ T₂)
coplusr : (T₁ T₂ : 𝕌) → Singᵤ (T₁ +ᵤᵣ T₂) ⟷ (T₁ +ᵤᵣ Singᵤ T₂)
-- both?
Singᵤ : (T₁ T₂ : 𝕌) → (T₁ ⟷ T₂) → (Singᵤ T₁ ⟷ Singᵤ T₂)
-- eta/epsilon
η : (T : 𝕌) → 𝟙 ⟷ (Singᵤ T ×ᵤ Recipᵤ T)
ε : (T : 𝕌) → (Singᵤ T ×ᵤ Recipᵤ T) ⟷ 𝟙
!_ : {t₁ t₂ : 𝕌} → t₁ ⟷ t₂ → t₂ ⟷ t₁
! swap₊₁ = swap₊₂
! swap₊₂ = swap₊₁
! assocl₊₁ = assocr₊₂
! assocl₊₂ = assocr₊₁
! assocl₊₃ = assocr₊₃
! assocl₊₄ = assocr₊₄
! assocl₊₅ = assocr₊₅
! assocr₊₁ = assocl₊₂
! assocr₊₂ = assocl₊₁
! assocr₊₃ = assocl₊₃
! assocr₊₄ = assocl₊₄
! assocr₊₅ = assocl₊₅
! unite⋆l = uniti⋆l
! uniti⋆l = unite⋆l
! unite⋆r = uniti⋆r
! uniti⋆r = unite⋆r
! swap⋆ = swap⋆
! assocl⋆ = assocr⋆
! assocr⋆ = assocl⋆
! dist₁ = factor₁
! dist₂ = factor₂
! factor₁ = dist₁
! factor₂ = dist₂
! distl₁ = factorl₁
! distl₂ = factorl₂
! factorl₁ = distl₁
! factorl₂ = distl₂
! id⟷ = id⟷
! (c ⊚ c₁) = (! c₁) ⊚ (! c)
! (c ⊕₁ c₁) = (! c) ⊕₁ (! c₁)
! (c ⊕₂ c₁) = (! c) ⊕₂ (! c₁)
! (c ⊗ c₁) = (! c) ⊗ (! c₁)
! return T = extract T
! join T = return (Singᵤ T)
! unjoin T = join T
! tensorl T₁ T₂ = cotensorl T₁ T₂
! tensorr T₁ T₂ = cotensorr T₁ T₂
! tensor T₁ T₂ = untensor T₁ T₂
! untensor T₁ T₂ = tensor T₁ T₂
! plusl T₁ T₂ = coplusl T₁ T₂
! plusr T₁ T₂ = coplusr T₁ T₂
! extract T = return T
! cojoin T = join T
! counjoin T = return (Singᵤ T)
! cotensorl T₁ T₂ = tensorl T₁ T₂
! cotensorr T₁ T₂ = tensorr T₁ T₂
! coplusl T₁ T₂ = plusl T₁ T₂
! coplusr T₁ T₂ = plusr T₁ T₂
! Singᵤ T₁ T₂ c = Singᵤ T₂ T₁ (! c)
! η T = ε T
! ε T = η T
|
algebraic-stack_agda0000_doc_15106 | {-# OPTIONS --universe-polymorphism #-}
module Categories.Product where
open import Level
open import Function using () renaming (_∘_ to _∙_)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap)
open import Categories.Category
private
map⁎ : ∀ {a b p q} {A : Set a} {B : A → Set b} {P : A → Set p} {Q : {x : A} → P x → B x → Set q} → (f : (x : A) → B x) → (∀ {x} → (y : P x) → Q y (f x)) → (v : Σ A P) → Σ (B (proj₁ v)) (Q (proj₂ v))
map⁎ f g (x , y) = (f x , g y)
map⁎′ : ∀ {a b p q} {A : Set a} {B : A → Set b} {P : Set p} {Q : P → Set q} → (f : (x : A) → B x) → ((x : P) → Q x) → (v : A × P) → B (proj₁ v) × Q (proj₂ v)
map⁎′ f g (x , y) = (f x , g y)
zipWith : ∀ {a b c p q r s} {A : Set a} {B : Set b} {C : Set c} {P : A → Set p} {Q : B → Set q} {R : C → Set r} {S : (x : C) → R x → Set s} (_∙_ : A → B → C) → (_∘_ : ∀ {x y} → P x → Q y → R (x ∙ y)) → (_*_ : (x : C) → (y : R x) → S x y) → (x : Σ A P) → (y : Σ B Q) → S (proj₁ x ∙ proj₁ y) (proj₂ x ∘ proj₂ y)
zipWith _∙_ _∘_ _*_ (a , p) (b , q) = (a ∙ b) * (p ∘ q)
syntax zipWith f g h = f -< h >- g
Product : ∀ {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′)
Product C D = record
{ Obj = C.Obj × D.Obj
; _⇒_ = C._⇒_ -< _×_ >- D._⇒_
; _≡_ = C._≡_ -< _×_ >- D._≡_
; _∘_ = zip C._∘_ D._∘_
; id = C.id , D.id
; assoc = C.assoc , D.assoc
; identityˡ = C.identityˡ , D.identityˡ
; identityʳ = C.identityʳ , D.identityʳ
; equiv = record
{ refl = C.Equiv.refl , D.Equiv.refl
; sym = map C.Equiv.sym D.Equiv.sym
; trans = zip C.Equiv.trans D.Equiv.trans
}
; ∘-resp-≡ = zip C.∘-resp-≡ D.∘-resp-≡
}
where
module C = Category C
module D = Category D
open import Categories.Functor using (Functor; module Functor)
infixr 2 _※_
_※_ : ∀ {o ℓ e o′₁ ℓ′₁ e′₁ o′₂ ℓ′₂ e′₂} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {D₂ : Category o′₂ ℓ′₂ e′₂} → (F : Functor C D₁) → (G : Functor C D₂) → Functor C (Product D₁ D₂)
F ※ G = record
{ F₀ = < F.F₀ , G.F₀ >
; F₁ = < F.F₁ , G.F₁ >
; identity = F.identity , G.identity
; homomorphism = F.homomorphism , G.homomorphism
; F-resp-≡ = < F.F-resp-≡ , G.F-resp-≡ >
}
where
module F = Functor F
module G = Functor G
infixr 2 _⁂_
_⁂_ : ∀ {o₁ ℓ₁ e₁ o′₁ ℓ′₁ e′₁ o₂ ℓ₂ e₂ o′₂ ℓ′₂ e′₂} {C₁ : Category o₁ ℓ₁ e₁} {D₁ : Category o′₁ ℓ′₁ e′₁} → {C₂ : Category o₂ ℓ₂ e₂} {D₂ : Category o′₂ ℓ′₂ e′₂} → (F₁ : Functor C₁ D₁) → (F₂ : Functor C₂ D₂) → Functor (Product C₁ C₂) (Product D₁ D₂)
F ⁂ G = record
{ F₀ = map F.F₀ G.F₀
; F₁ = map F.F₁ G.F₁
; identity = F.identity , G.identity
; homomorphism = F.homomorphism , G.homomorphism
; F-resp-≡ = map F.F-resp-≡ G.F-resp-≡
}
where
module F = Functor F
module G = Functor G
open import Categories.NaturalTransformation using (NaturalTransformation; module NaturalTransformation)
infixr 2 _⁂ⁿ_
_⁂ⁿ_ : ∀ {o₁ ℓ₁ e₁ o′₁ ℓ′₁ e′₁ o₂ ℓ₂ e₂ o′₂ ℓ′₂ e′₂} {C₁ : Category o₁ ℓ₁ e₁} {D₁ : Category o′₁ ℓ′₁ e′₁} → {C₂ : Category o₂ ℓ₂ e₂} {D₂ : Category o′₂ ℓ′₂ e′₂} → {F₁ G₁ : Functor C₁ D₁} {F₂ G₂ : Functor C₂ D₂} → (α : NaturalTransformation F₁ G₁) → (β : NaturalTransformation F₂ G₂) → NaturalTransformation (F₁ ⁂ F₂) (G₁ ⁂ G₂)
α ⁂ⁿ β = record { η = map⁎′ α.η β.η; commute = map⁎′ α.commute β.commute }
where
