id
stringlengths 27
136
| text
stringlengths 4
1.05M
|
---|---|
algebraic-stack_agda0000_doc_12512 | ------------------------------------------------------------------------
-- A large class of algebraic structures satisfies the property that
-- isomorphic instances of a structure are equal (assuming univalence)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This code has been superseded by more recent developments. See
-- README.agda.
-- This module has been developed in collaboration with Thierry
-- Coquand.
open import Equality
module Univalence-axiom.Isomorphism-implies-equality
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Bijection eq
open Derived-definitions-and-properties eq
open import Equivalence eq as Eq
open import H-level eq
open import H-level.Closure eq
open import Logical-equivalence
open import Prelude
open import Univalence-axiom eq
------------------------------------------------------------------------
-- N-ary functions
-- N-ary functions.
_^_⟶_ : Type → ℕ → Type → Type
A ^ zero ⟶ B = B
A ^ suc n ⟶ B = A → A ^ n ⟶ B
-- N-ary function morphisms.
Is-_-ary-morphism :
(n : ℕ) {A B : Type} → A ^ n ⟶ A → B ^ n ⟶ B → (A → B) → Type
Is- zero -ary-morphism f₁ f₂ m = m f₁ ≡ f₂
Is- suc n -ary-morphism f₁ f₂ m =
∀ x → Is- n -ary-morphism (f₁ x) (f₂ (m x)) m
abstract
-- If _↔_.to m is a morphism, then _↔_.from m is also a morphism.
from-also-_-ary-morphism :
(n : ℕ) {A B : Type} (f₁ : A ^ n ⟶ A) (f₂ : B ^ n ⟶ B) (m : A ↔ B) →
Is- n -ary-morphism f₁ f₂ (_↔_.to m) →
Is- n -ary-morphism f₂ f₁ (_↔_.from m)
from-also- zero -ary-morphism f₁ f₂ m is = _↔_.to-from m is
from-also- suc n -ary-morphism f₁ f₂ m is = λ x →
from-also- n -ary-morphism (f₁ (from x)) (f₂ x) m
(subst (λ y → Is- n -ary-morphism (f₁ (from x)) (f₂ y) to)
(right-inverse-of x)
(is (from x)))
where open _↔_ m
-- Changes the type of an n-ary function.
cast : {A₁ A₂ : Type} → A₁ ≃ A₂ → ∀ n → A₁ ^ n ⟶ A₁ → A₂ ^ n ⟶ A₂
cast A₁≃A₂ zero = _≃_.to A₁≃A₂
cast A₁≃A₂ (suc n) = λ f x → cast A₁≃A₂ n (f (_≃_.from A₁≃A₂ x))
abstract
-- Cast simplification lemma.
cast-id : {A : Type} →
(∀ n → Extensionality′ A (λ _ → A ^ n ⟶ A)) →
∀ n (f : A ^ n ⟶ A) → cast Eq.id n f ≡ f
cast-id ext zero f = refl f
cast-id ext (suc n) f = ext n $ λ x → cast-id ext n (f x)
-- We can express cast as an instance of subst (assuming
-- extensionality and univalence).
cast-is-subst :
(∀ {A : Type} n → Extensionality′ A (λ _ → A ^ n ⟶ A)) →
{A₁ A₂ : Type}
(univ : Univalence′ A₁ A₂)
(A₁≃A₂ : A₁ ≃ A₂) (n : ℕ) (f : A₁ ^ n ⟶ A₁) →
cast A₁≃A₂ n f ≡ subst (λ C → C ^ n ⟶ C) (≃⇒≡ univ A₁≃A₂) f
cast-is-subst ext univ A₁≃A₂ n =
transport-theorem
(λ A → A ^ n ⟶ A)
(λ A≃B f → cast A≃B n f)
(cast-id ext n)
univ
A₁≃A₂
-- If there is an isomorphism from f₁ to f₂, then the corresponding
-- instance of cast maps f₁ to f₂ (assuming extensionality).
cast-isomorphism :
{A₁ A₂ : Type} →
(∀ n → Extensionality′ A₂ (λ _ → A₂ ^ n ⟶ A₂)) →
(A₁≃A₂ : A₁ ≃ A₂)
(n : ℕ) (f₁ : A₁ ^ n ⟶ A₁) (f₂ : A₂ ^ n ⟶ A₂) →
Is- n -ary-morphism f₁ f₂ (_≃_.to A₁≃A₂) →
cast A₁≃A₂ n f₁ ≡ f₂
cast-isomorphism ext A₁≃A₂ zero f₁ f₂ is = is
cast-isomorphism ext A₁≃A₂ (suc n) f₁ f₂ is = ext n $ λ x →
cast A₁≃A₂ n (f₁ (from x)) ≡⟨ cast-isomorphism ext A₁≃A₂ n _ _ (is (from x)) ⟩
f₂ (to (from x)) ≡⟨ cong f₂ (right-inverse-of x) ⟩∎
f₂ x ∎
where open _≃_ A₁≃A₂
-- Combining the results above we get the following: if there is an
-- isomorphism from f₁ to f₂, then the corresponding instance of
-- subst maps f₁ to f₂ (assuming extensionality and univalence).
subst-isomorphism :
(∀ {A : Type} n → Extensionality′ A (λ _ → A ^ n ⟶ A)) →
{A₁ A₂ : Type}
(univ : Univalence′ A₁ A₂)
(A₁≃A₂ : A₁ ≃ A₂)
(n : ℕ) (f₁ : A₁ ^ n ⟶ A₁) (f₂ : A₂ ^ n ⟶ A₂) →
Is- n -ary-morphism f₁ f₂ (_≃_.to A₁≃A₂) →
subst (λ A → A ^ n ⟶ A) (≃⇒≡ univ A₁≃A₂) f₁ ≡ f₂
subst-isomorphism ext univ A₁≃A₂ n f₁ f₂ is =
subst (λ A → A ^ n ⟶ A) (≃⇒≡ univ A₁≃A₂) f₁ ≡⟨ sym $ cast-is-subst ext univ A₁≃A₂ n f₁ ⟩
cast A₁≃A₂ n f₁ ≡⟨ cast-isomorphism ext A₁≃A₂ n f₁ f₂ is ⟩∎
f₂ ∎
------------------------------------------------------------------------
-- A class of algebraic structures
-- An algebraic structure universe.
mutual
-- Codes for structures.
infixl 5 _+operator_ _+axiom_
data Structure : Type₁ where
empty : Structure
-- N-ary functions.
_+operator_ : Structure → (n : ℕ) → Structure
-- Arbitrary /propositional/ axioms.
_+axiom_ : (s : Structure)
(P : ∃ λ (P : (A : Type) → ⟦ s ⟧ A → Type) →
∀ A s → Is-proposition (P A s)) →
Structure
-- Interpretation of the codes.
⟦_⟧ : Structure → Type → Type₁
⟦ empty ⟧ A = ↑ _ ⊤
⟦ s +operator n ⟧ A = ⟦ s ⟧ A × (A ^ n ⟶ A)
⟦ s +axiom (P , P-prop) ⟧ A = Σ (⟦ s ⟧ A) (P A)
-- Top-level interpretation.
⟪_⟫ : Structure → Type₁
⟪ s ⟫ = ∃ ⟦ s ⟧
-- Morphisms.
Is-structure-morphism :
(s : Structure) →
{A B : Type} → ⟦ s ⟧ A → ⟦ s ⟧ B →
(A → B) → Type
Is-structure-morphism empty _ _ m = ⊤
Is-structure-morphism (s +axiom _) (s₁ , _) (s₂ , _) m =
Is-structure-morphism s s₁ s₂ m
Is-structure-morphism (s +operator n) (s₁ , op₁) (s₂ , op₂) m =
Is-structure-morphism s s₁ s₂ m × Is- n -ary-morphism op₁ op₂ m
-- Isomorphisms.
Isomorphism : (s : Structure) → ⟪ s ⟫ → ⟪ s ⟫ → Type
Isomorphism s (A₁ , s₁) (A₂ , s₂) =
∃ λ (m : A₁ ↔ A₂) → Is-structure-morphism s s₁ s₂ (_↔_.to m)
abstract
-- If _↔_.to m is a morphism, then _↔_.from m is also a morphism.
from-also-structure-morphism :
(s : Structure) →
{A B : Type} {s₁ : ⟦ s ⟧ A} {s₂ : ⟦ s ⟧ B} →
(m : A ↔ B) →
Is-structure-morphism s s₁ s₂ (_↔_.to m) →
Is-structure-morphism s s₂ s₁ (_↔_.from m)
from-also-structure-morphism empty m = _
from-also-structure-morphism (s +axiom _) m =
from-also-structure-morphism s m
from-also-structure-morphism (s +operator n) m =
Σ-map (from-also-structure-morphism s m)
(from-also- n -ary-morphism _ _ m)
-- Isomorphic structures are equal (assuming univalence).
isomorphic-equal :
Univalence′ (Type ²/≡) Type →
Univalence lzero →
(s : Structure) (s₁ s₂ : ⟪ s ⟫) →
Isomorphism s s₁ s₂ → s₁ ≡ s₂
isomorphic-equal univ₁ univ₂
s (A₁ , s₁) (A₂ , s₂) (m , is) =
(A₁ , s₁) ≡⟨ Σ-≡,≡→≡ A₁≡A₂ (lemma s s₁ s₂ is) ⟩∎
(A₂ , s₂) ∎
where
open _↔_ m
-- Extensionality follows from univalence.
ext : {A : Type} {B : A → Type} → Extensionality′ A B
ext = dependent-extensionality′ univ₁ (λ _ → univ₂)
-- The presence of the bijection implies that the structure's
-- underlying types are equal (due to univalence).
A₁≡A₂ : A₁ ≡ A₂
A₁≡A₂ = _≃_.from (≡≃≃ univ₂) $ ↔⇒≃ m
-- We can lift subst-isomorphism to structures by recursion on
-- structure codes.
lemma : (s : Structure)
(s₁ : ⟦ s ⟧ A₁) (s₂ : ⟦ s ⟧ A₂) →
Is-structure-morphism s s₁ s₂ to →
subst ⟦ s ⟧ A₁≡A₂ s₁ ≡ s₂
lemma empty _ _ _ = refl _
lemma (s +axiom (P , P-prop)) (s₁ , ax₁) (s₂ , ax₂) is =
subst (λ A → Σ (⟦ s ⟧ A) (P A)) A₁≡A₂ (s₁ , ax₁) ≡⟨ push-subst-pair′ ⟦ s ⟧ (uncurry P) (lemma s s₁ s₂ is) ⟩
(s₂ , _) ≡⟨ cong (_,_ s₂) $ P-prop _ _ _ _ ⟩∎
(s₂ , ax₂) ∎
lemma (s +operator n) (s₁ , op₁) (s₂ , op₂) (is-s , is-o) =
subst (λ A → ⟦ s ⟧ A × (A ^ n ⟶ A)) A₁≡A₂ (s₁ , op₁) ≡⟨ push-subst-pair′ ⟦ s ⟧ (λ { (A , _) → A ^ n ⟶ A }) (lemma s s₁ s₂ is-s) ⟩
(s₂ , subst₂ (λ { (A , _) → A ^ n ⟶ A }) A₁≡A₂
(lemma s s₁ s₂ is-s) op₁) ≡⟨ cong (_,_ s₂) $ subst₂-proj₁ (λ A → A ^ n ⟶ A) ⟩
(s₂ , subst (λ A → A ^ n ⟶ A) A₁≡A₂ op₁) ≡⟨ cong (_,_ s₂) $ subst-isomorphism (λ _ → ext) univ₂ (↔⇒≃ m) n op₁ op₂ is-o ⟩∎
(s₂ , op₂) ∎
------------------------------------------------------------------------
-- Some example structures
-- Example: magmas.
magma : Structure
magma = empty +operator 2
Magma : Type₁
Magma = ⟪ magma ⟫
private
-- An unfolding of Magma.
Magma-unfolded : Magma ≡ ∃ λ (A : Type) → ↑ _ ⊤ × (A → A → A)
Magma-unfolded = refl _
-- Example: semigroups. The definition uses extensionality to prove
-- that the axioms are propositional. Note that one axiom states that
-- the underlying type is a set. This assumption is used to prove that
-- the other axiom is propositional.
semigroup : Extensionality lzero lzero → Structure
semigroup ext =
empty
+axiom
( (λ A _ → Is-set A)
, is-set-prop
)
+operator 2
+axiom
( (λ { _ (_ , _∙_) →
∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) })
, assoc-prop
)
where
is-set-prop = λ _ _ → H-level-propositional ext 2
assoc-prop = λ { _ ((_ , A-set) , _) →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set
}
Semigroup : Extensionality lzero lzero → Type₁
Semigroup ext = ⟪ semigroup ext ⟫
private
-- An unfolding of Semigroup.
Semigroup-unfolded :
(ext : Extensionality lzero lzero) →
Semigroup ext ≡ Σ
Type λ A → Σ (Σ (Σ (↑ _ ⊤) λ _ →
Is-set A ) λ _ →
A → A → A ) λ { (_ , _∙_) →
∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }
Semigroup-unfolded _ = refl _
-- Example: abelian groups.
abelian-group : Extensionality lzero lzero → Structure
abelian-group ext =
empty
-- The underlying type is a set.
+axiom
( (λ A _ → Is-set A)
, is-set-prop
)
-- The binary group operation.
+operator 2
-- Commutativity.
+axiom
( (λ { _ (_ , _∙_) →
∀ x y → (x ∙ y) ≡ (y ∙ x) })
, comm-prop
)
-- Associativity.
+axiom
( (λ { _ ((_ , _∙_) , _) →
∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) })
, assoc-prop
)
-- Identity.
+operator 0
-- Left identity.
+axiom
( (λ { _ ((((_ , _∙_) , _) , _) , e) →
∀ x → (e ∙ x) ≡ x })
, left-identity-prop
)
-- Right identity.
+axiom
( (λ { _ (((((_ , _∙_) , _) , _) , e) , _) →
∀ x → (x ∙ e) ≡ x })
, right-identity-prop
)
-- Inverse.
+operator 1
-- Left inverse.
+axiom
( (λ { _ (((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) →
∀ x → ((x ⁻¹) ∙ x) ≡ e })
, left-inverse-prop
)
-- Right inverse.
+axiom
( (λ { _ ((((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) , _) →
∀ x → (x ∙ (x ⁻¹)) ≡ e })
, right-inverse-prop
)
where
is-set-prop = λ _ _ → H-level-propositional ext 2
comm-prop =
λ { _ ((_ , A-set) , _) →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set
}
assoc-prop =
λ { _ (((_ , A-set) , _) , _) →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set
}
left-identity-prop =
λ { _ (((((_ , A-set) , _) , _) , _) , _) →
Π-closure ext 1 λ _ →
A-set
}
right-identity-prop =
λ { _ ((((((_ , A-set) , _) , _) , _) , _) , _) →
Π-closure ext 1 λ _ →
A-set
}
left-inverse-prop =
λ { _ ((((((((_ , A-set) , _) , _) , _) , _) , _) , _) , _) →
Π-closure ext 1 λ _ →
A-set
}
right-inverse-prop =
λ { _ (((((((((_ , A-set) , _) , _) , _) , _) , _) , _) , _) , _) →
Π-closure ext 1 λ _ →
A-set
}
Abelian-group : Extensionality lzero lzero → Type₁
Abelian-group ext = ⟪ abelian-group ext ⟫
private
-- An unfolding of Abelian-group. Note that the inner structure is
-- left-nested.
Abelian-group-unfolded :
(ext : Extensionality lzero lzero) →
Abelian-group ext ≡ Σ
Type λ A → Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ →
Is-set A ) λ _ →
A → A → A ) λ { (_ , _∙_) →
∀ x y → (x ∙ y) ≡ (y ∙ x) }) λ { ((_ , _∙_) , _) →
∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }) λ _ →
A ) λ { ((((_ , _∙_) , _) , _) , e) →
∀ x → (e ∙ x) ≡ x }) λ { (((((_ , _∙_) , _) , _) , e) , _) →
∀ x → (x ∙ e) ≡ x }) λ _ →
A → A ) λ { (((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) →
∀ x → ((x ⁻¹) ∙ x) ≡ e }) λ { ((((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) , _) →
∀ x → (x ∙ (x ⁻¹)) ≡ e }
Abelian-group-unfolded _ = refl _
------------------------------------------------------------------------
-- Right-nested structures
-- Right-nested structures are arguably easier to define (see the
-- example below). However, the following class of right-nested
-- structures is in some sense different from the class above. Take
-- "operator 0 f : Structureʳ Bool", for instance. The /shape/ of f op
-- can vary depending on whether the operator op is true or false.
--
-- One could perhaps avoid this issue by only considering values of
-- type ∀ A → Structureʳ A. However, it is not obvious how to convert
-- elements of this type to elements of type Structure in a
-- meaning-preserving way. Furthermore it seems to be awkward to
-- define things like Is-structure-isomorphism when using values of
-- type ∀ A → Structureʳ A (see the definition of
-- Is-structure-isomorphismʳ below).
-- Codes. (Note that these structures are defined for a single
-- underlying type.)
data Structureʳ (A : Type) : Type₁ where
empty : Structureʳ A
-- N-ary functions.
operator : (n : ℕ)
(s : A ^ n ⟶ A → Structureʳ A) →
Structureʳ A
-- Arbitrary /propositional/ axioms.
axiom : (P : Type)
(P-prop : Is-proposition P)
(s : P → Structureʳ A) →
Structureʳ A
-- Interpretation of the codes.
⟦_⟧ʳ : {A : Type} → Structureʳ A → Type₁
⟦ empty ⟧ʳ = ↑ _ ⊤
⟦ operator n s ⟧ʳ = ∃ λ op → ⟦ s op ⟧ʳ
⟦ axiom P P-prop s ⟧ʳ = ∃ λ p → ⟦ s p ⟧ʳ
-- Top-level interpretation.
⟪_⟫ʳ : (∀ A → Structureʳ A) → Type₁
⟪ s ⟫ʳ = ∃ λ A → ⟦ s A ⟧ʳ
-- The property of being an isomorphism.
Is-structure-isomorphismʳ :
(s : ∀ A → Structureʳ A) →
{A B : Type} → ⟦ s A ⟧ʳ → ⟦ s B ⟧ʳ →
A ↔ B → Type
Is-structure-isomorphismʳ s {A} {B} S₁ S₂ m =
helper (s A) (s B) S₁ S₂
where
helper : (s₁ : Structureʳ A) (s₂ : Structureʳ B) →
⟦ s₁ ⟧ʳ → ⟦ s₂ ⟧ʳ → Type
helper empty empty _ _ = ⊤
helper (operator n₁ s₁) (operator n₂ s₂) (op₁ , S₁) (op₂ , S₂) =
(∃ λ (eq : n₁ ≡ n₂) →
Is- n₁ -ary-morphism
op₁ (subst (λ n → B ^ n ⟶ B) (sym eq) op₂) (_↔_.to m)) ×
helper (s₁ op₁) (s₂ op₂) S₁ S₂
helper (axiom P₁ _ s₁) (axiom P₂ _ s₂) (p₁ , S₁) (p₂ , S₂) =
helper (s₁ p₁) (s₂ p₂) S₁ S₂
helper empty (operator n s₂) _ _ = ⊥
helper empty (axiom P P-prop s₂) _ _ = ⊥
helper (operator n s₁) empty _ _ = ⊥
helper (operator n s₁) (axiom P P-prop s₂) _ _ = ⊥
helper (axiom P P-prop s₁) empty _ _ = ⊥
helper (axiom P P-prop s₁) (operator n s₂) _ _ = ⊥
-- Example: semigroups.
semigroupʳ :
Extensionality lzero lzero →
∀ A → Structureʳ A
semigroupʳ ext A =
axiom (Is-set A)
(H-level-propositional ext 2)
λ A-set →
operator 2 λ _∙_ →
axiom (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z))
(Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set)
λ _ →
empty
Semigroupʳ : Extensionality lzero lzero → Type₁
Semigroupʳ ext = ⟪ semigroupʳ ext ⟫ʳ
private
-- An unfolding of Semigroupʳ.