module α = NaturalTransformation α
module β = NaturalTransformation β
infixr 2 _※ⁿ_
_※ⁿ_ : ∀ {o ℓ e o′₁ ℓ′₁ e′₁} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {F₁ G₁ : Functor C D₁} (α : NaturalTransformation F₁ G₁) → ∀ {o′₂ ℓ′₂ e′₂} {D₂ : Category o′₂ ℓ′₂ e′₂} {F₂ G₂ : Functor C D₂} (β : NaturalTransformation F₂ G₂) → NaturalTransformation (F₁ ※ F₂) (G₁ ※ G₂)
α ※ⁿ β = record { η = < α.η , β.η >; commute = < α.commute , β.commute > }
where
module α = NaturalTransformation α
module β = NaturalTransformation β
assocˡ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} → (C₁ : Category o₁ ℓ₁ e₁) (C₂ : Category o₂ ℓ₂ e₂) (C₃ : Category o₃ ℓ₃ e₃) → Functor (Product (Product C₁ C₂) C₃) (Product C₁ (Product C₂ C₃))
assocˡ C₁ C₂ C₃ = record
{ F₀ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > >
; F₁ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > >
; identity = C₁.Equiv.refl , C₂.Equiv.refl , C₃.Equiv.refl
; homomorphism = C₁.Equiv.refl , C₂.Equiv.refl , C₃.Equiv.refl
; F-resp-≡ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > >
}
where
module C₁ = Category C₁
module C₂ = Category C₂
module C₃ = Category C₃
assocʳ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} → (C₁ : Category o₁ ℓ₁ e₁) (C₂ : Category o₂ ℓ₂ e₂) (C₃ : Category o₃ ℓ₃ e₃) → Functor (Product C₁ (Product C₂ C₃)) (Product (Product C₁ C₂) C₃)
assocʳ C₁ C₂ C₃ = record
{ F₀ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ >
; F₁ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ >
; identity = (C₁.Equiv.refl , C₂.Equiv.refl) , C₃.Equiv.refl
; homomorphism = (C₁.Equiv.refl , C₂.Equiv.refl) , C₃.Equiv.refl
; F-resp-≡ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ >
}
where
module C₁ = Category C₁
module C₂ = Category C₂
module C₃ = Category C₃
πˡ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor (Product C D) C
πˡ {C = C} = record { F₀ = proj₁; F₁ = proj₁; identity = refl
; homomorphism = refl; F-resp-≡ = proj₁ }
where open Category.Equiv C using (refl)
πʳ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor (Product C D) D
πʳ {D = D} = record { F₀ = proj₂; F₁ = proj₂; identity = refl
; homomorphism = refl; F-resp-≡ = proj₂ }
where open Category.Equiv D using (refl)
Swap : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor (Product D C) (Product C D)
Swap {C = C} {D = D} = (record
{ F₀ = swap
; F₁ = swap
; identity = C.Equiv.refl , D.Equiv.refl
; homomorphism = C.Equiv.refl , D.Equiv.refl
; F-resp-≡ = swap
})
where
module C = Category C
module D = Category D
|
algebraic-stack_agda0000_doc_15107 | open import Nat
open import Prelude
open import List
open import core
open import judgemental-erase
open import sensibility
open import moveerase
module checks where
-- these three judmgements lift the action semantics judgements to relate
-- an expression and a list of pair-wise composable actions to the
-- expression that's produced by tracing through the action semantics for
-- each element in that list.
--
-- we do this just by appealing to the original judgement with
-- constraints on the terms to enforce composability.
--
-- in all three cases, we assert that the empty list of actions
-- constitutes a reflexivity step, so when you run out of actions to
-- preform you have to be where you wanted to be.
--
-- note that the only difference between the types for each judgement and
-- the original action semantics is that the action is now a list of
-- actions.
data runtype : (t : τ̂) (Lα : List action) (t' : τ̂) → Set where
DoRefl : {t : τ̂} → runtype t [] t
DoType : {t : τ̂} {α : action} {t' t'' : τ̂}
{L : List action} →
t + α +> t' →
runtype t' L t'' →
runtype t (α :: L) t''
data runsynth :
(Γ : ·ctx) (e : ê) (t1 : τ̇) (Lα : List action) (e' : ê) (t2 : τ̇) → Set where
DoRefl : {Γ : ·ctx} {e : ê} {t : τ̇} → runsynth Γ e t [] e t
DoSynth : {Γ : ·ctx} {e : ê} {t : τ̇} {α : action} {e' e'' : ê} {t' t'' : τ̇}
{L : List action} →
Γ ⊢ e => t ~ α ~> e' => t' →
runsynth Γ e' t' L e'' t'' →
runsynth Γ e t (α :: L) e'' t''
data runana : (Γ : ·ctx) (e : ê) (Lα : List action) (e' : ê) (t : τ̇) → Set where
DoRefl : {Γ : ·ctx} {e : ê} {t : τ̇} → runana Γ e [] e t
DoAna : {Γ : ·ctx} {e : ê} {α : action} {e' e'' : ê} {t : τ̇}
{L : List action} →
Γ ⊢ e ~ α ~> e' ⇐ t →
runana Γ e' L e'' t →
runana Γ e (α :: L) e'' t
-- all three run judgements lift to the list monoid as expected. these
-- theorems are simple because the structure of lists is simple, but they
-- amount a reasoning principle about the composition of action sequences
-- by letting you split lists in (nearly) arbitrary places and argue
-- about the consequences of the splits before composing them together.