Semigroupʳ-unfolded :
(ext : Extensionality lzero lzero) →
Semigroupʳ ext ≡
∃ λ (A : Type) →
∃ λ (_ : Is-set A) →
∃ λ (_∙_ : A → A → A) →
∃ λ (_ : ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z)) →
↑ _ ⊤
Semigroupʳ-unfolded _ = refl _
|
algebraic-stack_agda0000_doc_12513 | {-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Properties.Kleisli where
open import Level
import Relation.Binary.PropositionalEquality as ≡
open import Categories.Adjoint
open import Categories.Adjoint.Properties
open import Categories.Category
open import Categories.Functor using (Functor; _∘F_)
open import Categories.Functor.Equivalence
open import Categories.Monad
import Categories.Morphism.Reasoning as MR
open import Categories.Adjoint.Construction.Kleisli
open import Categories.Category.Construction.Kleisli
private
variable
o ℓ e : Level
𝒞 𝒟 : Category o ℓ e
module _ {F : Functor 𝒞 𝒟} {G : Functor 𝒟 𝒞} (F⊣G : Adjoint F G) where
private
T : Monad 𝒞
T = adjoint⇒monad F⊣G
𝒞ₜ : Category _ _ _
𝒞ₜ = Kleisli T
module 𝒞 = Category 𝒞
module 𝒟 = Category 𝒟
module 𝒞ₜ = Category 𝒞ₜ
module T = Monad T
module F = Functor F
module G = Functor G
open Adjoint F⊣G
-- Maclane's Comparison Functor
ComparisonF : Functor 𝒞ₜ 𝒟
ComparisonF = record
{ F₀ = λ X → F.F₀ X
; F₁ = λ {A} {B} f → 𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ f ]
; identity = zig
; homomorphism = λ {X} {Y} {Z} {f} {g} → begin
𝒟 [ counit.η (F.F₀ Z) ∘ F.F₁ (𝒞 [ 𝒞 [ G.F₁ (counit.η (F.F₀ Z)) ∘ G.F₁ (F.F₁ g)] ∘ f ])] ≈⟨ refl⟩∘⟨ F.homomorphism ⟩
𝒟 [ counit.η (F.F₀ Z) ∘ 𝒟 [ F.F₁ (𝒞 [ G.F₁ (counit.η (F.F₀ Z)) ∘ G.F₁ (F.F₁ g) ]) ∘ F.F₁ f ] ] ≈⟨ refl⟩∘⟨ F.homomorphism ⟩∘⟨refl ⟩
𝒟 [ counit.η (F.F₀ Z) ∘ 𝒟 [ 𝒟 [ F.F₁ (G.F₁ (counit.η (F.F₀ Z))) ∘ F.F₁ (G.F₁ (F.F₁ g)) ] ∘ F.F₁ f ] ] ≈⟨ center⁻¹ refl refl ⟩
𝒟 [ 𝒟 [ counit.η (F.F₀ Z) ∘ F.F₁ (G.F₁ (counit.η (F.F₀ Z))) ] ∘ 𝒟 [ F.F₁ (G.F₁ (F.F₁ g)) ∘ F.F₁ f ] ] ≈⟨ counit.commute (counit.η (F.F₀ Z)) ⟩∘⟨refl ⟩
𝒟 [ 𝒟 [ counit.η (F.F₀ Z) ∘ (counit.η (F.F₀ (G.F₀ (F.F₀ Z)))) ] ∘ 𝒟 [ F.F₁ (G.F₁ (F.F₁ g)) ∘ F.F₁ f ] ] ≈⟨ extend² (counit.commute (F.F₁ g)) ⟩
𝒟 [ 𝒟 [ counit.η (F.F₀ Z) ∘ F.F₁ g ] ∘ 𝒟 [ counit.η (F.F₀ Y) ∘ F.F₁ f ] ] ∎
; F-resp-≈ = λ eq → 𝒟.∘-resp-≈ʳ (F.F-resp-≈ eq)
}
where
open 𝒟.HomReasoning
open MR 𝒟
private
L = ComparisonF
module L = Functor L
module Gₜ = Functor (Forgetful T)
module Fₜ = Functor (Free T)
G∘L≡Forgetful : (G ∘F L) ≡F Forgetful T
G∘L≡Forgetful = record
{ eq₀ = λ X → ≡.refl
; eq₁ = λ {A} {B} f → begin
𝒞 [ 𝒞.id ∘ G.F₁ (𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ f ]) ] ≈⟨ 𝒞.identityˡ ⟩
G.F₁ (𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ f ]) ≈⟨ G.homomorphism ⟩
𝒞 [ G.F₁ (counit.η (F.F₀ B)) ∘ G.F₁ (F.F₁ f) ] ≈˘⟨ 𝒞.identityʳ ⟩
𝒞 [ 𝒞 [ G.F₁ (counit.η (F.F₀ B)) ∘ G.F₁ (F.F₁ f) ] ∘ 𝒞.id ] ∎
}
where
open 𝒞.HomReasoning
L∘Free≡F : (L ∘F Free T) ≡F F
L∘Free≡F = record
{ eq₀ = λ X → ≡.refl
; eq₁ = λ {A} {B} f → begin
𝒟 [ 𝒟.id ∘ 𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ (𝒞 [ unit.η B ∘ f ]) ] ] ≈⟨ 𝒟.identityˡ ⟩
𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ (𝒞 [ unit.η B ∘ f ]) ] ≈⟨ pushʳ F.homomorphism ⟩
𝒟 [ 𝒟 [ counit.η (F.F₀ B) ∘ F.F₁ (unit.η B) ] ∘ F.F₁ f ] ≈⟨ elimˡ zig ⟩
F.F₁ f ≈˘⟨ 𝒟.identityʳ ⟩
𝒟 [ F.F₁ f ∘ 𝒟.id ] ∎
}
where
open 𝒟.HomReasoning
open MR 𝒟
|
algebraic-stack_agda0000_doc_12514 | module Issue599 where
data Bool : Set where
true false : Bool
-- standard lambda here
foo : Bool → Bool
foo = ?
-- pattern matching lambda here
bar : Bool → Bool
bar = ?
|
algebraic-stack_agda0000_doc_12515 | ------------------------------------------------------------------------
-- The halting problem
------------------------------------------------------------------------
module Halting-problem where
open import Equality.Propositional.Cubical
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (const; Decidable)
open import Tactic.By.Propositional
open import Univalence-axiom
open import Equality.Decision-procedures equality-with-J
open import Function-universe equality-with-J hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional equality-with-paths
as Trunc hiding (rec)
-- To simplify the development, let's work with actual natural numbers
-- as variables and constants (see
-- Atom.one-can-restrict-attention-to-χ-ℕ-atoms).
open import Atom
open import Cancellation χ-ℕ-atoms
open import Chi χ-ℕ-atoms
open import Coding χ-ℕ-atoms
open import Compatibility χ-ℕ-atoms
open import Computability χ-ℕ-atoms hiding (_∘_)
open import Constants χ-ℕ-atoms
open import Deterministic χ-ℕ-atoms
open import Free-variables χ-ℕ-atoms
open import Propositional χ-ℕ-atoms
open import Reasoning χ-ℕ-atoms
open import Termination χ-ℕ-atoms
open import Values χ-ℕ-atoms
open χ-atoms χ-ℕ-atoms
import Coding.Instances.Nat
open import Combinators as χ hiding (id; if_then_else_)
open import Internal-coding
------------------------------------------------------------------------
-- The extensional halting problem
-- The extensional halting problem is undecidable.
extensional-halting-problem :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
(Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ false ⦂ Bool ⌝)
extensional-halting-problem (halts , cl , hyp) = contradiction
where
terminv : Exp → Exp
terminv p = χ.if apply halts (lambda v-underscore p)
then loop
else ⌜ zero ⌝
terminv-lemma : ∀ {p} → Closed p →
Terminates (terminv p) ⇔ ¬ Terminates p
terminv-lemma {p} cl-p = record { to = to; from = from }
where
to : Terminates (terminv p) → ¬ Terminates p
to (_ , case _ (there _ (there _ ())) _ _) p⇓
to (_ , case halts⇓false (there _ here) [] _) p⇓ =
C.distinct-codes→distinct-names (λ ()) $
proj₁ $ cancel-const $
⇓-deterministic (proj₁ (hyp p cl-p) p⇓) halts⇓false
to (_ , case _ here [] loop⇓) p⇓ = ¬loop⇓ (_ , loop⇓)
from : ¬ Terminates p → Terminates (terminv p)
from ¬p⇓ =
_ , case (proj₂ (hyp p cl-p) ¬p⇓) (there lemma here) [] (const [])
where
lemma = C.distinct-codes→distinct-names (λ ())
strange : Exp
strange = rec v-p (terminv (var v-p))
strange-closed : Closed strange
strange-closed =
Closed′-closed-under-rec $
if-then-else-closed
(Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-lambda
(Closed′-closed-under-var (inj₂ (inj₁ refl)))))
(Closed→Closed′ loop-closed)
(Closed→Closed′ $ rep-closed zero)
subst-lemma : terminv (var v-p) [ v-p ← strange ] ≡ terminv strange
subst-lemma =
terminv (var v-p) [ v-p ← strange ] ≡⟨⟩
χ.if apply ⟨ halts [ v-p ← strange ] ⟩
(lambda v-underscore strange)
then loop else ⌜ zero ⌝ ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩
χ.if apply halts (lambda v-underscore strange)
then loop else ⌜ zero ⌝ ≡⟨⟩
terminv strange ∎
strange-lemma : Terminates strange ⇔ ¬ Terminates strange
strange-lemma =
Terminates strange ↝⟨ record { to = λ { (_ , rec p) → _ , p }
; from = Σ-map _ rec
} ⟩
Terminates (terminv (var v-p) [ v-p ← strange ]) ↔⟨ ≡⇒↝ bijection (by subst-lemma) ⟩
Terminates (terminv strange) ↝⟨ terminv-lemma strange-closed ⟩
¬ Terminates strange □
contradiction : ⊥
contradiction = ¬[⇔¬] strange-lemma
-- A variant of the statement above.
extensional-halting-problem′ :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
∃ λ (b : Bool) →
apply halts (lambda v-underscore p) ⇓ ⌜ b ⌝
×
if b then Terminates p else (¬ Terminates p)
extensional-halting-problem′ (halts , cl , hyp) =
extensional-halting-problem
( halts
, cl
, λ _ cl-p → ⇓→⇓true cl-p
, ¬⇓→⇓false cl-p
)
where
⇓→⇓true : ∀ {p} → Closed p → Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ true ⦂ Bool ⌝
⇓→⇓true {p} cl p⇓ with hyp p cl
... | true , halts⇓true , _ = halts⇓true
... | false , _ , ¬p⇓ = ⊥-elim (¬p⇓ p⇓)
¬⇓→⇓false :
∀ {p} → Closed p → ¬ Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ false ⦂ Bool ⌝
¬⇓→⇓false {p} cl ¬p⇓ with hyp p cl
... | false , halts⇓false , _ = halts⇓false
... | true , _ , p⇓ = ⊥-elim (¬p⇓ p⇓)
-- And another variant.
extensional-halting-problem″ :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
∥ (∃ λ (b : Bool) →
apply halts (lambda v-underscore p) ⇓ ⌜ b ⌝
×
if b then Terminates p else (¬ Terminates p)) ∥
extensional-halting-problem″ (halts , cl , hyp) =
extensional-halting-problem
( halts
, cl
, λ _ cl-p → ⇓→⇓true cl-p , ¬⇓→⇓false cl-p
)
where
⇓→⇓true : ∀ {p} → Closed p → Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ true ⦂ Bool ⌝
⇓→⇓true cl p⇓ =
flip (Trunc.rec ⇓-propositional) (hyp _ cl) λ where
(false , _ , ¬p⇓) → ⊥-elim (¬p⇓ p⇓)
(true , halts⇓true , _) → halts⇓true
¬⇓→⇓false :
∀ {p} → Closed p → ¬ Terminates p →
apply halts (lambda v-underscore p) ⇓ ⌜ false ⦂ Bool ⌝
¬⇓→⇓false cl ¬p⇓ =
flip (Trunc.rec ⇓-propositional) (hyp _ cl) λ where
(true , _ , p⇓) → ⊥-elim (¬p⇓ p⇓)
(false , halts⇓false , _) → halts⇓false
------------------------------------------------------------------------
-- The intensional halting problem with arbitrary or non-standard
-- coding relations
-- A "termination inversion" function, parametrised by a solution to
-- the (generalised) intensional halting problem of self application.
terminv : Exp → Exp
terminv halts =
lambda v-x
(χ.if apply halts (var v-x)
then loop
else ⌜ zero ⌝)
-- A generalised variant of the intensional halting problem of
-- self-application is not decidable. This variant replaces the coding
-- function for expressions with an arbitrary relation, restricted so
-- that codes have to be values. Furthermore the statement is changed
-- to include the assumption that there is a code for a certain
-- "strange" program.
generalised-intensional-halting-problem-of-self-application :
(Code : Exp → ∃ Value → Type) →
¬ ∃ λ halts →
Closed halts
×
∃ (Code (terminv halts))
×
∀ p c → Closed p → Code p c →
let c′ = proj₁ c in
(Terminates (apply p c′) →
apply halts c′ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates (apply p c′) →
apply halts c′ ⇓ ⌜ false ⦂ Bool ⌝)
generalised-intensional-halting-problem-of-self-application
Code (halts , cl , (code-strange , cd) , hyp) =
contradiction
where
terminv-lemma : ∀ p c → Closed p → Code p c →
Terminates (apply (terminv halts) (proj₁ c))
⇔
¬ Terminates (apply p (proj₁ c))
terminv-lemma p (c , c-vl) cl-p cd-p =
record { to = to; from = from }
where
to : Terminates (apply (terminv halts) c) →
¬ Terminates (apply p c)
to (_ , apply lambda _ (case _ here [] loop⇓)) p⇓ =
¬loop⇓ (_ , loop⇓)
to (_ , apply lambda _ (case _ (there _ (there _ ())) _ _)) p⇓
to (_ , apply lambda rep-p⇓
(case halts⇓false′ (there _ here) [] _)) p⇓ =
C.distinct-codes→distinct-names (λ ()) $
proj₁ $ cancel-const $
⇓-deterministic
(proj₁ (hyp p (c , c-vl) cl-p cd-p) p⇓)
halts⇓false
where
halts⇓false : apply halts c ⇓ ⌜ false ⦂ Bool ⌝
halts⇓false
rewrite sym $ values-only-compute-to-themselves c-vl rep-p⇓ =
subst (λ e → apply e _ ⇓ _)
(subst-closed _ _ cl)
halts⇓false′
from : ¬ Terminates (apply p c) →
Terminates (apply (terminv halts) c)
from ¬p⇓ =
_ , apply lambda (values-compute-to-themselves c-vl)
(case halts⇓false
(there (C.distinct-codes→distinct-names (λ ())) here)
[]
(const []))
where
halts⇓false : apply (halts [ v-x ← c ]) c ⇓
⌜ false ⦂ Bool ⌝
halts⇓false =
subst (λ e → apply e _ ⇓ _)
(sym $ subst-closed _ _ cl)
(proj₂ (hyp p (c , c-vl) cl-p cd-p) ¬p⇓)
strange : Exp
strange = apply (terminv halts) (proj₁ code-strange)
terminv-closed : Closed (terminv halts)
terminv-closed =
Closed′-closed-under-lambda $
if-then-else-closed
(Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-var (inj₁ refl)))
(Closed→Closed′ loop-closed)
(Closed→Closed′ $ rep-closed zero)
strange-lemma : Terminates strange ⇔ ¬ Terminates strange
strange-lemma =
terminv-lemma
(terminv halts) code-strange
terminv-closed cd
contradiction : ⊥
contradiction = ¬[⇔¬] strange-lemma
-- A coding relation: An expression e that terminates is encoded by
-- the representation of true, and an expression e that does not
-- terminate is encoded by the representation of false.
⇓-coding : Exp → ∃ Value → Type
⇓-coding e (c , _) =
Terminates e × c ≡ ⌜ true ⦂ Bool ⌝
⊎
¬ Terminates e × c ≡ ⌜ false ⦂ Bool ⌝
-- When this coding relation is used the intensional halting problem
-- with zero arguments is decidable.
intensional-halting-problem₀-with-⇓-coding :
∃ λ halts →
Closed halts
×
∀ p (c@(c′ , _) : ∃ Value) → Closed p → ⇓-coding p c →
(Terminates p → apply halts c′ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p → apply halts c′ ⇓ ⌜ false ⦂ Bool ⌝)
intensional-halting-problem₀-with-⇓-coding =
halts
, halts-closed
, halts-correct
where
halts : Exp
halts =
lambda v-p
(case (var v-p)
(branch c-true [] ⌜ true ⦂ Bool ⌝ ∷
branch c-false [] ⌜ false ⦂ Bool ⌝ ∷
[]))
halts-closed : Closed halts
halts-closed = from-⊎ (closed? halts)
halts-correct :
∀ p (c@(c′ , _) : ∃ Value) → Closed p → ⇓-coding p c →
(Terminates p → apply halts c′ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p → apply halts c′ ⇓ ⌜ false ⦂ Bool ⌝)
halts-correct _ (.(⌜ true ⌝) , _) _ (inj₁ (p⇓ , refl)) =
(λ _ → apply lambda (rep⇓rep (true ⦂ Bool))
(case (rep⇓rep (true ⦂ Bool)) here []
(rep⇓rep (true ⦂ Bool))))
, (λ ¬p⇓ → ⊥-elim (¬p⇓ p⇓))
halts-correct _ (.(⌜ false ⌝) , _) _ (inj₂ (¬p⇓ , refl)) =
(λ p⇓ → ⊥-elim (¬p⇓ p⇓))
, (λ _ → apply lambda (rep⇓rep (false ⦂ Bool))
(case (rep⇓rep (false ⦂ Bool)) (there (λ ()) here) []
(rep⇓rep (false ⦂ Bool))))
------------------------------------------------------------------------
-- The intensional halting problem
-- The intensional halting problem of self-application. (This
-- definition is not used below.)