runtype++ : ∀{t t' t'' L1 L2 }
→ runtype t L1 t'
→ runtype t' L2 t''
→ runtype t (L1 ++ L2) t''
runtype++ DoRefl d2 = d2
runtype++ (DoType x d1) d2 = DoType x (runtype++ d1 d2)
runsynth++ : ∀{Γ e t L1 e' t' L2 e'' t''}
→ runsynth Γ e t L1 e' t'
→ runsynth Γ e' t' L2 e'' t''
→ runsynth Γ e t (L1 ++ L2) e'' t''
runsynth++ DoRefl d2 = d2
runsynth++ (DoSynth x d1) d2 = DoSynth x (runsynth++ d1 d2)
runana++ : ∀{Γ e t L1 e' L2 e''}
→ runana Γ e L1 e' t
→ runana Γ e' L2 e'' t
→ runana Γ e (L1 ++ L2) e'' t
runana++ DoRefl d2 = d2
runana++ (DoAna x d1) d2 = DoAna x (runana++ d1 d2)
-- the following collection of lemmas asserts that the various runs
-- interoperate nicely. in many cases, these amount to observing
-- something like congruence: if a subterm is related to something by one
-- of the judgements, it can be replaced by the thing to which it is
-- related in a larger context without disrupting that larger
-- context.
--
-- taken together, this is a little messier than a proper congruence,
-- because the action semantics demand well-typedness at each step, and
-- therefore there are enough premises to each lemma to supply to the
-- action semantics rules.
--
-- therefore, these amount to a checksum on the zipper actions under the
-- lifing of the action semantics to the list monoid.
--
-- they only check the zipper actions they happen to be include, however,
-- which is driven by the particular lists we use in the proofs of
-- contructability and reachability, which may or may not be all of
-- them. additionally, the lemmas given here are what is needed for these
-- proofs, not anything that's more general.
-- type zippers
ziplem-tmarr1 : ∀ {t1 t1' t2 L } →
runtype t1' L t1 →
runtype (t1' ==>₁ t2) L (t1 ==>₁ t2)
ziplem-tmarr1 DoRefl = DoRefl
ziplem-tmarr1 (DoType x L') = DoType (TMArrZip1 x) (ziplem-tmarr1 L')
ziplem-tmarr2 : ∀ {t1 t2 t2' L } →
runtype t2' L t2 →
runtype (t1 ==>₂ t2') L (t1 ==>₂ t2)
ziplem-tmarr2 DoRefl = DoRefl
ziplem-tmarr2 (DoType x L') = DoType (TMArrZip2 x) (ziplem-tmarr2 L')
-- expression zippers
ziplem-asc1 : ∀{Γ t L e e'} →
runana Γ e L e' t →
runsynth Γ (e ·:₁ t) t L (e' ·:₁ t) t
ziplem-asc1 DoRefl = DoRefl
ziplem-asc1 (DoAna a r) = DoSynth (SAZipAsc1 a) (ziplem-asc1 r)
ziplem-asc2 : ∀{Γ t L t' t◆ t'◆} →
erase-t t t◆ →
erase-t t' t'◆ →
runtype t L t' →
runsynth Γ (⦇-⦈ ·:₂ t) t◆ L (⦇-⦈ ·:₂ t') t'◆
ziplem-asc2 {Γ} er er' rt with erase-t◆ er | erase-t◆ er'
... | refl | refl = ziplem-asc2' {Γ = Γ} rt
where
ziplem-asc2' : ∀{t L t' Γ } →
runtype t L t' →
runsynth Γ (⦇-⦈ ·:₂ t) (t ◆t) L (⦇-⦈ ·:₂ t') (t' ◆t)
ziplem-asc2' DoRefl = DoRefl
ziplem-asc2' (DoType x rt) = DoSynth
(SAZipAsc2 x (◆erase-t _ _ refl) (◆erase-t _ _ refl)
(ASubsume SEHole TCHole1)) (ziplem-asc2' rt)
ziplem-lam : ∀ {Γ x e t t1 t2 L e'} →
x # Γ →
t ▸arr (t1 ==> t2) →
runana (Γ ,, (x , t1)) e L e' t2 →
runana Γ (·λ x e) L (·λ x e') t
ziplem-lam a m DoRefl = DoRefl
ziplem-lam a m (DoAna x₁ d) = DoAna (AAZipLam a m x₁) (ziplem-lam a m d)
ziplem-plus1 : ∀{ Γ e L e' f} →
runana Γ e L e' num →
runsynth Γ (e ·+₁ f) num L (e' ·+₁ f) num
ziplem-plus1 DoRefl = DoRefl
ziplem-plus1 (DoAna x d) = DoSynth (SAZipPlus1 x) (ziplem-plus1 d)
ziplem-plus2 : ∀{ Γ e L e' f} →
runana Γ e L e' num →
runsynth Γ (f ·+₂ e) num L (f ·+₂ e') num
ziplem-plus2 DoRefl = DoRefl
ziplem-plus2 (DoAna x d) = DoSynth (SAZipPlus2 x) (ziplem-plus2 d)
ziplem-ap2 : ∀{ Γ e L e' t t' f tf} →
Γ ⊢ f => t' →
t' ▸arr (t ==> tf) →
runana Γ e L e' t →
runsynth Γ (f ∘₂ e) tf L (f ∘₂ e') tf
ziplem-ap2 wt m DoRefl = DoRefl
ziplem-ap2 wt m (DoAna x d) = DoSynth (SAZipApAna m wt x) (ziplem-ap2 wt m d)
ziplem-nehole-a : ∀{Γ e e' L t t'} →
(Γ ⊢ e ◆e => t) →
runsynth Γ e t L e' t' →
runsynth Γ ⦇⌜ e ⌟⦈ ⦇-⦈ L ⦇⌜ e' ⌟⦈ ⦇-⦈
ziplem-nehole-a wt DoRefl = DoRefl
ziplem-nehole-a wt (DoSynth {e = e} x d) =
DoSynth (SAZipHole (rel◆ e) wt x) (ziplem-nehole-a (actsense-synth (rel◆ e) (rel◆ _) x wt) d)
ziplem-nehole-b : ∀{Γ e e' L t t' t''} →
(Γ ⊢ e ◆e => t) →
(t'' ~ t') →
runsynth Γ e t L e' t' →
runana Γ ⦇⌜ e ⌟⦈ L ⦇⌜ e' ⌟⦈ t''
ziplem-nehole-b wt c DoRefl = DoRefl
ziplem-nehole-b wt c (DoSynth x rs) =
DoAna (AASubsume (erase-in-hole (rel◆ _)) (SNEHole wt) (SAZipHole (rel◆ _) wt x) TCHole1)
(ziplem-nehole-b (actsense-synth (rel◆ _) (rel◆ _) x wt) c rs)
-- because the point of the reachability theorems is to show that we
-- didn't forget to define any of the action semantic cases, it's
-- important that theorems include the fact that the witness only uses
-- move -- otherwise, you could cheat by just prepending [ del ] to the
-- list produced by constructability. constructability does also use
-- some, but not all, of the possible movements, so this would no longer
-- demonstrate the property we really want. to that end, we define a
-- predicate on lists that they contain only (move _) and that the
-- various things above that produce the lists we use have this property.