Intensional-halting-problem-of-self-application : Closed-exp →Bool
Intensional-halting-problem-of-self-application =
as-function-to-Bool₁ (λ { (e , _) → Terminates (apply e ⌜ e ⌝) })
-- The intensional halting problem of self-application is not
-- decidable.
intensional-halting-problem-of-self-application :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
(Terminates (apply p ⌜ p ⌝) →
apply halts ⌜ p ⌝ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates (apply p ⌜ p ⌝) →
apply halts ⌜ p ⌝ ⇓ ⌜ false ⦂ Bool ⌝)
intensional-halting-problem-of-self-application
(halts , cl , hyp) =
generalised-intensional-halting-problem-of-self-application
⌜⌝-Code
( halts
, cl
, ( ( ⌜ terminv halts ⌝
, const→value (rep-const (terminv halts))
)
, refl
)
, λ { p _ cl-p refl → hyp p cl-p }
)
where
⌜⌝-Code : Exp → ∃ Value → Type
⌜⌝-Code e (c , _) = ⌜ e ⌝ ≡ c
-- The intensional halting problem with one argument is not decidable.
intensional-halting-problem₁ :
¬ ∃ λ halts →
Closed halts
×
∀ p x → Closed p → Closed x →
(Terminates (apply p ⌜ x ⌝) →
apply halts ⌜ p , x ⌝ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates (apply p ⌜ x ⌝) →
apply halts ⌜ p , x ⌝ ⇓ ⌜ false ⦂ Bool ⌝)
intensional-halting-problem₁ (halts , cl , hyp) =
intensional-halting-problem-of-self-application
( halts′
, cl′
, λ p cl-p → Σ-map (lemma p true ∘_) (lemma p false ∘_)
(hyp p p cl-p cl-p)
)
where
arg = const c-pair (var v-p ∷ var v-p ∷ [])
halts′ = lambda v-p (apply halts arg)
cl′ : Closed halts′
cl′ =
Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed→Closed′ cl)
(from-⊎ (closed′? arg (v-p ∷ [])))
lemma : (p : Exp) (b : Bool) →
apply halts ⌜ p , p ⌝ ⇓ ⌜ b ⌝ →
apply halts′ ⌜ p ⌝ ⇓ ⌜ b ⌝
lemma p b halts⇓ =
apply halts′ ⌜ p ⌝ ⟶⟨ apply lambda (rep⇓rep p) ⟩
apply ⟨ halts [ v-p ← ⌜ p ⌝ ] ⟩ ⌜ p , p ⌝ ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply halts ⌜ p , p ⌝ ⇓⟨ halts⇓ ⟩■
⌜ b ⌝
-- The intensional halting problem with zero arguments is not
-- decidable.
intensional-halting-problem₀ :
¬ ∃ λ halts →
Closed halts
×
∀ p → Closed p →
(Terminates p → apply halts ⌜ p ⌝ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p → apply halts ⌜ p ⌝ ⇓ ⌜ false ⦂ Bool ⌝)
intensional-halting-problem₀ (halts , cl , hyp) =
intensional-halting-problem-of-self-application
( halts′
, cl′
, λ p cl-p → Σ-map (lemma p true ∘_) (lemma p false ∘_)
(hyp (apply p ⌜ p ⌝)
(Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(Closed→Closed′ (rep-closed p))))
)
where
halts′ =
lambda v-p (apply halts (
const c-apply (var v-p ∷ apply internal-code (var v-p) ∷ [])))
cl′ : Closed halts′
cl′ =
Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-const
(λ { _ (inj₁ refl) →
Closed′-closed-under-var (inj₁ refl)
; _ (inj₂ (inj₁ refl)) →
Closed′-closed-under-apply
(Closed→Closed′ internal-code-closed)
(Closed′-closed-under-var (inj₁ refl))
; _ (inj₂ (inj₂ ()))
}))
abstract
lemma : (p : Exp) (b : Bool) →
apply halts ⌜ Exp.apply p ⌜ p ⌝ ⌝ ⇓ ⌜ b ⌝ →
apply halts′ ⌜ p ⌝ ⇓ ⌜ b ⌝
lemma p b halts⇓ =
apply halts′ ⌜ p ⌝ ⟶⟨ apply lambda (rep⇓rep p) ⟩
apply ⟨ halts [ v-p ← ⌜ p ⌝ ] ⟩ (const c-apply (
⌜ p ⌝ ∷ apply (internal-code [ v-p ← ⌜ p ⌝ ]) ⌜ p ⌝ ∷ [])) ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply halts (const c-apply (
⌜ p ⌝ ∷ apply ⟨ internal-code [ v-p ← ⌜ p ⌝ ] ⟩ ⌜ p ⌝ ∷ [])) ≡⟨ ⟨by⟩ (subst-closed v-p ⌜ p ⌝ internal-code-closed) ⟩⟶
apply halts (const c-apply (
⌜ p ⌝ ∷ apply internal-code ⌜ p ⌝ ∷ [])) ⟶⟨ []⇓ (apply→ ∙) (const (rep⇓rep p ∷ internal-code-correct p ∷ [])) ⟩
apply halts (const c-apply (⌜ p ⌝ ∷ ⌜ ⌜ p ⌝ ⦂ Exp ⌝ ∷ [])) ⟶⟨⟩
apply halts ⌜ Exp.apply p ⌜ p ⌝ ⌝ ⇓⟨ halts⇓ ⟩■
⌜ b ⌝
-- Two statements of the intensional halting problem with zero
-- arguments.
Intensional-halting-problem₀₁ : Closed-exp →Bool
Intensional-halting-problem₀₁ =
as-function-to-Bool₁ (Terminates ∘ proj₁)
Intensional-halting-problem₀₂ : Closed-exp →Bool
Intensional-halting-problem₀₂ =
as-function-to-Bool₂ (Terminates ∘ proj₁) Terminates-propositional
-- The first variant is not decidable.
intensional-halting-problem₀₁ :
¬ Decidable Intensional-halting-problem₀₁
intensional-halting-problem₀₁ (halts , cl , hyp , _) =
intensional-halting-problem₀
( halts
, cl
, λ p cl-p →
(λ p⇓ →
apply halts ⌜ p ⌝ ⇓⟨ hyp (p , cl-p) true ((λ _ → refl) , λ ¬p⇓ → ⊥-elim (¬p⇓ p⇓)) ⟩■
⌜ true ⦂ Bool ⌝) ,
λ ¬p⇓ →
apply halts ⌜ p ⌝ ⇓⟨ hyp (p , cl-p) false ((λ p⇓ → ⊥-elim (¬p⇓ p⇓)) , λ _ → refl) ⟩■
⌜ false ⦂ Bool ⌝
)
-- The second variant is not decidable.
intensional-halting-problem₀₂ :
¬ Decidable Intensional-halting-problem₀₂
intensional-halting-problem₀₂ (halts , cl , hyp , _) =
intensional-halting-problem₀
( halts
, cl
, λ p cl-p →
(λ p⇓ →
apply halts ⌜ p ⌝ ⇓⟨ hyp (p , cl-p) true (inj₁ (p⇓ , refl)) ⟩■
⌜ true ⦂ Bool ⌝)
, (λ ¬p⇓ →
apply halts ⌜ p ⌝ ⇓⟨ hyp (p , cl-p) false (inj₂ (¬p⇓ , refl)) ⟩■
⌜ false ⦂ Bool ⌝)
)
-- Under the assumption of excluded middle one can prove that
-- Intensional-halting-problem₀₁ and Intensional-halting-problem₀₂ are
-- pointwise equal.
Intensional-halting-problem₀₂→Intensional-halting-problem₀₁ :
∀ {e b} →
proj₁ Intensional-halting-problem₀₂ [ e ]= b →
proj₁ Intensional-halting-problem₀₁ [ e ]= b
Intensional-halting-problem₀₂→Intensional-halting-problem₀₁
(inj₁ (e⇓ , refl)) = (λ _ → refl) , (⊥-elim ∘ (_$ e⇓))
Intensional-halting-problem₀₂→Intensional-halting-problem₀₁
(inj₂ (¬e⇓ , refl)) = (⊥-elim ∘ ¬e⇓) , λ _ → refl
Intensional-halting-problem₀₁→Intensional-halting-problem₀₂ :
(excluded-middle : (P : Type) → Is-proposition P → Dec P) →
∀ {e} b →
proj₁ Intensional-halting-problem₀₁ [ e ]= b →
proj₁ Intensional-halting-problem₀₂ [ e ]= b
Intensional-halting-problem₀₁→Intensional-halting-problem₀₂ em =
λ where
true (_ , ¬¬e⇓) →
inj₁ ( double-negation-elimination
Terminates-propositional
(Bool.true≢false ∘ ¬¬e⇓)
, refl
)
false (¬e⇓ , _) →
inj₂ ( Bool.true≢false ∘ sym ∘ ¬e⇓
, refl
)
where
double-negation-elimination :
{P : Type} → Is-proposition P → ¬ ¬ P → P
double-negation-elimination P-prop ¬¬p =
case em _ P-prop of λ where
(inj₁ p) → p
(inj₂ ¬p) → ⊥-elim (¬¬p ¬p)
------------------------------------------------------------------------
-- "Half of the halting problem"
-- If a (correct) self-interpreter can be implemented, then "half of
-- the halting problem" is computable.
half-of-the-halting-problem :
(eval : Exp) →
Closed eval →
(∀ p v → Closed p → p ⇓ v → apply eval ⌜ p ⌝ ⇓ ⌜ v ⌝) →
(∀ p → Closed p → ¬ Terminates p →
¬ Terminates (apply eval ⌜ p ⌝)) →
∃ λ halts →
Closed halts
×
∀ p → Closed p →
(Terminates p → apply halts ⌜ p ⌝ ⇓ ⌜ true ⦂ Bool ⌝)
×
(¬ Terminates p → ¬ Terminates (apply halts ⌜ p ⌝))
half-of-the-halting-problem eval cl eval⇓ eval¬⇓ =
halts , cl′ , λ p cl-p → lemma₁ p cl-p , lemma₂ p cl-p
module Half-of-the-halting-problem where
halts = lambda v-p (apply (lambda v-underscore ⌜ true ⦂ Bool ⌝)
(apply eval (var v-p)))
cl′ : Closed halts
cl′ =
Closed′-closed-under-lambda $
Closed′-closed-under-apply
(from-⊎ (closed′? (lambda v-underscore ⌜ true ⦂ Bool ⌝) _))
(Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-var (inj₁ refl)))
lemma₁ : ∀ p → Closed p → Terminates p →
apply halts ⌜ p ⌝ ⇓ ⌜ true ⦂ Bool ⌝
lemma₁ p cl-p (v , p⇓v) =
apply halts ⌜ p ⌝ ⟶⟨ apply lambda (rep⇓rep p) ⟩
apply (lambda v-underscore ⌜ true ⦂ Bool ⌝)
(apply ⟨ eval [ v-p ← ⌜ p ⌝ ] ⟩ ⌜ p ⌝) ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply (lambda v-underscore ⌜ true ⦂ Bool ⌝)
(apply eval ⌜ p ⌝) ⇓⟨ apply lambda (eval⇓ p v cl-p p⇓v) (rep⇓rep (true ⦂ Bool)) ⟩■
⌜ true ⦂ Bool ⌝
halts-eval-inversion :
∀ e →
Terminates (apply halts e) →
Terminates (apply eval e)
halts-eval-inversion e (_ , apply {v₂ = v} lambda e⇓
(apply {v₂ = v₂} _ eval⇓ _)) =
_ , (apply eval e ⟶⟨ []⇓ (apply→ ∙) e⇓ ⟩
apply eval v ≡⟨ by (subst-closed _ _ cl) ⟩⟶
apply (eval [ v-p ← v ]) v ⇓⟨ eval⇓ ⟩■
v₂)
lemma₂ : ∀ p → Closed p →
¬ Terminates p →
¬ Terminates (apply halts ⌜ p ⌝)
lemma₂ p cl-p ¬p⇓ =
Terminates (apply halts ⌜ p ⌝) ↝⟨ halts-eval-inversion ⌜ p ⌝ ⟩
Terminates (apply eval ⌜ p ⌝) ↝⟨ eval¬⇓ p cl-p ¬p⇓ ⟩□
⊥ □
-- Two statements of "half of the halting problem".
Half-of-the-halting-problem₁ : Closed-exp ⇀ Bool
Half-of-the-halting-problem₁ =
as-partial-function-to-Bool₁ (Terminates ∘ proj₁)
Half-of-the-halting-problem₂ : Closed-exp ⇀ Bool
Half-of-the-halting-problem₂ =
as-partial-function-to-Bool₂
(Terminates ∘ proj₁)
Terminates-propositional
-- If a (correct) self-interpreter can be implemented, then
-- Half-of-the-halting-problem₂ is computable.
half-of-the-halting-problem₂ :
(eval : Exp) →
Closed eval →
(∀ p v → Closed p → p ⇓ v → apply eval ⌜ p ⌝ ⇓ ⌜ v ⌝) →
(∀ p v → Closed p → apply eval ⌜ p ⌝ ⇓ v →
∃ λ v′ → p ⇓ v′ × v ≡ ⌜ v′ ⌝) →
Computable Half-of-the-halting-problem₂
half-of-the-halting-problem₂ eval cl eval₁ eval₂ =
H.halts , H.cl′ ,
(λ { (p , cl-p) .true (p⇓ , refl) → H.lemma₁ p cl-p p⇓ }) ,
(λ { (p , cl-p) v halts⌜p⌝⇓v → true ,
Σ-map (_, refl) id (lemma₂ p v cl-p halts⌜p⌝⇓v) })
where
eval-inversion :
∀ p → Closed p →
Terminates (apply eval ⌜ p ⌝) →
Terminates p
eval-inversion p cl-p = Σ-map id proj₁ ∘ eval₂ p _ cl-p ∘ proj₂
module H = Half-of-the-halting-problem eval cl eval₁
(λ { p cl-p ¬p⇓ →
Terminates (apply eval ⌜ p ⌝) ↝⟨ eval-inversion p cl-p ⟩
Terminates p ↝⟨ ¬p⇓ ⟩□
⊥ □ })
lemma₂ : ∀ p v → Closed p → apply H.halts ⌜ p ⌝ ⇓ v →
Terminates p × v ≡ ⌜ true ⦂ Bool ⌝
lemma₂ p v cl-p q@(apply lambda _ (apply lambda _ (const []))) =
( $⟨ _ , q ⟩
Terminates (apply H.halts ⌜ p ⌝) ↝⟨ H.halts-eval-inversion ⌜ p ⌝ ⟩
Terminates (apply eval ⌜ p ⌝) ↝⟨ eval-inversion p cl-p ⟩□
Terminates p □)
, refl
------------------------------------------------------------------------
-- Halting with zero
-- If the expression terminates with ⌜ zero ⌝ as the result, then this
-- (total partial) function returns true. If the expression does not
-- terminate with ⌜ zero ⌝ as the result, then the function returns
-- false.
Halts-with-zero : Closed-exp →Bool
Halts-with-zero =
as-function-to-Bool₁ (λ { (e , _) → e ⇓ ⌜ zero ⌝ })
-- Halts-with-zero is not decidable.
halts-with-zero : ¬ Decidable Halts-with-zero
halts-with-zero =
Reduction→¬Computable→¬Computable
(proj₁ Intensional-halting-problem₀₁) (proj₁ Halts-with-zero) red
intensional-halting-problem₀₁
where
red : Reduction (proj₁ Intensional-halting-problem₀₁)
(proj₁ Halts-with-zero)
red (halts-with-zero , cl , hyp₁ , hyp₂) =
halts , cl-halts , hyp₁′ , hyp₂′
where
argument : Closed-exp → Closed-exp
argument (p , cl-p) =
apply (lambda v-x (const c-zero [])) p
, (Closed′-closed-under-apply
(from-⊎ (closed′? (lambda v-x (const c-zero [])) []))
(Closed→Closed′ cl-p))
coded-argument : Exp → Exp
coded-argument p = const c-apply (
⌜ Exp.lambda v-x (const c-zero []) ⌝ ∷
p ∷
[])
halts : Exp
halts =
lambda v-p (apply halts-with-zero (coded-argument (var v-p)))
cl-halts : Closed halts
cl-halts =
Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed′-closed-under-const λ where
_ (inj₁ refl) → Closed→Closed′ $
rep-closed (Exp.lambda v-x (const c-zero []))
_ (inj₂ (inj₁ refl)) → Closed′-closed-under-var (inj₁ refl)
_ (inj₂ (inj₂ ())))
lemma₁ :
∀ p b →
proj₁ Intensional-halting-problem₀₁ [ p ]= b →
proj₁ Halts-with-zero [ argument p ]= b
lemma₁ p true (_ , ¬¬p⇓) =
(λ _ → refl)
, λ ¬arg-p⇓zero → ¬¬p⇓ λ p⇓ → ¬arg-p⇓zero
(proj₁ (argument p) ⇓⟨ apply lambda (proj₂ p⇓) (const []) ⟩■
const c-zero [])
lemma₁ p false (¬p⇓ , _) =
(λ { (apply _ p⇓ _) → ¬p⇓ (_ , p⇓) })
, λ _ → refl
hyp₁′ : ∀ p b → proj₁ Intensional-halting-problem₀₁ [ p ]= b →
apply halts ⌜ p ⌝ ⇓ ⌜ b ⌝
hyp₁′ p b halts[p]=b =
apply halts ⌜ p ⌝ ⟶⟨ apply lambda (rep⇓rep p) ⟩
apply ⟨ halts-with-zero [ v-p ← ⌜ p ⌝ ] ⟩ (coded-argument ⌜ p ⌝) ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply halts-with-zero (coded-argument ⌜ p ⌝) ⟶⟨⟩
apply halts-with-zero ⌜ argument p ⌝ ⇓⟨ hyp₁ (argument p) b (lemma₁ p _ halts[p]=b) ⟩■
⌜ b ⌝
pattern coded-argument-⇓ p =
const (const (const (const (const (const [] ∷ []) ∷ []) ∷ []) ∷
const (const [] ∷ const [] ∷ []) ∷
[]) ∷
p ∷
[])
lemma₂ :
∀ p v →
apply halts ⌜ p ⌝ ⇓ v →
apply halts-with-zero ⌜ argument p ⌝ ⇓ v
lemma₂ p v (apply {v₂ = v₂} lambda q r) =
apply ⟨ halts-with-zero ⟩ ⌜ argument p ⌝ ≡⟨ ⟨by⟩ (subst-closed _ _ cl) ⟩⟶
apply (halts-with-zero [ v-p ← v₂ ]) (coded-argument ⌜ p ⌝) ⟶⟨ []⇓ (apply→ ∙) (coded-argument-⇓ q) ⟩
apply (halts-with-zero [ v-p ← v₂ ]) (coded-argument v₂) ⇓⟨ r ⟩■
v
hyp₂′ : ∀ p v → apply halts ⌜ p ⌝ ⇓ v →
∃ λ v′ →
proj₁ Intensional-halting-problem₀₁ [ p ]= v′
×
v ≡ ⌜ v′ ⌝
hyp₂′ p v q =
Σ-map id
(Σ-map
(Σ-map
(_∘ λ p⇓ → apply lambda (proj₂ p⇓) (const []))
(_∘ λ ¬p⇓ → λ { (apply lambda p⇓ (const [])) →
¬p⇓ (_ , p⇓) }))
id) $
hyp₂ (argument p) v (lemma₂ p v q)
|
algebraic-stack_agda0000_doc_12516 | module IrrelevantLambda where
postulate
A : Set
P : .A -> Set
f : ._ -> Set
f = λ .x -> P x
f' = λ .(x : _) -> P x
f'' = λ .{x y z : _} -> P x
g : ((.A -> Set) -> Set) -> Set
g k = k f
|
algebraic-stack_agda0000_doc_12517 | module Golden.InsertionSort where
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Bool
insert : Nat -> List Nat -> List Nat
insert a [] = a ∷ []
insert x (a ∷ b) with x < a
... | true = x ∷ a ∷ b
... | false = a ∷ (insert x b)
foldr : ∀ {a b : Set} → (a → b → b) → b → List a -> b
foldr f ini [] = ini
foldr f ini (x ∷ l) = f x (foldr f ini l)
insertSort : List Nat -> List Nat
insertSort = foldr insert []
atDef : ∀ {a : Set} → a → List a -> Nat -> a
atDef def (x ∷ l) zero = x
atDef def (x ∷ l) (suc ix) = atDef def l ix
atDef def _ _ = def
lst : List Nat
lst = 4 ∷ 2 ∷ 7 ∷ []
slst : List Nat
slst = insertSort lst
l0 : Nat
l0 = atDef 0 slst 0
l1 : Nat
l1 = atDef 0 slst 1
l2 : Nat
l2 = atDef 0 slst 2
|
algebraic-stack_agda0000_doc_12518 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Universe levels
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Level where
-- Levels.
open import Agda.Primitive as Prim public
using (Level; _⊔_)
renaming (lzero to zero; lsuc to suc)
-- Lifting.