-- predicate
data movements : List action → Set where
AM:: : {L : List action} {δ : direction}
→ movements L
→ movements ((move δ) :: L)
AM[] : movements []
-- movements breaks over the list monoid, as expected
movements++ : {l1 l2 : List action} →
movements l1 → movements l2 → movements (l1 ++ l2)
movements++ (AM:: m1) m2 = AM:: (movements++ m1 m2)
movements++ AM[] m2 = m2
-- these are zipper lemmas that are specific to list of movement
-- actions. they are not true for general actions, but because
-- reachability is restricted to movements, we get some milage out of
-- them anyway.
endpoints : ∀{ Γ e t L e' t'} →
Γ ⊢ (e ◆e) => t →
runsynth Γ e t L e' t' →
movements L →
t == t'
endpoints _ DoRefl AM[] = refl
endpoints wt (DoSynth x rs) (AM:: mv)
with endpoints (actsense-synth (rel◆ _) (rel◆ _) x wt) rs mv
... | refl = π2 (moveerase-synth (rel◆ _) wt x)
ziplem-moves-asc2 : ∀{ Γ l t t' e t◆ } →
movements l →
erase-t t t◆ →
Γ ⊢ e <= t◆ →
runtype t l t' →
runsynth Γ (e ·:₂ t) t◆ l (e ·:₂ t') t◆
ziplem-moves-asc2 _ _ _ DoRefl = DoRefl
ziplem-moves-asc2 (AM:: m) er wt (DoType x rt) with moveeraset' er x
... | er' = DoSynth (SAZipAsc2 x er' er wt) (ziplem-moves-asc2 m er' wt rt)
synthana-moves : ∀{t t' l e e' Γ} →
Γ ⊢ e ◆e => t' →
movements l →
t ~ t' →
runsynth Γ e t' l e' t' →
runana Γ e l e' t
synthana-moves _ _ _ DoRefl = DoRefl
synthana-moves wt (AM:: m) c (DoSynth x rs) with π2 (moveerase-synth (rel◆ _) wt x)
... | refl = DoAna (AASubsume (rel◆ _) wt x c)
(synthana-moves (actsense-synth (rel◆ _) (rel◆ _) x wt) m c rs)
ziplem-moves-ap1 : ∀{Γ l e1 e1' e2 t t' tx} →
Γ ⊢ e1 ◆e => t →
t ▸arr (tx ==> t') →
Γ ⊢ e2 <= tx →
movements l →
runsynth Γ e1 t l e1' t →
runsynth Γ (e1 ∘₁ e2) t' l (e1' ∘₁ e2) t'
ziplem-moves-ap1 _ _ _ _ DoRefl = DoRefl
ziplem-moves-ap1 wt1 mch wt2 (AM:: m) (DoSynth x rs) with π2 (moveerase-synth (rel◆ _) wt1 x)
... | refl = DoSynth (SAZipApArr mch (rel◆ _) wt1 x wt2)
(ziplem-moves-ap1 (actsense-synth (rel◆ _) (rel◆ _) x wt1)
mch wt2 m rs)
|
algebraic-stack_agda0000_doc_15108 | {-# OPTIONS --no-import-sorts #-}
open import Agda.Primitive renaming (Set to _X_X_)
test : _X_X₁_
test = _X_X_
|
algebraic-stack_agda0000_doc_15109 | {-# OPTIONS --without-K #-}
open import Agda.Primitive using (Level; lsuc)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (proj₁; proj₂; Σ-syntax; _,_)
open import Function.Base using (_∘_)
variable
ℓ ℓ′ : Level
A C : Set ℓ
B : A → Set ℓ
{- Sizes
Defining sizes as a generalized form of Brouwer ordinals,
with an order (see https://arxiv.org/abs/2104.02549)
-}
infix 30 ↑_
infix 30 ⊔_
data Size {ℓ} : Set (lsuc ℓ) where
↑_ : Size {ℓ} → Size
⊔_ : {A : Set ℓ} → (A → Size {ℓ}) → Size
data _≤_ {ℓ} : Size {ℓ} → Size {ℓ} → Set (lsuc ℓ) where
↑s≤↑s : ∀ {r s} → r ≤ s → ↑ r ≤ ↑ s
s≤⊔f : ∀ {s} f (a : A) → s ≤ f a → s ≤ ⊔ f
⊔f≤s : ∀ {s} f → (∀ (a : A) → f a ≤ s) → ⊔ f ≤ s
-- A possible definition of the smallest size
◯ : Size
◯ = ⊔ ⊥-elim
◯≤s : ∀ {s} → ◯ ≤ s
◯≤s = ⊔f≤s ⊥-elim λ ()
-- Reflexivity of ≤
s≤s : ∀ {s : Size {ℓ}} → s ≤ s
s≤s {s = ↑ s} = ↑s≤↑s s≤s
s≤s {s = ⊔ f} = ⊔f≤s f (λ a → s≤⊔f f a s≤s)
-- Transitivity of ≤
s≤s≤s : ∀ {r s t : Size {ℓ}} → r ≤ s → s ≤ t → r ≤ t
s≤s≤s (↑s≤↑s r≤s) (↑s≤↑s s≤t) = ↑s≤↑s (s≤s≤s r≤s s≤t)
s≤s≤s r≤s (s≤⊔f f a s≤fa) = s≤⊔f f a (s≤s≤s r≤s s≤fa)
s≤s≤s (⊔f≤s f fa≤s) s≤t = ⊔f≤s f (λ a → s≤s≤s (fa≤s a) s≤t)
s≤s≤s (s≤⊔f f a s≤fa) (⊔f≤s f fa≤t) = s≤s≤s s≤fa (fa≤t a)
-- Successor behaves as expected wrt ≤
s≤↑s : ∀ {s : Size {ℓ}} → s ≤ ↑ s
s≤↑s {s = ↑ s} = ↑s≤↑s s≤↑s
s≤↑s {s = ⊔ f} = ⊔f≤s f (λ a → s≤s≤s s≤↑s (↑s≤↑s (s≤⊔f f a s≤s)))
-- Strict order
_<_ : Size {ℓ} → Size {ℓ} → Set (lsuc ℓ)
r < s = ↑ r ≤ s
{- Well-founded induction for Sizes via an
accessibility predicate based on strict order
-}
record Acc (s : Size {ℓ}) : Set (lsuc ℓ) where
inductive
pattern
constructor acc
field acc< : (∀ r → r < s → Acc r)
open Acc
-- The accessibility predicate is a mere proposition
accIsProp : ∀ {s : Size {ℓ}} → (acc1 acc2 : Acc s) → acc1 ≡ acc2
accIsProp (acc p) (acc q) =
cong acc (funext p q (λ r → funext (p r) (q r) (λ r<s → accIsProp (p r r<s) (q r r<s))))
where postulate funext : ∀ (p q : ∀ x → B x) → (∀ x → p x ≡ q x) → p ≡ q