record Lift {a} ℓ (A : Set a) : Set (a ⊔ ℓ) where
constructor lift
field lower : A
open Lift public
-- Synonyms
0ℓ : Level
0ℓ = zero
|
algebraic-stack_agda0000_doc_12519 | {-# OPTIONS --safe #-}
module Cubical.Algebra.MonoidSolver.Solver where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Data.FinData using (Fin)
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.List
open import Cubical.Data.Vec using (Vec; lookup)
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.MonoidSolver.MonoidExpression
private
variable
ℓ : Level
module Eval (M : Monoid ℓ) where
open MonoidStr (snd M)
Env : ℕ → Type ℓ
Env n = Vec ⟨ M ⟩ n
-- evaluation of an expression (without normalization)
⟦_⟧ : ∀{n} → Expr ⟨ M ⟩ n → Env n → ⟨ M ⟩
⟦ ε⊗ ⟧ v = ε
⟦ ∣ i ⟧ v = lookup i v
⟦ e₁ ⊗ e₂ ⟧ v = ⟦ e₁ ⟧ v · ⟦ e₂ ⟧ v
NormalForm : ℕ → Type _
NormalForm n = List (Fin n)
-- normalization of an expression
normalize : ∀{n} → Expr ⟨ M ⟩ n → NormalForm n
normalize (∣ i) = i ∷ []
normalize ε⊗ = []
normalize (e₁ ⊗ e₂) = (normalize e₁) ++ (normalize e₂)
-- evaluation of normalform
eval : ∀ {n} → NormalForm n → Env n → ⟨ M ⟩
eval [] v = ε
eval (x ∷ xs) v = (lookup x v) · (eval xs v)
-- some calculation
evalIsHom : ∀ {n} (x y : NormalForm n) (v : Env n)
→ eval (x ++ y) v ≡ eval x v · eval y v
evalIsHom [] y v = sym (·IdL _)
evalIsHom (x ∷ xs) y v =
cong (λ m → (lookup x v) · m) (evalIsHom xs y v) ∙ ·Assoc _ _ _
module EqualityToNormalform (M : Monoid ℓ) where
open Eval M
open MonoidStr (snd M)
-- proof that evaluation of an expression is invariant under normalization
isEqualToNormalform : (n : ℕ)
→ (e : Expr ⟨ M ⟩ n)
→ (v : Env n)
→ eval (normalize e) v ≡ ⟦ e ⟧ v
isEqualToNormalform n (∣ i) v = ·IdR _
isEqualToNormalform n ε⊗ v = refl
isEqualToNormalform n (e₁ ⊗ e₂) v =
eval ((normalize e₁) ++ (normalize e₂)) v ≡⟨ evalIsHom (normalize e₁) (normalize e₂) v ⟩
(eval (normalize e₁) v) · (eval (normalize e₂) v) ≡⟨ cong₂ _·_ (isEqualToNormalform n e₁ v) (isEqualToNormalform n e₂ v) ⟩
⟦ e₁ ⟧ v · ⟦ e₂ ⟧ v ∎
solve : {n : ℕ}
→ (e₁ e₂ : Expr ⟨ M ⟩ n)
→ (v : Env n)
→ (p : eval (normalize e₁) v ≡ eval (normalize e₂) v)
→ ⟦ e₁ ⟧ v ≡ ⟦ e₂ ⟧ v
solve e₁ e₂ v p =
⟦ e₁ ⟧ v ≡⟨ sym (isEqualToNormalform _ e₁ v) ⟩
eval (normalize e₁) v ≡⟨ p ⟩
eval (normalize e₂) v ≡⟨ isEqualToNormalform _ e₂ v ⟩
⟦ e₂ ⟧ v ∎
solve : (M : Monoid ℓ)
{n : ℕ} (e₁ e₂ : Expr ⟨ M ⟩ n) (v : Eval.Env M n)
(p : Eval.eval M (Eval.normalize M e₁) v ≡ Eval.eval M (Eval.normalize M e₂) v)
→ _
solve M = EqualityToNormalform.solve M
|
algebraic-stack_agda0000_doc_12520 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Homotopy.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv.Properties
private
variable
ℓ ℓ' : Level
_∼_ : {X : Type ℓ} {Y : X → Type ℓ'} → (f g : (x : X) → Y x) → Type (ℓ-max ℓ ℓ')
_∼_ {X = X} f g = (x : X) → f x ≡ g x
funExt∼ : {X : Type ℓ} {Y : X → Type ℓ'} {f g : (x : X) → Y x} (H : f ∼ g) → f ≡ g
funExt∼ = funExt
∼-refl : {X : Type ℓ} {Y : X → Type ℓ'} {f : (x : X) → Y x} → f ∼ f
∼-refl {f = f} = λ x → refl {x = f x}
|
algebraic-stack_agda0000_doc_12521 | {-# OPTIONS --cubical --safe --postfix-projections #-}
module Categories.Exercises where
open import Prelude
open import Categories
open Category ⦃ ... ⦄
open import Categories.Product
open Product public
open HasProducts ⦃ ... ⦄ public
-- module _ {ℓ₁} {ℓ₂} ⦃ c : Category ℓ₁ ℓ₂ ⦄ ⦃ hp : HasProducts c ⦄ where
-- ex17 : (t : Terminal) (x : Ob) → Product.obj (product (fst t) x) ≅ x
-- ex17 t x .fst = proj₂ (product (fst t) x)
-- ex17 t x .snd .fst = ump (product (fst t) x) (t .snd .fst) Id .fst
-- ex17 t x .snd .snd .fst = let p = ump (product (fst t) x) (t .snd .fst) Id .snd .snd ({!!} , {!!}) in {!!}
-- ex17 t x .snd .snd .snd = {!!}
|
algebraic-stack_agda0000_doc_12522 | {-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Multiplication
open import Semirings.Definition
open import Rings.Definition
open import Setoids.Setoids
module Numbers.Integers.RingStructure.Ring where
open import Numbers.Integers.Definition public
open import Numbers.Integers.Addition public
open import Numbers.Integers.Multiplication public
*ZCommutative : (a b : ℤ) → a *Z b ≡ b *Z a
*ZCommutative (nonneg x) (nonneg y) = applyEquality nonneg (multiplicationNIsCommutative x y)
*ZCommutative (nonneg zero) (negSucc y) = refl
*ZCommutative (nonneg (succ x)) (negSucc y) = refl
*ZCommutative (negSucc x) (nonneg zero) = refl
*ZCommutative (negSucc x) (nonneg (succ y)) = refl
*ZCommutative (negSucc x) (negSucc y) = applyEquality nonneg (multiplicationNIsCommutative (succ x) (succ y))
*ZleftIdent : (a : ℤ) → (nonneg 1) *Z a ≡ a
*ZleftIdent (nonneg x) = applyEquality nonneg (Semiring.commutative ℕSemiring x 0)
*ZleftIdent (negSucc x) = applyEquality negSucc (transitivity (Semiring.commutative ℕSemiring (x +N 0) 0) (Semiring.commutative ℕSemiring x 0))
*ZrightIdent : (a : ℤ) → a *Z (nonneg 1) ≡ a
*ZrightIdent (nonneg x) = applyEquality nonneg (Semiring.productOneRight ℕSemiring x)
*ZrightIdent (negSucc x) = applyEquality negSucc (transitivity (Semiring.commutative ℕSemiring (x +N 0) 0) (Semiring.commutative ℕSemiring x 0))
*ZZeroLeft : (a : ℤ) → nonneg 0 *Z a ≡ nonneg 0
*ZZeroLeft (nonneg x) = refl
*ZZeroLeft (negSucc x) = refl
*ZZeroRight : (a : ℤ) → a *Z nonneg 0 ≡ nonneg 0
*ZZeroRight (nonneg x) = applyEquality nonneg (Semiring.productZeroRight ℕSemiring x)
*ZZeroRight (negSucc x) = refl
*ZAssociative : (a b c : ℤ) → a *Z (b *Z c) ≡ (a *Z b) *Z c
*ZAssociative (nonneg zero) b c = transitivity (*ZZeroLeft (b *Z c)) (transitivity (equalityCommutative (*ZZeroLeft c)) (applyEquality (_*Z c) (equalityCommutative (*ZZeroLeft b))))
*ZAssociative (nonneg (succ a)) (nonneg zero) c rewrite Semiring.productZeroRight ℕSemiring a | *ZZeroLeft c | Semiring.productZeroRight ℕSemiring a = refl
*ZAssociative (nonneg (succ a)) (nonneg (succ b)) (nonneg zero) rewrite Semiring.productZeroRight ℕSemiring b | Semiring.productZeroRight ℕSemiring (b +N a *N succ b) | Semiring.productZeroRight ℕSemiring a = refl
*ZAssociative (nonneg (succ a)) (nonneg (succ b)) (nonneg (succ c)) = applyEquality nonneg (Semiring.*Associative ℕSemiring (succ a) (succ b) (succ c))
*ZAssociative (nonneg (succ a)) (nonneg (succ b)) (negSucc x) rewrite productDistributes' b (a *N succ b) x | Semiring.+Associative ℕSemiring x (b *N x) ((a *N succ b) *N x) | equalityCommutative (Semiring.+Associative ℕSemiring ((x +N b *N x) +N b) (a *N ((x +N b *N x) +N b)) a) | equalityCommutative (Semiring.+Associative ℕSemiring (x +N b *N x) ((a *N succ b) *N x) (b +N a *N succ b)) | equalityCommutative (Semiring.+Associative ℕSemiring (x +N b *N x) b (a *N ((x +N b *N x) +N b) +N a)) = applyEquality (λ i → negSucc ((x +N b *N x) +N i)) ans
where
ans3 : (succ b +N (succ b *N x)) *N a ≡ succ x *N (a *N succ b)
ans3 rewrite multiplicationNIsCommutative (succ b) x = transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (succ x) (succ b) a)) (applyEquality (succ x *N_) (multiplicationNIsCommutative (succ b) a))
ans2 : a *N ((x +N b *N x) +N b) +N a ≡ (a *N succ b) +N (a *N succ b) *N x
ans2 rewrite multiplicationNIsCommutative (a *N succ b) x | Semiring.commutative ℕSemiring (succ b *N x) b | multiplicationNIsCommutative a (b +N (succ b *N x)) | Semiring.commutative ℕSemiring ((b +N (succ b *N x)) *N a) a = ans3
ans : b +N (a *N ((x +N b *N x) +N b) +N a) ≡ (a *N succ b) *N x +N (b +N a *N succ b)
ans rewrite Semiring.commutative ℕSemiring ((a *N succ b) *N x) (b +N a *N succ b) | equalityCommutative (Semiring.+Associative ℕSemiring b (a *N succ b) ((a *N succ b) *N x)) = applyEquality (b +N_) ans2
*ZAssociative (nonneg (succ a)) (negSucc b) (nonneg zero) = applyEquality nonneg (Semiring.productZeroRight ℕSemiring a)
*ZAssociative (nonneg (succ a)) (negSucc b) (nonneg (succ c)) = applyEquality negSucc ans
where
ans4 : (b +N b *N c) +N (a *N b +N (a *N b) *N c) ≡ (b +N a *N b) +N (b *N c +N (a *N b) *N c)
ans4 rewrite Semiring.+Associative ℕSemiring (b +N b *N c) (a *N b) ((a *N b) *N c) | Semiring.+Associative ℕSemiring (b +N a *N b) (b *N c) ((a *N b) *N c) = applyEquality (_+N (a *N b) *N c) (transitivity (transitivity (applyEquality (_+N a *N b) (Semiring.commutative ℕSemiring b (b *N c))) (equalityCommutative (Semiring.+Associative ℕSemiring (b *N c) b (a *N b)))) (Semiring.commutative ℕSemiring (b *N c) (b +N a *N b)))
ans3 : ((b +N b *N c) +N (a *N b +N (a *N b) *N c)) +N ((c +N a *N c) +N a) ≡ ((b +N a *N b) +N (b *N c +N (a *N b) *N c)) +N ((a +N a *N c) +N c)
ans3 rewrite Semiring.commutative ℕSemiring (c +N a *N c) a | Semiring.commutative ℕSemiring c (a *N c) | Semiring.+Associative ℕSemiring a (a *N c) c = applyEquality (λ i → i +N ((a +N a *N c) +N c)) {(b +N b *N c) +N (a *N b +N (a *N b) *N c)} {(b +N a *N b) +N (b *N c +N (a *N b) *N c)} ans4
ans2 : (((b +N c *N b) +N (a *N b +N a *N (c *N b))) +N (c +N a *N c)) +N a ≡ (((b +N a *N b) +N (c *N b +N c *N (a *N b))) +N (a +N c *N a)) +N c
ans2 rewrite multiplicationNIsCommutative c b | multiplicationNIsCommutative c (a *N b) | Semiring.*Associative ℕSemiring a b c | multiplicationNIsCommutative c a = transitivity (equalityCommutative (Semiring.+Associative ℕSemiring ((b +N b *N c) +N (a *N b +N (a *N b) *N c)) (c +N a *N c) a)) (transitivity ans3 (Semiring.+Associative ℕSemiring ((b +N a *N b) +N (b *N c +N (a *N b) *N c)) (a +N a *N c) c))
ans : succ a *N ((succ c *N b) +N c) +N a ≡ succ c *N ((succ a *N b) +N a) +N c
ans = transitivity (applyEquality (_+N a) (productDistributes (succ a) (succ c *N b) c)) (transitivity (transitivity (applyEquality (λ i → ((((b +N c *N b) +N i) +N (c +N a *N c)) +N a)) (productDistributes a b (c *N b))) (transitivity ans2 (applyEquality (λ i → (((b +N a *N b) +N i) +N (a +N c *N a)) +N c) (equalityCommutative (productDistributes c b (a *N b)))))) (applyEquality (_+N c) (equalityCommutative (productDistributes (succ c) (succ a *N b) a))))
*ZAssociative (nonneg (succ a)) (negSucc b) (negSucc x) = applyEquality nonneg ans
where
ans : succ a *N (succ b *N succ x) ≡ succ ((succ a *N b) +N a) *N succ x
ans rewrite Semiring.commutative ℕSemiring (succ a *N b) a | multiplicationNIsCommutative (succ a) b = transitivity (Semiring.*Associative ℕSemiring (succ a) (succ b) (succ x)) (applyEquality (_*N succ x) {succ a *N succ b} {succ b *N succ a} (multiplicationNIsCommutative (succ a) (succ b)))
*ZAssociative (negSucc a) (nonneg zero) c rewrite *ZZeroLeft c = refl
*ZAssociative (negSucc a) (nonneg (succ b)) (nonneg zero) rewrite multiplicationNIsCommutative b 0 = refl
*ZAssociative (negSucc a) (nonneg (succ b)) (nonneg (succ c)) = applyEquality negSucc ans
where
ans2 : (d : ℕ) → ((succ b *N d) *N a) +N b *N d ≡ d *N ((succ b *N a) +N b)
ans2 d = transitivity (transitivity (applyEquality (((d +N b *N d) *N a) +N_) (multiplicationNIsCommutative b d)) (applyEquality (_+N d *N b) (transitivity (applyEquality (_*N a) {d +N b *N d} {d *N succ b} (multiplicationNIsCommutative (succ b) d)) (equalityCommutative (Semiring.*Associative ℕSemiring d (succ b) a))))) (equalityCommutative (Semiring.+DistributesOver* ℕSemiring d (succ b *N a) b))
ans : (succ (c +N b *N succ c) *N a) +N (c +N b *N succ c) ≡ (succ c *N ((succ b *N a) +N b)) +N c
ans rewrite Semiring.commutative ℕSemiring c (b *N succ c) | Semiring.+Associative ℕSemiring (succ (b *N succ c +N c) *N a) (b *N succ c) c | Semiring.commutative ℕSemiring (b *N succ c) c = applyEquality (_+N c) (ans2 (succ c))
*ZAssociative (negSucc a) (nonneg (succ b)) (negSucc c) = applyEquality nonneg ans
where
ans : succ a *N ((succ ((succ b) *N c)) +N b) ≡ (succ (succ b *N a) +N b) *N succ c
ans rewrite Semiring.commutative ℕSemiring (succ b *N a) b | multiplicationNIsCommutative (succ b) a = transitivity (applyEquality (succ a *N_) (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring c (b *N c) b)) (applyEquality (c +N_) (transitivity (transitivity (Semiring.commutative ℕSemiring (b *N c) b) (applyEquality (b +N_) (multiplicationNIsCommutative b c))) (multiplicationNIsCommutative (succ c) b)))))) (Semiring.*Associative ℕSemiring (succ a) (succ b) (succ c))
*ZAssociative (negSucc a) (negSucc b) (nonneg zero) rewrite Semiring.productZeroRight ℕSemiring (b +N a *N succ b) = refl
*ZAssociative (negSucc a) (negSucc b) (nonneg (succ x)) = applyEquality nonneg (transitivity (applyEquality (succ a *N_) ans) (Semiring.*Associative ℕSemiring (succ a) (succ b) (succ x)))
where
ans : succ ((succ x *N b) +N x) ≡ (succ b *N succ x)
ans rewrite Semiring.commutative ℕSemiring (succ x *N b) x | multiplicationNIsCommutative (succ x) b = refl
*ZAssociative (negSucc a) (negSucc b) (negSucc x) = applyEquality negSucc t
where
l1 : (a b c d e f g : ℕ) → (a +N b) +N d ≡ e +N (f +N g) → (a +N b) +N (c +N d) ≡ (c +N e) +N (f +N g)
l1 a b c d e f g pr rewrite Semiring.commutative ℕSemiring c d | Semiring.+Associative ℕSemiring (a +N b) d c | pr | Semiring.commutative ℕSemiring (e +N (f +N g)) c | Semiring.+Associative ℕSemiring c e (f +N g) = refl
v : (((succ b) *N succ x) *N a) ≡ (succ x) *N (a *N succ b)
v = transitivity (applyEquality (_*N a) (multiplicationNIsCommutative (succ b) (succ x))) (transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (succ x) (succ b) a)) (applyEquality (succ x *N_) (multiplicationNIsCommutative (succ b) a)))
u : (a +N (x +N b *N succ x) *N a) +N b *N succ x ≡ (b +N a *N succ b) *N x +N (b +N a *N succ b)
u = transitivity (transitivity (transitivity (Semiring.commutative ℕSemiring (a +N (x +N b *N succ x) *N a) (b *N succ x)) (transitivity (applyEquality (_+N (a +N (x +N b *N succ x) *N a)) (multiplicationNIsCommutative b (succ x))) (transitivity (applyEquality ((b +N x *N b) +N_) v) (equalityCommutative (productDistributes (succ x) b (a *N succ b)))))) (applyEquality ((b +N a *N succ b) +N_) (multiplicationNIsCommutative x (b +N a *N succ b)))) (Semiring.commutative ℕSemiring (b +N a *N succ b) ((b +N a *N succ b) *N x))
t : (a +N (x +N b *N succ x) *N a) +N (x +N b *N succ x) ≡ (x +N (b +N a *N succ b) *N x) +N (b +N a *N succ b)
t = l1 a ((x +N b *N succ x) *N a) x (b *N succ x) ((b +N (a *N succ b)) *N x) b (a *N succ b) u
multLemma : (a b : ℕ) → a *N succ b ≡ a *N b +N a
multLemma a b rewrite multiplicationNIsCommutative a (succ b) | Semiring.commutative ℕSemiring a (b *N a) | multiplicationNIsCommutative a b = refl
negSucc+Nonneg : (a b : ℕ) → negSucc a ≡ negSucc (a +N b) +Z nonneg b
negSucc+Nonneg zero zero = refl
negSucc+Nonneg zero (succ b) = negSucc+Nonneg zero b
negSucc+Nonneg (succ a) zero rewrite Semiring.commutative ℕSemiring a 0 = refl
negSucc+Nonneg (succ a) (succ b) rewrite Semiring.commutative ℕSemiring a (succ b) | Semiring.commutative ℕSemiring b a = negSucc+Nonneg (succ a) b
distLemma : (a b : ℕ) → negSucc a *Z nonneg b ≡ negSucc ((a +N b *N a) +N b) +Z nonneg (succ a)
distLemma a b rewrite Semiring.commutative ℕSemiring (a +N b *N a) b | Semiring.commutative ℕSemiring a (b *N a) | Semiring.+Associative ℕSemiring b (b *N a) a = transitivity u (transitivity (equalityCommutative (+ZAssociative (negSucc ((b +N b *N a) +N a)) (nonneg a) (nonneg 1))) (applyEquality ((negSucc ((b +N b *N a) +N a)) +Z_) {nonneg a +Z nonneg 1} {nonneg (succ a)} (+ZCommutative (nonneg a) (nonneg 1))))
where
v : (a b : ℕ) → negSucc a *Z nonneg b ≡ (negSucc (b +N b *N a)) +Z nonneg 1
v zero zero = refl
v zero (succ b) rewrite Semiring.productZeroRight ℕSemiring b = applyEquality negSucc (equalityCommutative (Semiring.sumZeroRight ℕSemiring b))
v (succ a) zero = refl
v (succ a) (succ b) = applyEquality negSucc (Semiring.commutative ℕSemiring (succ (a +N b *N succ a)) b)
u : negSucc a *Z nonneg b ≡ (negSucc ((b +N b *N a) +N a) +Z nonneg a) +Z nonneg 1
u = transitivity (v a b) (applyEquality (_+Z nonneg 1) (negSucc+Nonneg (b +N b *N a) a))
*ZDistributesOver+Z : (a b c : ℤ) → a *Z (b +Z c) ≡ (a *Z b) +Z (a *Z c)
*ZDistributesOver+Z (nonneg zero) b c rewrite *ZZeroLeft (b +Z c) | *ZZeroLeft b | *ZZeroLeft c = refl
*ZDistributesOver+Z (nonneg (succ a)) (nonneg zero) (nonneg c) rewrite Semiring.productZeroRight ℕSemiring a = refl
*ZDistributesOver+Z (nonneg (succ a)) (nonneg (succ b)) (nonneg c) = applyEquality nonneg (productDistributes (succ a) (succ b) c)
*ZDistributesOver+Z (nonneg (succ a)) (nonneg zero) (negSucc c) rewrite Semiring.productZeroRight ℕSemiring a = refl
*ZDistributesOver+Z (nonneg (succ a)) (nonneg (succ b)) (negSucc zero) rewrite Semiring.productZeroRight ℕSemiring a = t a
where
t : (a : ℕ) → nonneg (succ a *N b) ≡ nonneg (succ a *N succ b) +Z negSucc a
t zero = refl
t (succ a) = transitivity (+Zinherits b (b +N a *N b)) (transitivity (applyEquality (nonneg b +Z_) (t a)) (transitivity (+ZAssociative (nonneg b) (nonneg (succ (b +N a *N succ b))) (negSucc a)) (applyEquality (_+Z negSucc a) {nonneg b +Z nonneg (succ (b +N a *N succ b))} {nonneg (b +N succ (b +N a *N succ b))} (equalityCommutative (+Zinherits b _)))))
*ZDistributesOver+Z (nonneg (succ a)) (nonneg (succ x)) (negSucc (succ b)) = transitivity (applyEquality ((nonneg (succ a)) *Z_) (+ZCommutative (nonneg x) (negSucc b))) (transitivity (transitivity (*ZDistributesOver+Z (nonneg (succ a)) (negSucc b) (nonneg x)) t) (+ZCommutative (negSucc ((b +N a *N succ b) +N a)) (nonneg (x +N a *N succ x))))
where
t : negSucc ((b +N a *N b) +N a) +Z nonneg (x +N a *N x) ≡ negSucc ((b +N a *N succ b) +N a) +Z nonneg (x +N a *N succ x)
t rewrite multLemma a x | multLemma a b | Semiring.+Associative ℕSemiring x (a *N x) a | Semiring.+Associative ℕSemiring b (a *N b) a | Semiring.commutative ℕSemiring (x +N a *N x) a | +Zinherits a (x +N a *N x) | +ZAssociative (negSucc (((b +N a *N b) +N a) +N a)) (nonneg a) (nonneg (x +N a *N x)) = applyEquality (_+Z nonneg (x +N a *N x)) {negSucc ((b +N a *N b) +N a)} {negSucc (((b +N a *N b) +N a) +N a) +Z nonneg a} (negSucc+Nonneg ((b +N a *N b) +N a) a)
*ZDistributesOver+Z (nonneg (succ a)) (negSucc b) (nonneg zero) rewrite Semiring.productZeroRight ℕSemiring a = refl
*ZDistributesOver+Z (nonneg (succ a)) (negSucc zero) (nonneg (succ x)) rewrite Semiring.productZeroRight ℕSemiring a = t a x
where
t : (a x : ℕ) → nonneg (succ a *N x) ≡ negSucc a +Z nonneg (succ a *N succ x)
t zero x = refl
t (succ a) x with t a x
... | bl rewrite +Zinherits x (a *N x) | +Zinherits x (x +N a *N x) = transitivity (transitivity (applyEquality (nonneg x +Z_) (+Zinherits x (a *N x))) (+ZCommutative (nonneg x) (nonneg x +Z nonneg (a *N x)))) (transitivity (applyEquality (_+Z nonneg x) bl) (transitivity (equalityCommutative (+ZAssociative (negSucc a) (nonneg (succ x +N a *N succ x)) (nonneg x))) (applyEquality (λ i → negSucc a +Z nonneg i) {succ (x +N a *N succ x) +N x} {x +N succ (x +N a *N succ x)} (Semiring.commutative ℕSemiring (succ (x +N a *N succ x)) x))))
*ZDistributesOver+Z (nonneg (succ a)) (negSucc (succ b)) (nonneg (succ x)) = transitivity (*ZDistributesOver+Z (nonneg (succ a)) (negSucc b) (nonneg x)) t
where
t : negSucc ((b +N a *N b) +N a) +Z nonneg (x +N a *N x) ≡ negSucc ((b +N a *N succ b) +N a) +Z nonneg (x +N a *N succ x)
t rewrite multLemma a x | multLemma a b | Semiring.+Associative ℕSemiring x (a *N x) a | Semiring.+Associative ℕSemiring b (a *N b) a | Semiring.commutative ℕSemiring (x +N a *N x) a | +Zinherits a (x +N a *N x) | +ZAssociative (negSucc (((b +N a *N b) +N a) +N a)) (nonneg a) (nonneg (x +N a *N x)) = applyEquality (_+Z nonneg (x +N a *N x)) {negSucc ((b +N a *N b) +N a)} {negSucc (((b +N a *N b) +N a) +N a) +Z nonneg a} (negSucc+Nonneg ((b +N a *N b) +N a) a)
*ZDistributesOver+Z (nonneg (succ a)) (negSucc b) (negSucc x) = applyEquality negSucc (transitivity (applyEquality (_+N a) (transitivity (productDistributes (succ a) (succ b) x) (applyEquality (_+N (x +N a *N x)) {succ b +N a *N succ b} {succ (b +N a *N b) +N a} (applyEquality succ u)))) (equalityCommutative (Semiring.+Associative ℕSemiring (succ ((b +N a *N b) +N a)) (succ a *N x) a)))
where
u : b +N a *N succ b ≡ (succ a *N b) +N a
u rewrite multiplicationNIsCommutative a (succ b) | Semiring.commutative ℕSemiring a (b *N a) | multiplicationNIsCommutative b a = Semiring.+Associative ℕSemiring b (a *N b) a
*ZDistributesOver+Z (negSucc a) (nonneg zero) (nonneg x) = refl
*ZDistributesOver+Z (negSucc a) (nonneg zero) (negSucc x) = refl
*ZDistributesOver+Z (negSucc a) (nonneg (succ b)) (nonneg zero) rewrite Semiring.commutative ℕSemiring b 0 = refl
*ZDistributesOver+Z (negSucc a) (nonneg (succ b)) (nonneg (succ c)) = applyEquality negSucc t
where
v : a *N b +N a *N succ c ≡ c *N a +N (a +N b *N a)
v rewrite multiplicationNIsCommutative b a | Semiring.+Associative ℕSemiring (c *N a) a (a *N b) | Semiring.commutative ℕSemiring (c *N a +N a) (a *N b) | Semiring.commutative ℕSemiring (c *N a) a = applyEquality (λ i → a *N b +N i) (transitivity (multLemma a c) (transitivity (Semiring.commutative ℕSemiring (a *N c) a) (applyEquality (a +N_) (multiplicationNIsCommutative a c))))
u : (a +N (b +N succ c) *N a) +N b ≡ (a +N c *N a) +N ((a +N b *N a) +N b)
u rewrite Semiring.+Associative ℕSemiring (a +N c *N a) (a +N b *N a) b | (equalityCommutative (Semiring.+Associative ℕSemiring a (c *N a) (a +N b *N a))) = applyEquality (λ i → (a +N i) +N b) (transitivity (multiplicationNIsCommutative (b +N succ c) a) (transitivity (productDistributes a b (succ c)) v))
t : (a +N (b +N succ c) *N a) +N (b +N succ c) ≡ succ (((a +N b *N a) +N b) +N ((a +N c *N a) +N c))
t rewrite Semiring.+Associative ℕSemiring ((a +N (b +N succ c) *N a)) b (succ c) | Semiring.commutative ℕSemiring ((a +N b *N a) +N b) ((a +N c *N a) +N c) | Semiring.commutative ℕSemiring (a +N c *N a) c | equalityCommutative (Semiring.+Associative ℕSemiring (succ c) (a +N c *N a) ((a +N b *N a) +N b)) | Semiring.commutative ℕSemiring (succ c) ((a +N c *N a) +N ((a +N b *N a) +N b)) = applyEquality (_+N succ c) u
*ZDistributesOver+Z (negSucc a) (nonneg (succ b)) (negSucc zero) rewrite Semiring.productOneRight ℕSemiring a = distLemma a b
*ZDistributesOver+Z (negSucc a) (nonneg (succ b)) (negSucc (succ c)) = transitivity (*ZDistributesOver+Z (negSucc a) (nonneg b) (negSucc c)) (transitivity (applyEquality (_+Z nonneg (succ (c +N a *N succ c))) (distLemma a b)) (transitivity (equalityCommutative (+ZAssociative (negSucc ((a +N b *N a) +N b)) (nonneg (succ a)) (nonneg (succ (c +N a *N succ c))))) (applyEquality (negSucc ((a +N b *N a) +N b) +Z_) {nonneg (succ (a +N succ (c +N a *N succ c)))} {nonneg (succ (succ (c +N a *N succ (succ c))))} (applyEquality nonneg (t (succ a) (succ c))))))
where
t : (x y : ℕ) → x +N x *N y ≡ x *N succ y
t x y = transitivity (Semiring.commutative ℕSemiring x (x *N y)) (equalityCommutative (multLemma x y))
*ZDistributesOver+Z (negSucc a) (negSucc b) (nonneg zero) rewrite Semiring.commutative ℕSemiring (b +N a *N succ b) 0 = refl
*ZDistributesOver+Z (negSucc a) (negSucc zero) (nonneg (succ b)) = transitivity (distLemma a b) (transitivity (+ZCommutative (negSucc ((a +N b *N a) +N b)) (nonneg (succ a))) (applyEquality (λ i → nonneg (succ i) +Z negSucc ((a +N b *N a) +N b)) (equalityCommutative (Semiring.productOneRight ℕSemiring a))))
*ZDistributesOver+Z (negSucc a) (negSucc (succ c)) (nonneg (succ b)) = transitivity (applyEquality (negSucc a *Z_) (+ZCommutative (negSucc c) (nonneg b))) (transitivity (transitivity (*ZDistributesOver+Z (negSucc a) (nonneg b) (negSucc c)) (transitivity (applyEquality (_+Z nonneg (succ (c +N a *N succ c))) (distLemma a b)) (transitivity (equalityCommutative (+ZAssociative (negSucc ((a +N b *N a) +N b)) (nonneg (succ a)) (nonneg (succ (c +N a *N succ c))))) (applyEquality (negSucc ((a +N b *N a) +N b) +Z_) {nonneg (succ (a +N succ (c +N a *N succ c)))} {nonneg (succ (succ (c +N a *N succ (succ c))))} (applyEquality nonneg (t (succ a) (succ c))))))) (+ZCommutative (negSucc ((a +N b *N a) +N b)) (nonneg (succ (succ (c +N a *N succ (succ c)))))))
where
t : (x y : ℕ) → x +N x *N y ≡ x *N succ y
t x y = transitivity (Semiring.commutative ℕSemiring x (x *N y)) (equalityCommutative (multLemma x y))
*ZDistributesOver+Z (negSucc a) (negSucc b) (negSucc c) = applyEquality nonneg (transitivity (applyEquality (λ i → succ a *N (succ i)) (transitivity (applyEquality succ (Semiring.commutative ℕSemiring b c)) (Semiring.commutative ℕSemiring (succ c) b))) (productDistributes (succ a) (succ b) (succ c)))
ℤRing : Ring (reflSetoid ℤ) _+Z_ _*Z_
Ring.additiveGroup ℤRing = ℤGroup
Ring.*WellDefined ℤRing refl refl = refl
Ring.1R ℤRing = nonneg 1
Ring.groupIsAbelian ℤRing {a} {b} = +ZCommutative a b
Ring.*Associative ℤRing {a} {b} {c} = *ZAssociative a b c
Ring.*Commutative ℤRing {a} {b} = *ZCommutative a b
Ring.*DistributesOver+ ℤRing {a} {b} {c} = *ZDistributesOver+Z a b c
Ring.identIsIdent ℤRing {a} = *ZleftIdent a
|
algebraic-stack_agda0000_doc_12523 |
module Oscar.Data.Term.Injectivity {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Data.Term FunctionName
open import Data.Fin
open import Data.Nat
open import Data.Vec
open import Relation.Binary.PropositionalEquality
Term-i-inj : ∀ {m} {𝑥₁ 𝑥₂ : Fin m} → i 𝑥₁ ≡ i 𝑥₂ → 𝑥₁ ≡ 𝑥₂
Term-i-inj refl = refl
Term-functionName-inj : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → fn₁ ≡ fn₂
Term-functionName-inj refl = refl
Term-functionArity-inj : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → N₁ ≡ N₂
Term-functionArity-inj refl = refl
Term-functionTerms-inj : ∀ {fn₁ fn₂} {n N} {ts₁ : Vec (Term n) N} {ts₂ : Vec (Term n) N} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → ts₁ ≡ ts₂
Term-functionTerms-inj refl = refl
Term-forkLeft-inj : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → l₁ ≡ l₂
Term-forkLeft-inj refl = refl
Term-forkRight-inj : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → r₁ ≡ r₂
Term-forkRight-inj refl = refl
|
algebraic-stack_agda0000_doc_12524 | {-# OPTIONS --without-K --exact-split --rewriting --overlapping-instances #-}
open import lib.Basics
open import lib.NConnected
open import lib.NType2
open import lib.types.Truncation
open import lib.types.Sigma
open import lib.Equivalence
open import lib.types.Fin
open import lib.types.Coproduct
open import Graphs.Definition
open import Graphs.Properties
open import Coequalizers.Definition
open import Coequalizers.Misc
open import Groups.Definition
open import Coequalizers.PullbackStability
open import Coequalizers.PreserveEquivalence
open import Coequalizers.EdgeCoproduct
open import Graphs.SpanningTreeFinite
open import Graphs.SubTrees
open import Util.Misc
open import Util.DecEq
module NielsenSchreier {i : ULevel} where
{- We build towards the proof of the finite index Nielsen-Schreier theorem in several steps. -}
{- We will first show that subgroups of free higher groups are free higher groupoids. That is, we will show that
for any family of types X over ⊤ / A, the total space Σ (⊤ / A) X is equivalent to the coequalizer of
a graph. Moveover, we can give an explicit description of the graph. -}
module SubgroupsOfFreeHigherGroups (A : Type i) (X : (⊤ / A) → Type i) where
instance
{- Whenever we need a pair of maps (A × X fhg-base) ⇉ (X fhg-base) we will use the definition below. This
applies in this module and wherever it is imported. -}
higher-subgp-gph : Graph (A × X fhg-base) (X fhg-base)
higher-subgp-gph = record { π₀ = snd ; π₁ = λ {(a , x) → transport X (quot a) x} }
to-free-higher-gpd : Σ (⊤ / A) X ≃ (X fhg-base) / (A × X fhg-base)
to-free-higher-gpd =
Σ (⊤ / A) X
≃⟨ pb-equiv ⁻¹ ⟩ -- coequalizers are stable under pullback
(Σ ⊤ (X ∘ c[_])) / (Σ A (X ∘ c[_] ∘ π₀))
≃⟨ Coeq-emap Σ₁-Unit (ide _) (λ _ → idp) (λ _ → idp) ⟩
(X fhg-base) / (A × X fhg-base)
≃∎
where
open PullbackStability A ⊤ X -- contains definition of (Σ ⊤ (X ∘ c[_])) / (Σ A (X ∘ c[_] ∘ π₀))
{- We now show that subgroups of free groups are free groupoids. This is a 1-truncated version of
the result above. -}
module SubGroupsOfFreeGroups (A : Type i) (X : ∥ ⊤ / A ∥₁ → Type i)
⦃ Xset : {z : ∥ ⊤ / A ∥₁} → is-set (X z) ⦄ where -- we now need to assume X is 0-truncated.
open SubgroupsOfFreeHigherGroups A (X ∘ [_]) public -- also defines instance for (X fhg-base) / (A × X fhg-base)
to-free-gpd : Σ ∥ ⊤ / A ∥₁ X ≃ ∥ X base / (A × X base) ∥₁
to-free-gpd =
Σ ∥ ⊤ / A ∥₁ X
≃⟨ Σ-emap-r (Trunc-elim λ z → ide _) ⟩
Σ ∥ ⊤ / A ∥₁ X'
≃⟨ TruncRecType.flattening-Trunc _ ⟩
∥ Σ (⊤ / A) (X ∘ [_]) ∥₁
≃⟨ Trunc-emap to-free-higher-gpd ⟩
∥ X base / (A × X base) ∥₁
≃∎
where
X'-set : ∥ ⊤ / A ∥₁ → hSet i
X'-set = Trunc-rec (λ z → ((X [ z ]) , Xset))
X' = fst ∘ X'-set
instance
X-≃-gpd : {z : ∥ ⊤ / A ∥₁} → is-gpd (X z ≃ X' z)
X-≃-gpd {z} = raise-level 0 (≃-level Xset (snd (X'-set z)))
{- A free groupoid with vertex set a definitionally finite set is merely equivalent
to a free group. -}
strict-fin-free-gpd-is-free-gp :
(n : ℕ) → (E : Type i) → (Edec : has-dec-eq E) →
⦃ gph : Graph E (Fin (S n)) ⦄ ⦃ conn : gph-is-connected gph ⦄ →
∥ Σ (Type i) (λ B → ∥ Coeq gph ∥₁ ≃ FreeGroup B) ∥
strict-fin-free-gpd-is-free-gp n E Edec =
Trunc-fmap from-spanning-tree-fin (spanning-tree E Edec n)
where
from-spanning-tree-fin : SpanningTree E (Fin (S n)) (Fin n) (Fin (S n)) →
Σ (Type i) (λ B → ∥ Fin (S n) / E ∥₁ ≃ FreeGroup B)
from-spanning-tree-fin st =
¬E' , Trunc-emap eq
where
open SpanningTree st
open ExtendSpanningTree E (Fin (S n)) (Fin n) (Fin (S n)) st
open CoeqCoprodEquiv (Fin (S n)) (Fin n) ¬E'
eq : Fin (S n) / E ≃ ⊤ / ¬E'
eq =
Fin (S n) / E
≃⟨ spantree-equiv ⟩
Fin (S n) / ((Fin n) ⊔ ¬E')
≃⟨ edge-coproduct-expand ⟩
(Fin (S n) / (Fin n)) / ¬E'
≃⟨ Coeq-emap (contr-equiv-Unit ⟨⟩) (ide _) (λ _ → idp) (λ _ → idp) ⟩
⊤ / ¬E'
≃∎
{- We generalise the above so that the vertex set only needs to be equivalent to a
definitionally finite set. -}
fin-free-gpd-is-free-gp : (n : ℕ) → (E : Type i) → (Edec : has-dec-eq E) →
(V : Type i) → (Vfin : V ≃ Fin (S n)) →
⦃ gph : Graph E V ⦄ ⦃ conn : gph-is-connected gph ⦄ →
∥ Σ (Type i) (λ B → ∥ Coeq gph ∥₁ ≃ FreeGroup B) ∥
fin-free-gpd-is-free-gp n E Edec V Vfin =
Trunc-fmap (λ {(B , e) → B , (e ∘e Trunc-emap coeq-equiv)}) (strict-fin-free-gpd-is-free-gp n E Edec)
where
instance
gph' : Graph E (Fin (S n))
gph' = record { π₀ = (–> Vfin) ∘ π₀ ; π₁ = (–> Vfin) ∘ π₁ }
coeq-equiv : (V / E) ≃ (Fin (S n) / E)
coeq-equiv = Coeq-emap Vfin (ide E) (λ _ → idp) λ _ → idp
instance
conn' : gph-is-connected gph'
conn' = equiv-preserves-level (Trunc-emap coeq-equiv )
{- We can now prove the finite index version of the Nielsen-Schreier theorem. -}
nielsen-schreier-finite-index :
(A : Type i) (Adec : has-dec-eq A) -- we are given a type A with decidable equality
(X : (FreeGroup A) → Type i) -- together with a covering space over the free group on A, that is a family of types X ...