-- A size smaller or equal to an accessible size is still accessible
acc≤ : ∀ {r s : Size {ℓ}} → r ≤ s → Acc s → Acc r
acc≤ r≤s (acc p) = acc (λ t t<r → p t (s≤s≤s t<r r≤s))
-- All sizes are accessible
wf : ∀ (s : Size {ℓ}) → Acc s
wf (↑ s) = acc (λ { _ (↑s≤↑s r≤s) → acc≤ r≤s (wf s) })
wf (⊔ f) = acc (λ { r (s≤⊔f f a r<fa) → (wf (f a)).acc< r r<fa })
-- Well-founded induction:
-- If P holds on every smaller size, then P holds on this size
-- Recursion occurs structurally on the accessbility of sizes
wfInd : ∀ (P : Size {ℓ} → Set ℓ′) → (∀ s → (∀ r → r < s → P r) → P s) → ∀ s → P s
wfInd P f s = wfAcc s (wf s)
where
wfAcc : ∀ s → Acc s → P s
wfAcc s (acc p) = f s (λ r r<s → wfAcc r (p r r<s))
{- W types
W∞ is the full or "infinite" form, where there are no sizes;
W is the bounded-sized form, parameterized by some Size,
where constructors take a proof of smaller-sizedness
-}
data W∞ (A : Set ℓ) (B : A → Set ℓ) : Set ℓ where
sup∞ : ∀ a → (B a → W∞ A B) → W∞ A B
data W (A : Set ℓ) (B : A → Set ℓ) (s : Size {ℓ}) : Set (lsuc ℓ) where
sup : ∀ r → r < s → (a : A) → (B a → W A B r) → W A B s
-- Eliminator for the W type based on wellfoundedness of sizes
elimW : (P : ∀ s → W A B s → Set ℓ′) →
(p : ∀ s → (∀ r → r < s → (w : W A B r) → P r w) → (w : W A B s) → P s w) →
∀ s → (w : W A B s) → P s w
elimW P = wfInd (λ s → (w : W _ _ s) → P s w)
-- A full W∞ to a size-paired bounded-sized W form
findW : W∞ {ℓ} A B → Σ[ s ∈ Size ] W A B s
findW (sup∞ a f) =
let s = ⊔ (proj₁ ∘ findW ∘ f)
in ↑ s , sup s s≤s a ⊔f
where
⊔f : _
⊔f b with proj₂ (findW (f b))
... | sup r r<s a g = sup r (s≤s≤s r<s (s≤⊔f (proj₁ ∘ findW ∘ f) b s≤s)) a g
-- The axiom of choice specialized to sized W types, "choosing" a size
ac : ∀ a → (B a → Σ[ s ∈ Size ] W A B s) → Σ[ s ∈ Size ] (B a → W A B s)
ac a f = ⊔ (proj₁ ∘ f) , f′
where
f′ : _
f′ b with proj₂ (f b)
... | sup r r<s a f = sup r (s≤s≤s r<s (s≤⊔f _ b s≤s)) a f
-- Constructing a bounded-sized W out of the necessary pieces
mkW : ∀ a → (B a → Σ[ s ∈ Size ] W A B s) → Σ[ s ∈ Size ] W A B s
mkW a f =
let sf = ac a f
in sup (proj₁ sf) ? a (proj₂ f)
|
algebraic-stack_agda0000_doc_15110 | {-# OPTIONS --cubical --safe #-}
module Cubical.Homotopy.Loopspace where
open import Cubical.Core.Everything
open import Cubical.Data.Nat
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.GroupoidLaws
{- loop space of a pointed type -}
Ω : {ℓ : Level} → Pointed ℓ → Pointed ℓ
Ω (_ , a) = ((a ≡ a) , refl)
{- n-fold loop space of a pointed type -}
Ω^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Pointed ℓ
(Ω^ 0) p = p
(Ω^ (suc n)) p = Ω ((Ω^ n) p)
{- loop space map -}
Ω→ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → (Ω A →∙ Ω B)
Ω→ (f , f∙) = (λ p → (sym f∙ ∙ cong f p) ∙ f∙) , cong (λ q → q ∙ f∙) (sym (rUnit (sym f∙))) ∙ lCancel f∙
|
algebraic-stack_agda0000_doc_15111 | module Sets.ImageSet.Oper where
open import Data
open import Functional
open import Logic
open import Logic.Propositional
open import Logic.Predicate
import Lvl
open import Sets.ImageSet
open import Structure.Function
open import Structure.Setoid renaming (_≡_ to _≡ₛ_)
open import Type
open import Type.Dependent
private variable ℓ ℓₑ ℓᵢ ℓᵢ₁ ℓᵢ₂ ℓᵢ₃ ℓᵢₑ ℓ₁ ℓ₂ ℓ₃ : Lvl.Level
private variable T X Y Z : Type{ℓ}
module _ where
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.Either as Either using (_‖_)
open import Function.Domains
∅ : ImageSet{ℓᵢ}(T)
∅ = intro empty
𝐔 : ImageSet{Lvl.of(T)}(T)
𝐔 = intro id
singleton : T → ImageSet{ℓᵢ}(T)
singleton(x) = intro{Index = Unit} \{<> → x}
pair : T → T → ImageSet{ℓᵢ}(T)
pair x y = intro{Index = Lvl.Up(Bool)} \{(Lvl.up 𝐹) → x ; (Lvl.up 𝑇) → y}
_∪_ : ImageSet{ℓᵢ₁}(T) → ImageSet{ℓᵢ₂}(T) → ImageSet{ℓᵢ₁ Lvl.⊔ ℓᵢ₂}(T)
A ∪ B = intro{Index = Index(A) ‖ Index(B)} (Either.map1 (elem(A)) (elem(B)))
⋃ : ImageSet{ℓᵢ}(ImageSet{ℓᵢ}(T)) → ImageSet{ℓᵢ}(T)
⋃ A = intro{Index = Σ(Index(A)) (Index ∘ elem(A))} \{(intro ia i) → elem(elem(A)(ia))(i)}
indexFilter : (A : ImageSet{ℓᵢ}(T)) → (Index(A) → Stmt{ℓ}) → ImageSet{ℓᵢ Lvl.⊔ ℓ}(T)
indexFilter A P = intro {Index = Σ(Index(A)) P} (elem(A) ∘ Σ.left)