⦃ conn : is-connected 0 (Σ (FreeGroup A) X) ⦄ -- such that the total space is connected
(n : ℕ) (Xfin : X (base) ≃ Fin (S n)) → -- here we do the finite index case
∥ Σ (Type i) (λ B → Σ (FreeGroup A) X ≃ FreeGroup B) ∥ -- then the total space is a free group
nielsen-schreier-finite-index A Adec X n Xfin =
Trunc-fmap (λ {(B , e) → B , e ∘e to-free-gpd}) -- we compose the two equivalences from earlier
(fin-free-gpd-is-free-gp n (A × X base) (×-has-dec-eq Adec (equiv-preserves-dec-eq Xfin Fin-has-dec-eq)) (X base) Xfin)
-- earlier we showed that free groupoids with finite vertex set are merely equivalent to free groups
where
open SubGroupsOfFreeGroups A X -- contains our proof that the subgroup is a free groupoid
instance -- we use that X is a set and the free groupoid is connected
Xset : {z : (FreeGroup A)} → is-set (X z)
Xset {z} = Trunc-elim {P = λ z → is-set (X z)}
(Coeq-elim (λ z → is-set (X [ z ]))
(λ {unit → equiv-preserves-level (Xfin ⁻¹) ⦃ Fin-is-set ⦄}) λ _ → prop-has-all-paths-↓) z
conn2 : is-connected 0 (X base / (A × X base))
conn2 = equiv-preserves-level e
where
e : ∥ Σ (FreeGroup A) X ∥₀ ≃ ∥ X base / (A × X base) ∥₀
e =
∥ Σ (FreeGroup A) X ∥₀
≃⟨ Trunc-emap (to-free-gpd ) ⟩
∥ ∥ X base / (A × X base) ∥₁ ∥₀
≃⟨ Trunc-fuse _ 0 1 ⟩
∥ X base / (A × X base) ∥₀
≃∎
|
algebraic-stack_agda0000_doc_12525 | {-# OPTIONS --without-K #-}
module TypeEquivalences where
open import Data.Empty
open import Data.Unit
open import Data.Unit.Core
open import Data.Nat renaming (_⊔_ to _⊔ℕ_)
open import Data.Sum renaming (map to _⊎→_)
open import Data.Product renaming (map to _×→_)
open import Function renaming (_∘_ to _○_)
-- explicit using to show how little of HoTT is needed
open import SimpleHoTT using (refl; ap; ap2)
open import Equivalences
------------------------------------------------------------------------------
-- Type Equivalences
-- for each type combinator, define two functions that are inverses, and
-- establish an equivalence. These are all in the 'semantic space' with
-- respect to Pi combinators.
-- swap₊
swap₊ : {A B : Set} → A ⊎ B → B ⊎ A
swap₊ (inj₁ a) = inj₂ a
swap₊ (inj₂ b) = inj₁ b
swapswap₊ : {A B : Set} → swap₊ ○ swap₊ {A} {B} ∼ id
swapswap₊ (inj₁ a) = refl (inj₁ a)
swapswap₊ (inj₂ b) = refl (inj₂ b)
swap₊equiv : {A B : Set} → (A ⊎ B) ≃ (B ⊎ A)
swap₊equiv = (swap₊ , equiv₁ (mkqinv swap₊ swapswap₊ swapswap₊))
-- unite₊ and uniti₊
unite₊ : {A : Set} → ⊥ ⊎ A → A
unite₊ (inj₁ ())
unite₊ (inj₂ y) = y
uniti₊ : {A : Set} → A → ⊥ ⊎ A
uniti₊ a = inj₂ a
uniti₊∘unite₊ : {A : Set} → uniti₊ ○ unite₊ ∼ id {A = ⊥ ⊎ A}
uniti₊∘unite₊ (inj₁ ())
uniti₊∘unite₊ (inj₂ y) = refl (inj₂ y)
-- this is so easy, Agda can figure it out by itself (see below)
unite₊∙uniti₊ : {A : Set} → unite₊ ○ uniti₊ ∼ id {A = A}
unite₊∙uniti₊ = refl
unite₊equiv : {A : Set} → (⊥ ⊎ A) ≃ A
unite₊equiv = (unite₊ , mkisequiv uniti₊ refl uniti₊ uniti₊∘unite₊)
uniti₊equiv : {A : Set} → A ≃ (⊥ ⊎ A)
uniti₊equiv = uniti₊ , mkisequiv unite₊ uniti₊∘unite₊ unite₊ unite₊∙uniti₊
-- unite⋆ and uniti⋆
unite⋆ : {A : Set} → ⊤ × A → A
unite⋆ (tt , x) = x
uniti⋆ : {A : Set} → A → ⊤ × A
uniti⋆ x = tt , x
uniti⋆∘unite⋆ : {A : Set} → uniti⋆ ○ unite⋆ ∼ id {A = ⊤ × A}
uniti⋆∘unite⋆ (tt , x) = refl (tt , x)
unite⋆equiv : {A : Set} → (⊤ × A) ≃ A
unite⋆equiv = unite⋆ , mkisequiv uniti⋆ refl uniti⋆ uniti⋆∘unite⋆
uniti⋆equiv : {A : Set} → A ≃ (⊤ × A)
uniti⋆equiv = uniti⋆ , mkisequiv unite⋆ uniti⋆∘unite⋆ unite⋆ refl
-- swap⋆
swap⋆ : {A B : Set} → A × B → B × A
swap⋆ (a , b) = (b , a)
swapswap⋆ : {A B : Set} → swap⋆ ○ swap⋆ ∼ id {A = A × B}
swapswap⋆ (a , b) = refl (a , b)
swap⋆equiv : {A B : Set} → (A × B) ≃ (B × A)
swap⋆equiv = swap⋆ , mkisequiv swap⋆ swapswap⋆ swap⋆ swapswap⋆
-- assocl₊ and assocr₊
assocl₊ : {A B C : Set} → (A ⊎ (B ⊎ C)) → ((A ⊎ B) ⊎ C)
assocl₊ (inj₁ a) = inj₁ (inj₁ a)
assocl₊ (inj₂ (inj₁ b)) = inj₁ (inj₂ b)
assocl₊ (inj₂ (inj₂ c)) = inj₂ c
assocr₊ : {A B C : Set} → ((A ⊎ B) ⊎ C) → (A ⊎ (B ⊎ C))
assocr₊ (inj₁ (inj₁ a)) = inj₁ a
assocr₊ (inj₁ (inj₂ b)) = inj₂ (inj₁ b)
assocr₊ (inj₂ c) = inj₂ (inj₂ c)
assocl₊∘assocr₊ : {A B C : Set} → assocl₊ ○ assocr₊ ∼ id {A = ((A ⊎ B) ⊎ C)}
assocl₊∘assocr₊ (inj₁ (inj₁ a)) = refl (inj₁ (inj₁ a))
assocl₊∘assocr₊ (inj₁ (inj₂ b)) = refl (inj₁ (inj₂ b))
assocl₊∘assocr₊ (inj₂ c) = refl (inj₂ c)
assocr₊∘assocl₊ : {A B C : Set} → assocr₊ ○ assocl₊ ∼ id {A = (A ⊎ (B ⊎ C))}
assocr₊∘assocl₊ (inj₁ a) = refl (inj₁ a)
assocr₊∘assocl₊ (inj₂ (inj₁ b)) = refl (inj₂ (inj₁ b))
assocr₊∘assocl₊ (inj₂ (inj₂ c)) = refl (inj₂ (inj₂ c))
assocl₊equiv : {A B C : Set} → (A ⊎ (B ⊎ C)) ≃ ((A ⊎ B) ⊎ C)
assocl₊equiv =
assocl₊ , mkisequiv assocr₊ assocl₊∘assocr₊ assocr₊ assocr₊∘assocl₊
assocr₊equiv : {A B C : Set} → ((A ⊎ B) ⊎ C) ≃ (A ⊎ (B ⊎ C))
assocr₊equiv =
assocr₊ , mkisequiv assocl₊ assocr₊∘assocl₊ assocl₊ assocl₊∘assocr₊
-- assocl⋆ and assocr⋆
assocl⋆ : {A B C : Set} → (A × (B × C)) → ((A × B) × C)
assocl⋆ (a , (b , c)) = ((a , b) , c)
assocr⋆ : {A B C : Set} → ((A × B) × C) → (A × (B × C))
assocr⋆ ((a , b) , c) = (a , (b , c))
assocl⋆∘assocr⋆ : {A B C : Set} → assocl⋆ ○ assocr⋆ ∼ id {A = ((A × B) × C)}
assocl⋆∘assocr⋆ x = refl x
assocr⋆∘assocl⋆ : {A B C : Set} → assocr⋆ ○ assocl⋆ ∼ id {A = (A × (B × C))}
assocr⋆∘assocl⋆ x = refl x
assocl⋆equiv : {A B C : Set} → (A × (B × C)) ≃ ((A × B) × C)
assocl⋆equiv =
assocl⋆ , mkisequiv assocr⋆ assocl⋆∘assocr⋆ assocr⋆ assocr⋆∘assocl⋆
assocr⋆equiv : {A B C : Set} → ((A × B) × C) ≃ (A × (B × C))
assocr⋆equiv =
assocr⋆ , mkisequiv assocl⋆ assocr⋆∘assocl⋆ assocl⋆ assocl⋆∘assocr⋆
-- distz and factorz
distz : { A : Set} → (⊥ × A) → ⊥
distz (() , _)
factorz : {A : Set} → ⊥ → (⊥ × A)
factorz ()
distz∘factorz : {A : Set} → distz ○ factorz {A} ∼ id
distz∘factorz ()
factorz∘distz : {A : Set} → factorz {A} ○ distz ∼ id
factorz∘distz (() , proj₂)
distzequiv : {A : Set} → (⊥ × A) ≃ ⊥
distzequiv {A} =
distz , mkisequiv factorz (distz∘factorz {A}) factorz factorz∘distz
factorzequiv : {A : Set} → ⊥ ≃ (⊥ × A)
factorzequiv {A} =
factorz , mkisequiv distz factorz∘distz distz (distz∘factorz {A})
-- dist and factor
dist : {A B C : Set} → ((A ⊎ B) × C) → (A × C) ⊎ (B × C)
dist (inj₁ x , c) = inj₁ (x , c)
dist (inj₂ y , c) = inj₂ (y , c)
factor : {A B C : Set} → (A × C) ⊎ (B × C) → ((A ⊎ B) × C)
factor (inj₁ (a , c)) = inj₁ a , c
factor (inj₂ (b , c)) = inj₂ b , c
dist∘factor : {A B C : Set} → dist {A} {B} {C} ○ factor ∼ id
dist∘factor (inj₁ x) = refl (inj₁ x)
dist∘factor (inj₂ y) = refl (inj₂ y)
factor∘dist : {A B C : Set} → factor {A} {B} {C} ○ dist ∼ id
factor∘dist (inj₁ x , c) = refl (inj₁ x , c)
factor∘dist (inj₂ y , c) = refl (inj₂ y , c)
distequiv : {A B C : Set} → ((A ⊎ B) × C) ≃ ((A × C) ⊎ (B × C))
distequiv = dist , mkisequiv factor dist∘factor factor factor∘dist
factorequiv : {A B C : Set} → ((A × C) ⊎ (B × C)) ≃ ((A ⊎ B) × C)
factorequiv = factor , (mkisequiv dist factor∘dist dist dist∘factor)
-- ⊕
_⊎∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} →
(α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) →
(f ⊎→ g) ○ (finv ⊎→ ginv) ∼ id {A = C ⊎ D}
_⊎∼_ α β (inj₁ x) = ap inj₁ (α x)
_⊎∼_ α β (inj₂ y) = ap inj₂ (β y)
path⊎ : {A B C D : Set} → A ≃ C → B ≃ D → (A ⊎ B) ≃ (C ⊎ D)
path⊎ (fp , eqp) (fq , eqq) =
Data.Sum.map fp fq ,
mkisequiv (P.g ⊎→ Q.g) (P.α ⊎∼ Q.α) (P.h ⊎→ Q.h) (P.β ⊎∼ Q.β)
where module P = isequiv eqp
module Q = isequiv eqq
-- ⊗
_×∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} →
(α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) →
(f ×→ g) ○ (finv ×→ ginv) ∼ id {A = C × D}
_×∼_ α β (x , y) = ap2 _,_ (α x) (β y)
path× : {A B C D : Set} → A ≃ C → B ≃ D → (A × B) ≃ (C × D)
path× {A} {B} {C} {D} (fp , eqp) (fq , eqq) =
Data.Product.map fp fq ,
mkisequiv
(P.g ×→ Q.g)
(_×∼_ {A} {B} {C} {D} {fp} {P.g} {fq} {Q.g} P.α Q.α)
(P.h ×→ Q.h)
(_×∼_ {C} {D} {A} {B} {P.h} {fp} {Q.h} {fq} P.β Q.β)
where module P = isequiv eqp
module Q = isequiv eqq
idequiv : {A : Set} → A ≃ A
idequiv = id≃
|
algebraic-stack_agda0000_doc_12526 | {-# OPTIONS --cubical #-}
module HyperPositive where
open import Prelude
infixr 4 _↬_
{-# NO_POSITIVITY_CHECK #-}
record _↬_ (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where
inductive; constructor hyp
field invoke : ((A ↬ B) → A) → B
open _↬_
open import Data.List using (List; _∷_; []; foldr)
module _ {a b} {A : Type a} {B : Type b} where
XT = List (A × B) ↬ (A → List (A × B)) → List (A × B)
YT = List (A × B) ↬ (A → List (A × B))
yfld : List B → YT
yfld = foldr f n
where
f : B → YT → YT
f y yk .invoke xk x = (x , y) ∷ xk yk
n : YT
n .invoke _ _ = []
xfld : List A → XT
xfld = foldr f n
where
f : A → XT → XT
f x xk yk = yk .invoke xk x
n : XT
n _ = []
zip : List A → List B → List (A × B)
zip xs ys = xfld xs (yfld ys)
open import Data.List using (_⋯_)
open import Data.List.Syntax
_ : zip (1 ⋯ 5) (11 ⋯ 15) ≡ [ 5 ][ (1 , 11) , (2 , 12) , (3 , 13) , (4 , 14) , (5 , 15) ]
_ = refl
|
algebraic-stack_agda0000_doc_12527 | open import Relation.Binary.Indexed
module Relation.Binary.Indexed.EqReasoning {𝒾} {I : Set 𝒾} {𝒸 ℓ} (S : Setoid I 𝒸 ℓ) where
open Setoid S
import Relation.Binary.Indexed.PreorderReasoning as PreR
open import Relation.Binary.Indexed.Extra using (Setoid⇒Preorder)
open PreR (Setoid⇒Preorder S) public
renaming ( _∼⟨_⟩_ to _≈⟨_⟩_
; _≈⟨_⟩_ to _≡⟨_⟩_
; _≈⟨⟩_ to _≡⟨⟩_
)
|
algebraic-stack_agda0000_doc_4656 | module Categories.Ran where
open import Level
open import Categories.Category
open import Categories.Functor hiding (_≡_)
open import Categories.NaturalTransformation
record Ran {o₀ ℓ₀ e₀} {o₁ ℓ₁ e₁} {o₂ ℓ₂ e₂}
{A : Category o₀ ℓ₀ e₀} {B : Category o₁ ℓ₁ e₁} {C : Category o₂ ℓ₂ e₂}
(F : Functor A B) (X : Functor A C) : Set (o₀ ⊔ ℓ₀ ⊔ e₀ ⊔ o₁ ⊔ ℓ₁ ⊔ e₁ ⊔ o₂ ⊔ ℓ₂ ⊔ e₂) where
field
R : Functor B C
η : NaturalTransformation (R ∘ F) X
δ : (M : Functor B C) → (α : NaturalTransformation (M ∘ F) X) → NaturalTransformation M R
.δ-unique : {M : Functor B C} → {α : NaturalTransformation (M ∘ F) X} →
(δ′ : NaturalTransformation M R) → α ≡ η ∘₁ (δ′ ∘ʳ F) → δ′ ≡ δ M α
.commutes : (M : Functor B C) → (α : NaturalTransformation (M ∘ F) X) → α ≡ η ∘₁ (δ M α ∘ʳ F)
|
algebraic-stack_agda0000_doc_4657 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Hash
open import LibraBFT.Base.PKCS
open import LibraBFT.Base.Encode
-- This module brings in the base types used through libra
-- and those necessary for the abstract model.
module LibraBFT.Abstract.Types where
open import LibraBFT.Base.Types public
-- Simple way to flag meta-information without having it getting
-- in the way.
Meta : ∀{ℓ} → Set ℓ → Set ℓ
Meta x = x
-- An epoch-configuration carries only simple data about the epoch; the complicated
-- parts will be provided by the System, defined below.
--
-- The reason for the separation is that we should be able to provide
-- an EpochConfig from a single peer state.
record EpochConfig : Set₁ where
constructor mkEpochConfig
field
-- TODO-2 : This should really be a UID as Hash should not show up in the Abstract
-- namespace. This will require some refactoring of modules and reordering of
-- module parameters.
genesisUID : Hash
epochId : EpochId
authorsN : ℕ
-- The set of members of this epoch.
Member : Set
Member = Fin authorsN
-- There is a partial isomorphism between NodeIds and the
-- authors participating in this epoch.
field
toNodeId : Member → NodeId
isMember? : NodeId → Maybe Member
nodeid-author-id : ∀{α} → isMember? (toNodeId α) ≡ just α
author-nodeid-id : ∀{nid α} → isMember? nid ≡ just α
→ toNodeId α ≡ nid
getPubKey : Member → PK
PK-inj : ∀ {m1 m2} → getPubKey m1 ≡ getPubKey m2 → m1 ≡ m2
IsQuorum : List Member → Set
bft-assumption : ∀ {xs ys}
→ IsQuorum xs → IsQuorum ys
→ ∃[ α ] (α ∈ xs × α ∈ ys × Meta-Honest-PK (getPubKey α))
open EpochConfig
toNodeId-inj : ∀{𝓔}{x y : Member 𝓔} → toNodeId 𝓔 x ≡ toNodeId 𝓔 y → x ≡ y
toNodeId-inj {𝓔} hyp = just-injective (trans (sym (nodeid-author-id 𝓔))
(trans (cong (isMember? 𝓔) hyp)
(nodeid-author-id 𝓔)))
record EpochConfigFor (eid : ℕ) : Set₁ where
field
epochConfig : EpochConfig
forEpochId : epochId epochConfig ≡ eid
MemberSubst : ∀ {𝓔} {𝓔'}
→ 𝓔' ≡ 𝓔
→ EpochConfig.Member 𝓔
→ EpochConfig.Member 𝓔'
MemberSubst refl = id
-- A member of an epoch is considered "honest" iff its public key is honest.
Meta-Honest-Member : (𝓔 : EpochConfig) → Member 𝓔 → Set
Meta-Honest-Member 𝓔 α = Meta-Honest-PK (getPubKey 𝓔 α)
-- Naturally, if two witnesses that two authors belong
-- in the epoch are the same, then the authors are also the same.
--
-- This proof is very Galois-like, because of the way we structured
-- our partial isos. It's actually pretty nice! :)
member≡⇒author≡ : ∀{α β}{𝓔 : EpochConfig}
→ (authorα : Is-just (isMember? 𝓔 α))
→ (authorβ : Is-just (isMember? 𝓔 β))
→ to-witness authorα ≡ to-witness authorβ
→ α ≡ β
member≡⇒author≡ {α} {β} {𝓔} a b prf
with isMember? 𝓔 α | inspect (isMember? 𝓔) α
...| nothing | [ _ ] = ⊥-elim (maybe-any-⊥ a)
member≡⇒author≡ {α} {β} {𝓔} (just _) b prf
| just ra | [ RA ]
with isMember? 𝓔 β | inspect (isMember? 𝓔) β
...| nothing | [ _ ] = ⊥-elim (maybe-any-⊥ b)
member≡⇒author≡ {α} {β} {𝓔} (just _) (just _) prf
| just ra | [ RA ]
| just rb | [ RB ]
= trans (sym (author-nodeid-id 𝓔 RA))
(trans (cong (toNodeId 𝓔) prf)
(author-nodeid-id 𝓔 RB))
-- The abstract model is connected to the implementaton by means of
-- 'VoteEvidence'. The record module will be parameterized by a
-- v of type 'VoteEvidence 𝓔 UID'; this v will provide evidence
-- that a given author voted for a given block (identified by the UID)
-- on the specified round.
--
-- When it comes time to instantiate the v above concretely, it will
-- be something that states that we have a signature from the specified
-- author voting for the specified block.
record AbsVoteData (𝓔 : EpochConfig)(UID : Set) : Set where
constructor mkAbsVoteData
field
abs-vRound : Round
abs-vMember : EpochConfig.Member 𝓔
abs-vBlockUID : UID
open AbsVoteData public
AbsVoteData-η : ∀ {𝓔} {UID : Set} {r1 r2 : Round} {m1 m2 : EpochConfig.Member 𝓔} {b1 b2 : UID}
→ r1 ≡ r2
→ m1 ≡ m2
→ b1 ≡ b2
→ mkAbsVoteData {𝓔} {UID} r1 m1 b1 ≡ mkAbsVoteData r2 m2 b2
AbsVoteData-η refl refl refl = refl
VoteEvidence : EpochConfig → Set → Set₁
VoteEvidence 𝓔 UID = AbsVoteData 𝓔 UID → Set
|
algebraic-stack_agda0000_doc_4658 | module Thesis.Syntax where
open import Thesis.Types public
open import Thesis.Contexts public
data Const : (τ : Type) → Set where
unit : Const unit
lit : ℤ → Const int
plus : Const (int ⇒ int ⇒ int)
minus : Const (int ⇒ int ⇒ int)
cons : ∀ {t1 t2} → Const (t1 ⇒ t2 ⇒ pair t1 t2)
fst : ∀ {t1 t2} → Const (pair t1 t2 ⇒ t1)
snd : ∀ {t1 t2} → Const (pair t1 t2 ⇒ t2)
linj : ∀ {t1 t2} → Const (t1 ⇒ sum t1 t2)
rinj : ∀ {t1 t2} → Const (t2 ⇒ sum t1 t2)
match : ∀ {t1 t2 t3} → Const (sum t1 t2 ⇒ (t1 ⇒ t3) ⇒ (t2 ⇒ t3) ⇒ t3)
data Term (Γ : Context) :
(τ : Type) → Set where
-- constants aka. primitives
const : ∀ {τ} →
(c : Const τ) →
Term Γ τ
var : ∀ {τ} →
(x : Var Γ τ) →
Term Γ τ
app : ∀ {σ τ}
(s : Term Γ (σ ⇒ τ)) →
(t : Term Γ σ) →
Term Γ τ
-- we use de Bruijn indices, so we don't need binding occurrences.
abs : ∀ {σ τ}
(t : Term (σ • Γ) τ) →
Term Γ (σ ⇒ τ)
-- Weakening
weaken : ∀ {Γ₁ Γ₂ τ} →
(Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) →
Term Γ₁ τ →
Term Γ₂ τ
weaken Γ₁≼Γ₂ (const c) = const c
weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x)
weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t)
weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t)
-- Shorthands for nested applications
app₂ : ∀ {Γ α β γ} →
Term Γ (α ⇒ β ⇒ γ) →
Term Γ α → Term Γ β → Term Γ γ
app₂ f x = app (app f x)
app₃ : ∀ {Γ α β γ δ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ
app₃ f x = app₂ (app f x)
app₄ : ∀ {Γ α β γ δ ε} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε
app₄ f x = app₃ (app f x)
app₅ : ∀ {Γ α β γ δ ε ζ} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ
app₅ f x = app₄ (app f x)
app₆ : ∀ {Γ α β γ δ ε ζ η} →
Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) →
Term Γ α → Term Γ β → Term Γ γ → Term Γ δ →
Term Γ ε → Term Γ ζ → Term Γ η
app₆ f x = app₅ (app f x)
|
algebraic-stack_agda0000_doc_4659 |
open import Common.Reflection
macro
round-trip : Term → Tactic
round-trip v hole = unify v hole
module M (A : Set) where
data D : Set where
test : Set
test = round-trip D
|
algebraic-stack_agda0000_doc_4660 | module MissingWithClauses where
data D : Set where
c : D
f : D -> D
f c with c
|
algebraic-stack_agda0000_doc_4661 |
module PiInSet where
Rel : Set -> Set1
Rel A = A -> A -> Set
Reflexive : {A : Set} -> Rel A -> Set
Reflexive {A} _R_ = forall x -> x R x
Symmetric : {A : Set} -> Rel A -> Set
Symmetric {A} _R_ = forall x y -> x R y -> y R x
data True : Set where
tt : True
data False : Set where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_==_ : Rel Nat
zero == zero = True
zero == suc _ = False
suc _ == zero = False
suc n == suc m = n == m
refl== : Reflexive _==_
refl== zero = tt
refl== (suc n) = refl== n
sym== : Symmetric _==_
sym== zero zero tt = tt
sym== zero (suc _) ()
sym== (suc _) zero ()
sym== (suc n) (suc m) n==m = sym== n m n==m
|
algebraic-stack_agda0000_doc_4662 | {-# OPTIONS --without-K --allow-unsolved-metas --exact-split #-}
module 21-pushouts where
import 20-pullbacks
open 20-pullbacks public
-- Section 14.1
{- We define the type of cocones with vertex X on a span. Since we will use it
later on, we will also characterize the identity type of the type of cocones
with a given vertex X. -}
cocone :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) → UU l4 → UU _
cocone {A = A} {B = B} f g X =
Σ (A → X) (λ i → Σ (B → X) (λ j → (i ∘ f) ~ (j ∘ g)))
{- We characterize the identity type of the type of cocones with vertex C. -}
coherence-htpy-cocone :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) →
(K : (pr1 c) ~ (pr1 c')) (L : (pr1 (pr2 c)) ~ (pr1 (pr2 c'))) → UU (l1 ⊔ l4)
coherence-htpy-cocone f g c c' K L =
((pr2 (pr2 c)) ∙h (L ·r g)) ~ ((K ·r f) ∙h (pr2 (pr2 c')))
htpy-cocone :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} →
cocone f g X → cocone f g X → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4)))
htpy-cocone f g c c' =
Σ ((pr1 c) ~ (pr1 c'))
( λ K → Σ ((pr1 (pr2 c)) ~ (pr1 (pr2 c')))
( coherence-htpy-cocone f g c c' K))
reflexive-htpy-cocone :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
htpy-cocone f g c c
reflexive-htpy-cocone f g (pair i (pair j H)) =
pair refl-htpy (pair refl-htpy htpy-right-unit)
htpy-cocone-eq :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) →
Id c c' → htpy-cocone f g c c'
htpy-cocone-eq f g c .c refl = reflexive-htpy-cocone f g c
is-contr-total-htpy-cocone :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
is-contr (Σ (cocone f g X) (htpy-cocone f g c))
is-contr-total-htpy-cocone f g c =
is-contr-total-Eq-structure
( λ i' jH' K → Σ ((pr1 (pr2 c)) ~ (pr1 jH'))
( coherence-htpy-cocone f g c (pair i' jH') K))
( is-contr-total-htpy (pr1 c))
( pair (pr1 c) refl-htpy)
( is-contr-total-Eq-structure
( λ j' H' → coherence-htpy-cocone f g c
( pair (pr1 c) (pair j' H'))
( refl-htpy))
( is-contr-total-htpy (pr1 (pr2 c)))
( pair (pr1 (pr2 c)) refl-htpy)
( is-contr-is-equiv'
( Σ (((pr1 c) ∘ f) ~ ((pr1 (pr2 c)) ∘ g)) (λ H' → (pr2 (pr2 c)) ~ H'))
( tot (λ H' M → htpy-right-unit ∙h M))
( is-equiv-tot-is-fiberwise-equiv (λ H' → is-equiv-htpy-concat _ _))
( is-contr-total-htpy (pr2 (pr2 c)))))
is-equiv-htpy-cocone-eq :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) →
is-equiv (htpy-cocone-eq f g c c')
is-equiv-htpy-cocone-eq f g c =
fundamental-theorem-id c
( reflexive-htpy-cocone f g c)
( is-contr-total-htpy-cocone f g c)
( htpy-cocone-eq f g c)
eq-htpy-cocone :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c c' : cocone f g X) →
htpy-cocone f g c c' → Id c c'
eq-htpy-cocone f g c c' = inv-is-equiv (is-equiv-htpy-cocone-eq f g c c')
{- Given a cocone c on a span S with vertex X, and a type Y, the function
cocone-map sends a function X → Y to a new cocone with vertex Y. -}
cocone-map :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} {Y : UU l5} →
cocone f g X → (X → Y) → cocone f g Y
cocone-map f g (pair i (pair j H)) h =
pair (h ∘ i) (pair (h ∘ j) (h ·l H))
cocone-map-id :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
Id (cocone-map f g c id) c
cocone-map-id f g (pair i (pair j H)) =
eq-pair refl (eq-pair refl (eq-htpy (λ s → ap-id (H s))))
cocone-map-comp :
{l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X)
{Y : UU l5} (h : X → Y) {Z : UU l6} (k : Y → Z) →
Id (cocone-map f g c (k ∘ h)) (cocone-map f g (cocone-map f g c h) k)
cocone-map-comp f g (pair i (pair j H)) h k =
eq-pair refl (eq-pair refl (eq-htpy (λ s → ap-comp k h (H s))))
{- A cocone c on a span S is said to satisfy the universal property of the
pushout of S if the function cocone-map is an equivalence for every type Y.
-}
universal-property-pushout :
{l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} →
cocone f g X → UU _
universal-property-pushout l f g c =
(Y : UU l) → is-equiv (cocone-map f g {Y = Y} c)
map-universal-property-pushout :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
( up-c : {l : Level} → universal-property-pushout l f g c)
{Y : UU l5} → cocone f g Y → (X → Y)
map-universal-property-pushout f g c up-c {Y} = inv-is-equiv (up-c Y)
htpy-cocone-map-universal-property-pushout :
{ l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
( f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
( up-c : {l : Level} → universal-property-pushout l f g c)
{ Y : UU l5} (d : cocone f g Y) →
htpy-cocone f g
( cocone-map f g c
( map-universal-property-pushout f g c up-c d))
( d)
htpy-cocone-map-universal-property-pushout f g c up-c {Y} d =
htpy-cocone-eq f g
( cocone-map f g c (map-universal-property-pushout f g c up-c d))
( d)
( issec-inv-is-equiv (up-c Y) d)
uniqueness-map-universal-property-pushout :
{ l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
( f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
( up-c : {l : Level} → universal-property-pushout l f g c) →
{ Y : UU l5} (d : cocone f g Y) →
is-contr ( Σ (X → Y) (λ h → htpy-cocone f g (cocone-map f g c h) d))
uniqueness-map-universal-property-pushout f g c up-c {Y} d =
is-contr-is-equiv'
( fib (cocone-map f g c) d)
( tot (λ h → htpy-cocone-eq f g (cocone-map f g c h) d))
( is-equiv-tot-is-fiberwise-equiv
( λ h → is-equiv-htpy-cocone-eq f g (cocone-map f g c h) d))
( is-contr-map-is-equiv (up-c Y) d)
{- We derive a 3-for-2 property of pushouts, analogous to the 3-for-2 property
of pullbacks. -}
triangle-cocone-cocone :
{ l1 l2 l3 l4 l5 l6 : Level}
{ S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5}
{ f : S → A} {g : S → B} (c : cocone f g X) (d : cocone f g Y)
( h : X → Y) (KLM : htpy-cocone f g (cocone-map f g c h) d)
( Z : UU l6) →
( cocone-map f g d) ~ ((cocone-map f g c) ∘ (λ (k : Y → Z) → k ∘ h))
triangle-cocone-cocone {Y = Y} {f = f} {g = g} c d h KLM Z k =
inv
( ( cocone-map-comp f g c h k) ∙
( ap
( λ t → cocone-map f g t k)
( eq-htpy-cocone f g (cocone-map f g c h) d KLM)))
is-equiv-up-pushout-up-pushout :
{ l1 l2 l3 l4 l5 : Level}
{ S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5}
( f : S → A) (g : S → B) (c : cocone f g X) (d : cocone f g Y) →
( h : X → Y) (KLM : htpy-cocone f g (cocone-map f g c h) d) →
( up-c : {l : Level} → universal-property-pushout l f g c) →
( up-d : {l : Level} → universal-property-pushout l f g d) →
is-equiv h
is-equiv-up-pushout-up-pushout f g c d h KLM up-c up-d =
is-equiv-is-equiv-precomp h
( λ l Z →
is-equiv-right-factor
( cocone-map f g d)
( cocone-map f g c)
( precomp h Z)
( triangle-cocone-cocone c d h KLM Z)
( up-c Z)
( up-d Z))
up-pushout-up-pushout-is-equiv :
{ l1 l2 l3 l4 l5 : Level}
{ S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5}
( f : S → A) (g : S → B) (c : cocone f g X) (d : cocone f g Y) →
( h : X → Y) (KLM : htpy-cocone f g (cocone-map f g c h) d) →
is-equiv h →
( up-c : {l : Level} → universal-property-pushout l f g c) →
{l : Level} → universal-property-pushout l f g d
up-pushout-up-pushout-is-equiv f g c d h KLM is-equiv-h up-c Z =
is-equiv-comp
( cocone-map f g d)
( cocone-map f g c)
( precomp h Z)
( triangle-cocone-cocone c d h KLM Z)
( is-equiv-precomp-is-equiv h is-equiv-h Z)
( up-c Z)
up-pushout-is-equiv-up-pushout :
{ l1 l2 l3 l4 l5 : Level}
{ S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5}
( f : S → A) (g : S → B) (c : cocone f g X) (d : cocone f g Y) →
( h : X → Y) (KLM : htpy-cocone f g (cocone-map f g c h) d) →
( up-d : {l : Level} → universal-property-pushout l f g d) →
is-equiv h →
{l : Level} → universal-property-pushout l f g c
up-pushout-is-equiv-up-pushout f g c d h KLM up-d is-equiv-h Z =
is-equiv-left-factor
( cocone-map f g d)
( cocone-map f g c)
( precomp h Z)
( triangle-cocone-cocone c d h KLM Z)
( up-d Z)
( is-equiv-precomp-is-equiv h is-equiv-h Z)
uniquely-unique-pushout :
{ l1 l2 l3 l4 l5 : Level}
{ S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {Y : UU l5}
( f : S → A) (g : S → B) (c : cocone f g X) (d : cocone f g Y) →
( up-c : {l : Level} → universal-property-pushout l f g c) →
( up-d : {l : Level} → universal-property-pushout l f g d) →
is-contr
( Σ (X ≃ Y) (λ e → htpy-cocone f g (cocone-map f g c (map-equiv e)) d))
uniquely-unique-pushout f g c d up-c up-d =
is-contr-total-Eq-substructure
( uniqueness-map-universal-property-pushout f g c up-c d)
( is-subtype-is-equiv)
( map-universal-property-pushout f g c up-c d)
( htpy-cocone-map-universal-property-pushout f g c up-c d)
( is-equiv-up-pushout-up-pushout f g c d
( map-universal-property-pushout f g c up-c d)
( htpy-cocone-map-universal-property-pushout f g c up-c d)
( up-c)
( up-d))
{- We will assume that every span has a pushout. Moreover, we will introduce
some further terminology to facilitate working with these pushouts. -}
postulate pushout : {l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → UU (l1 ⊔ l2 ⊔ l3)
postulate inl-pushout : {l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → A → pushout f g
postulate inr-pushout : {l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → B → pushout f g
postulate glue-pushout : {l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → ((inl-pushout f g) ∘ f) ~ ((inr-pushout f g) ∘ g)
cocone-pushout :
{l1 l2 l3 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) → cocone f g (pushout f g)
cocone-pushout f g =
pair
( inl-pushout f g)
( pair
( inr-pushout f g)
( glue-pushout f g))
postulate up-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → universal-property-pushout l4 f g (cocone-pushout f g)
cogap :
{ l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
( f : S → A) (g : S → B) →
{ X : UU l4} (c : cocone f g X) → pushout f g → X
cogap f g =
map-universal-property-pushout f g
( cocone-pushout f g)
( up-pushout f g)
is-pushout :
{ l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
( f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
UU (l1 ⊔ l2 ⊔ l3 ⊔ l4)
is-pushout f g c = is-equiv (cogap f g c)
-- Section 14.2 Suspensions
suspension-structure :
{l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (l1 ⊔ l2)
suspension-structure X Y = Σ Y (λ N → Σ Y (λ S → (x : X) → Id N S))
suspension-cocone' :
{l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (l1 ⊔ l2)
suspension-cocone' X Y = cocone (const X unit star) (const X unit star) Y
cocone-suspension-structure :
{l1 l2 : Level} (X : UU l1) (Y : UU l2) →
suspension-structure X Y → suspension-cocone' X Y
cocone-suspension-structure X Y (pair N (pair S merid)) =
pair
( const unit Y N)
( pair
( const unit Y S)
( merid))
universal-property-suspension' :
(l : Level) {l1 l2 : Level} (X : UU l1) (Y : UU l2)
(susp-str : suspension-structure X Y) → UU (lsuc l ⊔ l1 ⊔ l2)
universal-property-suspension' l X Y susp-str-Y =
universal-property-pushout l
( const X unit star)
( const X unit star)
( cocone-suspension-structure X Y susp-str-Y)
is-suspension :
(l : Level) {l1 l2 : Level} (X : UU l1) (Y : UU l2) → UU (lsuc l ⊔ l1 ⊔ l2)
is-suspension l X Y =
Σ (suspension-structure X Y) (universal-property-suspension' l X Y)
suspension :
{l : Level} → UU l → UU l
suspension X = pushout (const X unit star) (const X unit star)
N-susp :
{l : Level} {X : UU l} → suspension X
N-susp {X = X} = inl-pushout (const X unit star) (const X unit star) star
S-susp :
{l : Level} {X : UU l} → suspension X
S-susp {X = X} = inr-pushout (const X unit star) (const X unit star) star
merid-susp :
{l : Level} {X : UU l} → X → Id (N-susp {X = X}) (S-susp {X = X})
merid-susp {X = X} = glue-pushout (const X unit star) (const X unit star)
sphere : ℕ → UU lzero
sphere zero-ℕ = bool
sphere (succ-ℕ n) = suspension (sphere n)
N-sphere : (n : ℕ) → sphere n
N-sphere zero-ℕ = true
N-sphere (succ-ℕ n) = N-susp
S-sphere : (n : ℕ) → sphere n
S-sphere zero-ℕ = false
S-sphere (succ-ℕ n) = S-susp
{- We now work towards Lemma 17.2.2. -}
suspension-cocone :
{l1 l2 : Level} (X : UU l1) (Z : UU l2) → UU _
suspension-cocone X Z = Σ Z (λ z1 → Σ Z (λ z2 → (x : X) → Id z1 z2))
ev-suspension :
{l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} →
(susp-str-Y : suspension-structure X Y) →
(Z : UU l3) → (Y → Z) → suspension-cocone X Z
ev-suspension (pair N (pair S merid)) Z h =
pair (h N) (pair (h S) (h ·l merid))
universal-property-suspension :
(l : Level) {l1 l2 : Level} (X : UU l1) (Y : UU l2) →
suspension-structure X Y → UU (lsuc l ⊔ l1 ⊔ l2)
universal-property-suspension l X Y susp-str-Y =
(Z : UU l) → is-equiv (ev-suspension susp-str-Y Z)
comparison-suspension-cocone :
{l1 l2 : Level} (X : UU l1) (Z : UU l2) →
suspension-cocone' X Z ≃ suspension-cocone X Z
comparison-suspension-cocone X Z =
equiv-toto
( λ z1 → Σ Z (λ z2 → (x : X) → Id z1 z2))
( equiv-ev-star' Z)
( λ z1 →
equiv-toto
( λ z2 → (x : X) → Id (z1 star) z2)
( equiv-ev-star' Z)
( λ z2 → equiv-id ((x : X) → Id (z1 star) (z2 star))))
map-comparison-suspension-cocone :
{l1 l2 : Level} (X : UU l1) (Z : UU l2) →
suspension-cocone' X Z → suspension-cocone X Z
map-comparison-suspension-cocone X Z =
map-equiv (comparison-suspension-cocone X Z)
is-equiv-map-comparison-suspension-cocone :
{l1 l2 : Level} (X : UU l1) (Z : UU l2) →
is-equiv (map-comparison-suspension-cocone X Z)
is-equiv-map-comparison-suspension-cocone X Z =
is-equiv-map-equiv (comparison-suspension-cocone X Z)
triangle-ev-suspension :
{l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} →
(susp-str-Y : suspension-structure X Y) →
(Z : UU l3) →
( ( map-comparison-suspension-cocone X Z) ∘
( cocone-map
( const X unit star)
( const X unit star)
( cocone-suspension-structure X Y susp-str-Y))) ~
( ev-suspension susp-str-Y Z)
triangle-ev-suspension (pair N (pair S merid)) Z h = refl
is-equiv-ev-suspension :
{ l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} →
( susp-str-Y : suspension-structure X Y) →
( up-Y : universal-property-suspension' l3 X Y susp-str-Y) →
( Z : UU l3) → is-equiv (ev-suspension susp-str-Y Z)
is-equiv-ev-suspension {X = X} susp-str-Y up-Y Z =
is-equiv-comp
( ev-suspension susp-str-Y Z)
( map-comparison-suspension-cocone X Z)
( cocone-map
( const X unit star)
( const X unit star)
( cocone-suspension-structure X _ susp-str-Y))
( htpy-inv (triangle-ev-suspension susp-str-Y Z))
( up-Y Z)
( is-equiv-map-comparison-suspension-cocone X Z)
{- Pointed maps and pointed homotopies. -}
pointed-fam :
{l1 : Level} (l : Level) (X : UU-pt l1) → UU (lsuc l ⊔ l1)
pointed-fam l (pair X x) = Σ (X → UU l) (λ P → P x)
pointed-Π :
{l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) → UU (l1 ⊔ l2)
pointed-Π (pair X x) (pair P p) = Σ ((x' : X) → P x') (λ f → Id (f x) p)
pointed-htpy :
{l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) →
(f g : pointed-Π X P) → UU (l1 ⊔ l2)
pointed-htpy (pair X x) (pair P p) (pair f α) g =
pointed-Π (pair X x) (pair (λ x' → Id (f x') (pr1 g x')) (α ∙ (inv (pr2 g))))
pointed-refl-htpy :
{l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) →
(f : pointed-Π X P) → pointed-htpy X P f f
pointed-refl-htpy (pair X x) (pair P p) (pair f α) =
pair refl-htpy (inv (right-inv α))
pointed-htpy-eq :
{l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) →
(f g : pointed-Π X P) → Id f g → pointed-htpy X P f g
pointed-htpy-eq X P f .f refl = pointed-refl-htpy X P f
is-contr-total-pointed-htpy :
{l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) (f : pointed-Π X P) →
is-contr (Σ (pointed-Π X P) (pointed-htpy X P f))
is-contr-total-pointed-htpy (pair X x) (pair P p) (pair f α) =
is-contr-total-Eq-structure
( λ g β (H : f ~ g) → Id (H x) (α ∙ (inv β)))
( is-contr-total-htpy f)
( pair f refl-htpy)
( is-contr-equiv'
( Σ (Id (f x) p) (λ β → Id β α))
( equiv-tot (λ β → equiv-con-inv refl β α))
( is-contr-total-path' α))
is-equiv-pointed-htpy-eq :
{l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) →
(f g : pointed-Π X P) → is-equiv (pointed-htpy-eq X P f g)
is-equiv-pointed-htpy-eq X P f =
fundamental-theorem-id f
( pointed-refl-htpy X P f)
( is-contr-total-pointed-htpy X P f)
( pointed-htpy-eq X P f)
eq-pointed-htpy :
{l1 l2 : Level} (X : UU-pt l1) (P : pointed-fam l2 X) →
(f g : pointed-Π X P) → (pointed-htpy X P f g) → Id f g
eq-pointed-htpy X P f g = inv-is-equiv (is-equiv-pointed-htpy-eq X P f g)
-- Section 14.3 Duality of pushouts and pullbacks
{- The universal property of the pushout of a span S can also be stated as a
pullback-property: a cocone c = (pair i (pair j H)) with vertex X
satisfies the universal property of the pushout of S if and only if the
square
Y^X -----> Y^B
| |
| |
V V
Y^A -----> Y^S
is a pullback square for every type Y. Below, we first define the cone of
this commuting square, and then we introduce the type
pullback-property-pushout, which states that the above square is a pullback.