filter : (T → Stmt{ℓ}) → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ Lvl.⊔ ℓ}(T)
filter P(A) = indexFilter A (P ∘ elem(A))
indexFilterBool : (A : ImageSet{ℓᵢ}(T)) → (Index(A) → Bool) → ImageSet{ℓᵢ}(T)
indexFilterBool A f = indexFilter A (IsTrue ∘ f)
filterBool : (T → Bool) → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ}(T)
filterBool f(A) = indexFilterBool A (f ∘ elem(A))
map : (X → Y) → (ImageSet{ℓᵢ}(X) → ImageSet{ℓᵢ}(Y))
map f(A) = intro{Index = Index(A)} (f ∘ elem(A))
unapply : (X → Y) → ⦃ _ : Equiv{ℓₑ}(Y)⦄ → (Y → ImageSet{Lvl.of(X) Lvl.⊔ ℓₑ}(X))
unapply f(y) = intro{Index = ∃(x ↦ f(x) ≡ₛ y)} [∃]-witness
-- unmap : (X → Y) → ⦃ _ : Equiv{ℓₑ}(Y)⦄ → (ImageSet{{!Lvl.of(T) Lvl.⊔ ℓₑ!}}(Y) → ImageSet{Lvl.of(T) Lvl.⊔ ℓₑ}(X))
-- unmap f(B) = intro{Index = ∃(x ↦ f(x) ∈ B)} [∃]-witness
℘ : ImageSet{ℓᵢ}(T) → ImageSet{Lvl.𝐒(ℓᵢ)}(ImageSet{ℓᵢ}(T))
℘(A) = intro{Index = Index(A) → Stmt} (indexFilter A)
_∩_ : ⦃ _ : Equiv{ℓᵢ}(T) ⦄ → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ}(T)
A ∩ B = indexFilter(A) (iA ↦ elem(A) iA ∈ B)
⋂ : ⦃ _ : Equiv{ℓᵢ}(T) ⦄ → ImageSet{Lvl.of(T)}(ImageSet{Lvl.of(T)}(T)) → ImageSet{ℓᵢ Lvl.⊔ Lvl.of(T)}(T)
-- ⋂ As = intro{Index = Σ((iAs : Index(As)) → Index(elem(As) iAs)) (f ↦ (∀{iAs₁ iAs₂} → (elem(elem(As) iAs₁)(f iAs₁) ≡ₛ elem(elem(As) iAs₂)(f iAs₂))))} {!!} (TODO: I think this definition only works with excluded middle because one must determine if an A from AS is empty or not and if it is not, then one can apply its index to the function in the Σ)
⋂ As = indexFilter(⋃ As) (iUAs ↦ ∃{Obj = (iAs : Index(As)) → Index(elem(As) iAs)}(f ↦ ∀{iAs} → (elem(⋃ As) iUAs ≡ₛ elem(elem(As) iAs) (f iAs))))
-- ⋂ As = indexFilter(⋃ As) (iUAs ↦ ∀{iAs} → (elem(⋃ As) iUAs ∈ elem(As) iAs))
{-
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
open import Data.Boolean
open import Data.Either as Either using (_‖_)
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
import Structure.Container.SetLike as Sets
open import Structure.Function.Domain
open import Structure.Operator.Properties
open import Structure.Relator
open import Structure.Relator.Properties
open import Syntax.Transitivity
private variable A B C : ImageSet{ℓₑ}(T)
private variable x y a b : T
[∈]-of-elem : ∀{ia : Index(A)} → (elem(A)(ia) ∈ A)
∃.witness ([∈]-of-elem {ia = ia}) = ia
∃.proof [∈]-of-elem = reflexivity(_≡ₛ_)
instance
∅-membership : Sets.EmptySet(_∈_ {T = T}{ℓ})
Sets.EmptySet.∅ ∅-membership = ∅
Sets.EmptySet.membership ∅-membership ()
instance
𝐔-membership : Sets.UniversalSet(_∈_ {T = T})
Sets.UniversalSet.𝐔 𝐔-membership = 𝐔
Sets.UniversalSet.membership 𝐔-membership {x = x} = [∃]-intro x ⦃ reflexivity(_≡ₛ_) ⦄
instance
singleton-membership : Sets.SingletonSet(_∈_ {T = T}{ℓ})
Sets.SingletonSet.singleton singleton-membership = singleton
Sets.SingletonSet.membership singleton-membership = proof where
proof : (x ∈ singleton{ℓᵢ = ℓᵢ}(a)) ↔ (x ≡ₛ a)
Tuple.left proof xin = [∃]-intro <> ⦃ xin ⦄
Tuple.right proof ([∃]-intro i ⦃ eq ⦄ ) = eq
instance
pair-membership : Sets.PairSet(_∈_ {T = T}{ℓ})
Sets.PairSet.pair pair-membership = pair
Sets.PairSet.membership pair-membership = proof where
proof : (x ∈ pair a b) ↔ (x ≡ₛ a)∨(x ≡ₛ b)
Tuple.left proof ([∨]-introₗ p) = [∃]-intro (Lvl.up 𝐹) ⦃ p ⦄
Tuple.left proof ([∨]-introᵣ p) = [∃]-intro (Lvl.up 𝑇) ⦃ p ⦄
Tuple.right proof ([∃]-intro (Lvl.up 𝐹) ⦃ eq ⦄) = [∨]-introₗ eq
Tuple.right proof ([∃]-intro (Lvl.up 𝑇) ⦃ eq ⦄) = [∨]-introᵣ eq
instance
[∪]-membership : Sets.UnionOperator(_∈_ {T = T})
Sets.UnionOperator._∪_ [∪]-membership = _∪_
Sets.UnionOperator.membership [∪]-membership = proof where
proof : (x ∈ (A ∪ B)) ↔ (x ∈ A)∨(x ∈ B)
Tuple.left proof ([∨]-introₗ ([∃]-intro ia)) = [∃]-intro (Either.Left ia)
Tuple.left proof ([∨]-introᵣ ([∃]-intro ib)) = [∃]-intro (Either.Right ib)
Tuple.right proof ([∃]-intro ([∨]-introₗ ia)) = [∨]-introₗ ([∃]-intro ia)
Tuple.right proof ([∃]-intro ([∨]-introᵣ ib)) = [∨]-introᵣ ([∃]-intro ib)
instance
[∩]-membership : Sets.IntersectionOperator(_∈_ {T = T})
Sets.IntersectionOperator._∩_ [∩]-membership = _∩_
Sets.IntersectionOperator.membership [∩]-membership = proof where
proof : (x ∈ (A ∩ B)) ↔ (x ∈ A)∧(x ∈ B)
_⨯_.left proof ([↔]-intro ([∃]-intro iA ⦃ pA ⦄) ([∃]-intro iB ⦃ pB ⦄)) = [∃]-intro (intro iA ([∃]-intro iB ⦃ symmetry(_≡ₛ_) pA 🝖 pB ⦄))
_⨯_.right proof ([∃]-intro (intro iA ([∃]-intro iB ⦃ pAB ⦄)) ⦃ pxAB ⦄) = [∧]-intro ([∃]-intro iA) ([∃]-intro iB ⦃ pxAB 🝖 pAB ⦄)
instance
map-membership : Sets.MapFunction(_∈_ {T = T})(_∈_ {T = T})
Sets.MapFunction.map map-membership f = map f
Sets.MapFunction.membership map-membership {f = f} ⦃ function ⦄ = proof where
proof : (y ∈ map f(A)) ↔ ∃(x ↦ (x ∈ A) ∧ (f(x) ≡ₛ y))
∃.witness (Tuple.left (proof) ([∃]-intro x ⦃ [∧]-intro xA fxy ⦄)) = [∃]-witness xA
∃.proof (Tuple.left (proof {y = y} {A = A}) ([∃]-intro x ⦃ [∧]-intro xA fxy ⦄)) =
y 🝖[ _≡ₛ_ ]-[ fxy ]-sym
f(x) 🝖[ _≡ₛ_ ]-[ congruence₁(f) ⦃ function ⦄ ([∃]-proof xA) ]
f(elem(A) ([∃]-witness xA)) 🝖[ _≡ₛ_ ]-[]
elem (map f(A)) ([∃]-witness xA) 🝖[ _≡ₛ_ ]-end
∃.witness (Tuple.right (proof {A = A}) ([∃]-intro iA)) = elem(A) iA
∃.proof (Tuple.right proof ([∃]-intro iA ⦃ p ⦄)) = [∧]-intro ([∈]-of-elem {ia = iA}) (symmetry(_≡ₛ_) p)
indexFilter-membership : ∀{P : Index(A) → Stmt{ℓ}} → (x ∈ indexFilter A P) ↔ ∃(i ↦ (x ≡ₛ elem(A) i) ∧ P(i))
_⨯_.left indexFilter-membership ([∃]-intro iA ⦃ [∧]-intro xe p ⦄) = [∃]-intro (intro iA p) ⦃ xe ⦄
_⨯_.right indexFilter-membership ([∃]-intro (intro iA p) ⦃ xe ⦄) = [∃]-intro iA ⦃ [∧]-intro xe p ⦄
indexFilter-subset : ∀{P : Index(A) → Stmt{ℓₑ}} → (indexFilter{ℓₑ} A P ⊆ A)
indexFilter-subset = [∃]-map-proof [∧]-elimₗ ∘ [↔]-to-[→] indexFilter-membership
indexFilter-elem-membershipₗ : ∀{P : Index(A) → Stmt{ℓ}}{i : Index(A)} → (elem(A)(i) ∈ indexFilter A P) ← P(i)
indexFilter-elem-membershipₗ {i = i} pi = [∃]-intro (intro i pi) ⦃ reflexivity _ ⦄
indexFilter-elem-membershipᵣ : ⦃ _ : Equiv{ℓₑ}(Index(A)) ⦄ ⦃ _ : Injective(elem A) ⦄ → ∀{P : Index(A) → Stmt{ℓ}} ⦃ _ : UnaryRelator(P) ⦄{i : Index(A)} → (elem(A)(i) ∈ indexFilter A P) → P(i)
indexFilter-elem-membershipᵣ {A = A}{P = P} {i = i} ([∃]-intro (intro iA PiA) ⦃ p ⦄) = substitute₁ₗ(P) (injective(elem A) p) PiA
instance
filter-membership : Sets.FilterFunction(_∈_ {T = T})
Sets.FilterFunction.filter filter-membership f = filter{ℓ = ℓₑ} f
Sets.FilterFunction.membership filter-membership {P = P} = proof where
proof : (x ∈ filter P(A)) ↔ ((x ∈ A) ∧ P(x))
Tuple.left proof ([∧]-intro ([∃]-intro i ⦃ p ⦄) pb) = [∃]-intro (intro i (substitute₁(P) p pb)) ⦃ p ⦄
Tuple.left (Tuple.right proof ([∃]-intro (intro iA PiA))) = [∃]-intro iA
Tuple.right (Tuple.right proof ([∃]-intro (intro iA PiA) ⦃ pp ⦄)) = substitute₁ₗ(P) pp PiA
filter-subset : ∀{P : T → Stmt{ℓₑ}} → (filter P(A) ⊆ A)
filter-subset ([∃]-intro (intro i p) ⦃ xf ⦄) = [∃]-intro i ⦃ xf ⦄
instance
postulate [∩]-commutativity : Commutativity(_∩_ {T = T})
-- TODO: These should come from Structure.Container.SetLike, which in turn should come from Structure.Operator.Lattice, which in turn should come from Structure.Relator.Ordering.Lattice
postulate [∩]-subset-of-right : (A ⊆ B) → (A ∩ B ≡ₛ B)
postulate [∩]-subset-of-left : (B ⊆ A) → (A ∩ B ≡ₛ A)
postulate [∩]-subsetₗ : (A ∩ B) ⊆ A
[∩]-subsetᵣ : (A ∩ B) ⊆ B
[∩]-subsetᵣ {A} {B} {x} xAB = indexFilter-subset ([↔]-to-[→] (commutativity(_∩_) ⦃ [∩]-commutativity ⦄ {A} {B} {x}) xAB)
instance
℘-membership : Sets.PowerFunction(_∈_)(_∈_)
Sets.PowerFunction.℘ ℘-membership = ℘
Sets.PowerFunction.membership ℘-membership = [↔]-intro l r where
l : (B ∈ ℘(A)) ← (B ⊆ A)
∃.witness (l {B} {A} BA) iA = elem(A) iA ∈ B
_⨯_.left (∃.proof (l {B}{A} BA) {x}) a = apply a $
A ∩ B 🝖[ _⊆_ ]-[ [∩]-subsetᵣ ]
B 🝖[ _⊆_ ]-end
_⨯_.right (∃.proof (l {B}{A} BA) {x}) b = apply b $
B 🝖[ _⊆_ ]-[ BA ]
A 🝖[ _⊆_ ]-[ sub₂(_≡_)(_⊇_) ([∩]-subset-of-left BA) ]
A ∩ B 🝖[ _⊆_ ]-end
r : (B ∈ ℘(A)) → (B ⊆ A)
r ([∃]-intro _ ⦃ BA ⦄) xB with [↔]-to-[→] BA xB
... | [∃]-intro (intro iA _) ⦃ xe ⦄ = [∃]-intro iA ⦃ xe ⦄
-}
|
algebraic-stack_agda0000_doc_15112 | open import Agda.Builtin.IO using (IO)
open import Agda.Builtin.String using (String)
open import Agda.Builtin.Unit using (⊤)
data D : Set where
c₁ c₂ : D
f : D → Set → String
f c₁ = λ _ → "OK"
f c₂ = λ _ → "OK"
-- The following pragma should refer to the generated Haskell name
-- for f.
{-# FOREIGN GHC {-# NOINLINE d_f_8 #-} #-}
x : String
x = f c₁ ⊤
postulate
putStrLn : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO #-}
{-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn #-}
main : IO ⊤
main = putStrLn x
|
algebraic-stack_agda0000_doc_15113 | {-# OPTIONS --no-unreachable-check #-}
module Issue424 where
data _≡_ {A : Set₁} (x : A) : A → Set where
refl : x ≡ x
f : Set → Set
f A = A
f A = A
fails : (A : Set) → f A ≡ A
fails A = refl
-- The case tree compiler used to treat f as a definition with an
-- absurd pattern.
|
algebraic-stack_agda0000_doc_15114 | {-# OPTIONS --cubical --no-import-sorts #-}
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Function.Base using (_∋_; _$_)
open import MorePropAlgebra.Bundles
import Cubical.Structures.CommRing as Std
module MorePropAlgebra.Properties.CommRing {ℓ} (assumptions : CommRing {ℓ}) where
open CommRing assumptions renaming (Carrier to R)
import MorePropAlgebra.Properties.Ring
module Ring'Properties = MorePropAlgebra.Properties.Ring (record { CommRing assumptions })
module Ring' = Ring (record { CommRing assumptions })
( Ring') = Ring ∋ (record { CommRing assumptions })
stdIsCommRing : Std.IsCommRing 0r 1r _+_ _·_ (-_)
stdIsCommRing .Std.IsCommRing.isRing = Ring'Properties.stdIsRing
stdIsCommRing .Std.IsCommRing.·-comm = ·-comm
stdCommRing : Std.CommRing {ℓ}
stdCommRing = record { CommRing assumptions ; isCommRing = stdIsCommRing }
--
-- module RingTheory' = Std.Theory stdRing
|
algebraic-stack_agda0000_doc_15115 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Trie, basic type and operations
------------------------------------------------------------------------
-- See README.Data.Trie.NonDependent for an example of using a trie to
-- build a lexer.
{-# OPTIONS --without-K --safe --sized-types #-}
open import Relation.Binary using (Rel; StrictTotalOrder)
module Data.Trie {k e r} (S : StrictTotalOrder k e r) where
open import Level
open import Size
open import Data.List.Base using (List; []; _∷_; _++_)
import Data.List.NonEmpty as List⁺
open import Data.Maybe.Base as Maybe using (Maybe; just; nothing; maybe′)
open import Data.Product as Prod using (∃)
open import Data.These.Base as These using (These)
open import Function
open import Relation.Unary using (IUniversal; _⇒_)
open StrictTotalOrder S
using (module Eq)
renaming (Carrier to Key)
open import Data.List.Relation.Binary.Equality.Setoid Eq.setoid
open import Data.AVL.Value ≋-setoid using (Value)
------------------------------------------------------------------------
-- Definition
-- Trie is defined in terms of Trie⁺, the type of non-empty trie. This
-- guarantees that the trie is minimal: each path in the tree leads to
-- either a value or a number of non-empty sub-tries.
open import Data.Trie.NonEmpty S as Trie⁺ public
using (Trie⁺; Tries⁺; Word; eat)
Trie : ∀ {v} (V : Value v) → Size → Set (v ⊔ k ⊔ e ⊔ r)
Trie V i = Maybe (Trie⁺ V i)
------------------------------------------------------------------------
-- Operations
-- Functions acting on Trie are wrappers for functions acting on Tries.
-- Sometimes the empty case is handled in a special way (e.g. insertWith
-- calls singleton when faced with an empty Trie).
module _ {v} {V : Value v} where
private Val = Value.family V
------------------------------------------------------------------------
-- Lookup
lookup : ∀ ks → Trie V ∞ → Maybe (These (Val ks) (Tries⁺ (eat V ks) ∞))
lookup ks t = t Maybe.>>= Trie⁺.lookup ks
lookupValue : ∀ ks → Trie V ∞ → Maybe (Val ks)
lookupValue ks t = t Maybe.>>= Trie⁺.lookupValue ks
lookupTries⁺ : ∀ ks → Trie V ∞ → Maybe (Tries⁺ (eat V ks) ∞)
lookupTries⁺ ks t = t Maybe.>>= Trie⁺.lookupTries⁺ ks
lookupTrie : ∀ k → Trie V ∞ → Trie (eat V (k ∷ [])) ∞
lookupTrie k t = t Maybe.>>= Trie⁺.lookupTrie⁺ k
------------------------------------------------------------------------
-- Construction
empty : Trie V ∞
empty = nothing
singleton : ∀ ks → Val ks → Trie V ∞
singleton ks v = just (Trie⁺.singleton ks v)
insertWith : ∀ ks → (Maybe (Val ks) → Val ks) → Trie V ∞ → Trie V ∞
insertWith ks f (just t) = just (Trie⁺.insertWith ks f t)
insertWith ks f nothing = singleton ks (f nothing)
insert : ∀ ks → Val ks → Trie V ∞ → Trie V ∞
insert ks = insertWith ks ∘′ const
fromList : List (∃ Val) → Trie V ∞
fromList = Maybe.map Trie⁺.fromList⁺ ∘′ List⁺.fromList
toList : Trie V ∞ → List (∃ Val)
toList (just t) = List⁺.toList (Trie⁺.toList⁺ t)
toList nothing = []
------------------------------------------------------------------------
-- Modification
module _ {v w} {V : Value v} {W : Value w} where
private
Val = Value.family V
Wal = Value.family W
map : ∀ {i} → ∀[ Val ⇒ Wal ] → Trie V i → Trie W i
map = Maybe.map ∘′ Trie⁺.map V W
-- Deletion
module _ {v} {V : Value v} where
-- Use a function to decide how to modify the sub-Trie⁺ whose root is
-- at the end of path ks.
deleteWith : ∀ {i} (ks : Word) →
(∀ {i} → Trie⁺ (eat V ks) i → Maybe (Trie⁺ (eat V ks) i)) →
Trie V i → Trie V i
deleteWith ks f t = t Maybe.>>= Trie⁺.deleteWith ks f
-- Remove the whole node
deleteTrie⁺ : ∀ {i} (ks : Word) → Trie V i → Trie V i
deleteTrie⁺ ks t = t Maybe.>>= Trie⁺.deleteTrie⁺ ks
-- Remove the value and keep the sub-Tries (if any)
deleteValue : ∀ {i} (ks : Word) → Trie V i → Trie V i
deleteValue ks t = t Maybe.>>= Trie⁺.deleteValue ks
-- Remove the sub-Tries and keep the value (if any)
deleteTries⁺ : ∀ {i} (ks : Word) → Trie V i → Trie V i
deleteTries⁺ ks t = t Maybe.>>= Trie⁺.deleteTries⁺ ks
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.