-}
htpy-precomp :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
{f g : A → B} (H : f ~ g) (C : UU l3) →
(precomp f C) ~ (precomp g C)
htpy-precomp H C h = eq-htpy (h ·l H)
compute-htpy-precomp :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : UU l3) →
(htpy-precomp (refl-htpy' f) C) ~ refl-htpy
compute-htpy-precomp f C h = eq-htpy-refl-htpy (h ∘ f)
cone-pullback-property-pushout :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (Y : UU l) →
cone (λ (h : A → Y) → h ∘ f) (λ (h : B → Y) → h ∘ g) (X → Y)
cone-pullback-property-pushout f g {X} c Y =
pair
( precomp (pr1 c) Y)
( pair
( precomp (pr1 (pr2 c)) Y)
( htpy-precomp (pr2 (pr2 c)) Y))
pullback-property-pushout :
{l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
UU (l1 ⊔ (l2 ⊔ (l3 ⊔ (l4 ⊔ lsuc l))))
pullback-property-pushout l {S} {A} {B} f g {X} c =
(Y : UU l) → is-pullback
( precomp f Y)
( precomp g Y)
( cone-pullback-property-pushout f g c Y)
{- In order to show that the universal property of pushouts is equivalent to
the pullback property, we show that the maps cocone-map and the gap map fit
in a commuting triangle, where the third map is an equivalence. The claim
then follows from the 3-for-2 property of equivalences. -}
triangle-pullback-property-pushout-universal-property-pushout :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2}
{B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
{l : Level} (Y : UU l) →
( cocone-map f g c) ~
( ( tot (λ i' → tot (λ j' p → htpy-eq p))) ∘
( gap (λ h → h ∘ f) (λ h → h ∘ g) (cone-pullback-property-pushout f g c Y)))
triangle-pullback-property-pushout-universal-property-pushout
{S = S} {A = A} {B = B} f g (pair i (pair j H)) Y h =
eq-pair refl (eq-pair refl (inv (issec-eq-htpy (h ·l H))))
pullback-property-pushout-universal-property-pushout :
{l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2}
{B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
universal-property-pushout l f g c → pullback-property-pushout l f g c
pullback-property-pushout-universal-property-pushout
l f g (pair i (pair j H)) up-c Y =
let c = (pair i (pair j H)) in
is-equiv-right-factor
( cocone-map f g c)
( tot (λ i' → tot (λ j' p → htpy-eq p)))
( gap (λ h → h ∘ f) (λ h → h ∘ g) (cone-pullback-property-pushout f g c Y))
( triangle-pullback-property-pushout-universal-property-pushout f g c Y)
( is-equiv-tot-is-fiberwise-equiv
( λ i' → is-equiv-tot-is-fiberwise-equiv
( λ j' → funext (i' ∘ f) (j' ∘ g))))
( up-c Y)
universal-property-pushout-pullback-property-pushout :
{l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2}
{B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
pullback-property-pushout l f g c → universal-property-pushout l f g c
universal-property-pushout-pullback-property-pushout
l f g (pair i (pair j H)) pb-c Y =
let c = (pair i (pair j H)) in
is-equiv-comp
( cocone-map f g c)
( tot (λ i' → tot (λ j' p → htpy-eq p)))
( gap (λ h → h ∘ f) (λ h → h ∘ g) (cone-pullback-property-pushout f g c Y))
( triangle-pullback-property-pushout-universal-property-pushout f g c Y)
( pb-c Y)
( is-equiv-tot-is-fiberwise-equiv
( λ i' → is-equiv-tot-is-fiberwise-equiv
( λ j' → funext (i' ∘ f) (j' ∘ g))))
cocone-compose-horizontal :
{ l1 l2 l3 l4 l5 l6 : Level}
{ A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6}
( f : A → X) (i : A → B) (k : B → C) →
( c : cocone f i Y) (d : cocone (pr1 (pr2 c)) k Z) →
cocone f (k ∘ i) Z
cocone-compose-horizontal f i k (pair j (pair g H)) (pair l (pair h K)) =
pair
( l ∘ j)
( pair
( h)
( (l ·l H) ∙h (K ·r i)))
{-
is-pushout-rectangle-is-pushout-right-square :
( l : Level) { l1 l2 l3 l4 l5 l6 : Level}
{ A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6}
( f : A → X) (i : A → B) (k : B → C) →
( c : cocone f i Y) (d : cocone (pr1 (pr2 c)) k Z) →
universal-property-pushout l f i c →
universal-property-pushout l (pr1 (pr2 c)) k d →
universal-property-pushout l f (k ∘ i) (cocone-compose-horizontal f i k c d)
is-pushout-rectangle-is-pushout-right-square l f i k c d up-Y up-Z =
universal-property-pushout-pullback-property-pushout l f (k ∘ i)
( cocone-compose-horizontal f i k c d)
( λ T → is-pullback-htpy {!!} {!!} {!!} {!!} {!!} {!!} {!!})
-}
-- Examples of pushouts
{- The cofiber of a map. -}
cofiber :
{l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2)
cofiber {A = A} f = pushout f (const A unit star)
cocone-cofiber :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
cocone f (const A unit star) (cofiber f)
cocone-cofiber {A = A} f = cocone-pushout f (const A unit star)
inl-cofiber :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → B → cofiber f
inl-cofiber {A = A} f = pr1 (cocone-cofiber f)
inr-cofiber :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → unit → cofiber f
inr-cofiber f = pr1 (pr2 (cocone-cofiber f))
pt-cofiber :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → cofiber f
pt-cofiber {A = A} f = inr-cofiber f star
cofiber-ptd :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → UU-pt (l1 ⊔ l2)
cofiber-ptd f = pair (cofiber f) (pt-cofiber f)
up-cofiber :
{ l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
( {l : Level} →
universal-property-pushout l f (const A unit star) (cocone-cofiber f))
up-cofiber {A = A} f = up-pushout f (const A unit star)
_*_ :
{l1 l2 : Level} (A : UU l1) (B : UU l2) → UU (l1 ⊔ l2)
A * B = pushout (pr1 {A = A} {B = λ x → B}) pr2
cocone-join :
{l1 l2 : Level} (A : UU l1) (B : UU l2) →
cocone (pr1 {A = A} {B = λ x → B}) pr2 (A * B)
cocone-join A B = cocone-pushout pr1 pr2
up-join :
{l1 l2 : Level} (A : UU l1) (B : UU l2) →
( {l : Level} → universal-property-pushout l
( pr1 {A = A} {B = λ x → B}) pr2 (cocone-join A B))
up-join A B = up-pushout pr1 pr2
inl-join :
{l1 l2 : Level} (A : UU l1) (B : UU l2) → A → A * B
inl-join A B = pr1 (cocone-join A B)
inr-join :
{l1 l2 : Level} (A : UU l1) (B : UU l2) → B → A * B
inr-join A B = pr1 (pr2 (cocone-join A B))
glue-join :
{l1 l2 : Level} (A : UU l1) (B : UU l2) (t : A × B) →
Id (inl-join A B (pr1 t)) (inr-join A B (pr2 t))
glue-join A B = pr2 (pr2 (cocone-join A B))
_∨_ :
{l1 l2 : Level} (A : UU-pt l1) (B : UU-pt l2) → UU-pt (l1 ⊔ l2)
A ∨ B =
pair
( pushout
( const unit (pr1 A) (pr2 A))
( const unit (pr1 B) (pr2 B)))
( inl-pushout
( const unit (pr1 A) (pr2 A))
( const unit (pr1 B) (pr2 B))
( pr2 A))
indexed-wedge :
{l1 l2 : Level} (I : UU l1) (A : I → UU-pt l2) → UU-pt (l1 ⊔ l2)
indexed-wedge I A =
pair
( cofiber (λ i → pair i (pr2 (A i))))
( pt-cofiber (λ i → pair i (pr2 (A i))))
wedge-inclusion :
{l1 l2 : Level} (A : UU-pt l1) (B : UU-pt l2) →
pr1 (A ∨ B) → (pr1 A) × (pr1 B)
wedge-inclusion {l1} {l2} (pair A a) (pair B b) =
inv-is-equiv
( up-pushout
( const unit A a)
( const unit B b)
( A × B))
( pair
( λ x → pair x b)
( pair
( λ y → pair a y)
( refl-htpy)))
-- Exercises
-- Exercise 13.1
-- Exercise 13.2
is-equiv-universal-property-pushout :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
(f : S → A) (g : S → B) (c : cocone f g C) →
is-equiv f →
({l : Level} → universal-property-pushout l f g c) → is-equiv (pr1 (pr2 c))
is-equiv-universal-property-pushout
{A = A} {B} f g (pair i (pair j H)) is-equiv-f up-c =
is-equiv-is-equiv-precomp j
( λ l T →
is-equiv-is-pullback'
( λ (h : A → T) → h ∘ f)
( λ (h : B → T) → h ∘ g)
( cone-pullback-property-pushout f g (pair i (pair j H)) T)
( is-equiv-precomp-is-equiv f is-equiv-f T)
( pullback-property-pushout-universal-property-pushout
l f g (pair i (pair j H)) up-c T))
equiv-universal-property-pushout :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
(e : S ≃ A) (g : S → B) (c : cocone (map-equiv e) g C) →
({l : Level} → universal-property-pushout l (map-equiv e) g c) →
B ≃ C
equiv-universal-property-pushout e g c up-c =
pair
( pr1 (pr2 c))
( is-equiv-universal-property-pushout
( map-equiv e)
( g)
( c)
( is-equiv-map-equiv e)
( up-c))
is-equiv-universal-property-pushout' :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
(f : S → A) (g : S → B) (c : cocone f g C) →
is-equiv g →
({l : Level} → universal-property-pushout l f g c) →
is-equiv (pr1 c)
is-equiv-universal-property-pushout' f g (pair i (pair j H)) is-equiv-g up-c =
is-equiv-is-equiv-precomp i
( λ l T →
is-equiv-is-pullback
( precomp f T)
( precomp g T)
( cone-pullback-property-pushout f g (pair i (pair j H)) T)
( is-equiv-precomp-is-equiv g is-equiv-g T)
( pullback-property-pushout-universal-property-pushout
l f g (pair i (pair j H)) up-c T))
equiv-universal-property-pushout' :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
(f : S → A) (e : S ≃ B) (c : cocone f (map-equiv e) C) →
({l : Level} → universal-property-pushout l f (map-equiv e) c) →
A ≃ C
equiv-universal-property-pushout' f e c up-c =
pair
( pr1 c)
( is-equiv-universal-property-pushout'
( f)
( map-equiv e)
( c)
( is-equiv-map-equiv e)
( up-c))
universal-property-pushout-is-equiv :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
(f : S → A) (g : S → B) (c : cocone f g C) →
is-equiv f → is-equiv (pr1 (pr2 c)) →
({l : Level} → universal-property-pushout l f g c)
universal-property-pushout-is-equiv f g (pair i (pair j H)) is-equiv-f is-equiv-j {l} =
let c = (pair i (pair j H)) in
universal-property-pushout-pullback-property-pushout l f g c
( λ T → is-pullback-is-equiv'
( λ h → h ∘ f)
( λ h → h ∘ g)
( cone-pullback-property-pushout f g c T)
( is-equiv-precomp-is-equiv f is-equiv-f T)
( is-equiv-precomp-is-equiv j is-equiv-j T))
universal-property-pushout-is-equiv' :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {C : UU l4}
(f : S → A) (g : S → B) (c : cocone f g C) →
is-equiv g → is-equiv (pr1 c) →
({l : Level} → universal-property-pushout l f g c)
universal-property-pushout-is-equiv'
f g (pair i (pair j H)) is-equiv-g is-equiv-i {l} =
let c = (pair i (pair j H)) in
universal-property-pushout-pullback-property-pushout l f g c
( λ T → is-pullback-is-equiv
( precomp f T)
( precomp g T)
( cone-pullback-property-pushout f g c T)
( is-equiv-precomp-is-equiv g is-equiv-g T)
( is-equiv-precomp-is-equiv i is-equiv-i T))
is-contr-suspension-is-contr :
{l : Level} {X : UU l} → is-contr X → is-contr (suspension X)
is-contr-suspension-is-contr {l} {X} is-contr-X =
is-contr-is-equiv'
( unit)
( pr1 (pr2 (cocone-pushout (const X unit star) (const X unit star))))
( is-equiv-universal-property-pushout
( const X unit star)
( const X unit star)
( cocone-pushout
( const X unit star)
( const X unit star))
( is-equiv-is-contr (const X unit star) is-contr-X is-contr-unit)
( up-pushout (const X unit star) (const X unit star)))
( is-contr-unit)
is-contr-cofiber-is-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-equiv f → is-contr (cofiber f)
is-contr-cofiber-is-equiv {A = A} {B} f is-equiv-f =
is-contr-is-equiv'
( unit)
( pr1 (pr2 (cocone-cofiber f)))
( is-equiv-universal-property-pushout
( f)
( const A unit star)
( cocone-cofiber f)
( is-equiv-f)
( up-cofiber f))
( is-contr-unit)
is-equiv-cofiber-point :
{l : Level} {B : UU l} (b : B) →
is-equiv (pr1 (cocone-pushout (const unit B b) (const unit unit star)))
is-equiv-cofiber-point {l} {B} b =
is-equiv-universal-property-pushout'
( const unit B b)
( const unit unit star)
( cocone-pushout (const unit B b) (const unit unit star))
( is-equiv-is-contr (const unit unit star) is-contr-unit is-contr-unit)
( up-pushout (const unit B b) (const unit unit star))
is-equiv-inr-join-empty :
{l : Level} (X : UU l) → is-equiv (inr-join empty X)
is-equiv-inr-join-empty X =
is-equiv-universal-property-pushout
( pr1 {A = empty} {B = λ t → X})
( pr2)
( cocone-join empty X)
( is-equiv-pr1-prod-empty X)
( up-join empty X)
left-unit-law-join :
{l : Level} (X : UU l) → X ≃ (empty * X)
left-unit-law-join X =
pair (inr-join empty X) (is-equiv-inr-join-empty X)
is-equiv-inl-join-empty :
{l : Level} (X : UU l) → is-equiv (inl-join X empty)
is-equiv-inl-join-empty X =
is-equiv-universal-property-pushout'
( pr1)
( pr2)
( cocone-join X empty)
( is-equiv-pr2-prod-empty X)
( up-join X empty)
right-unit-law-join :
{l : Level} (X : UU l) → X ≃ (X * empty)
right-unit-law-join X =
pair (inl-join X empty) (is-equiv-inl-join-empty X)
inv-map-left-unit-law-prod :
{l : Level} (X : UU l) → X → (unit × X)
inv-map-left-unit-law-prod X = pair star
issec-inv-map-left-unit-law-prod :
{l : Level} (X : UU l) → (pr2 ∘ (inv-map-left-unit-law-prod X)) ~ id
issec-inv-map-left-unit-law-prod X x = refl
isretr-inv-map-left-unit-law-prod :
{l : Level} (X : UU l) → ((inv-map-left-unit-law-prod X) ∘ pr2) ~ id
isretr-inv-map-left-unit-law-prod X (pair star x) = refl
is-equiv-left-unit-law-prod :
{l : Level} (X : UU l) → is-equiv (pr2 {A = unit} {B = λ t → X})
is-equiv-left-unit-law-prod X =
is-equiv-has-inverse
( inv-map-left-unit-law-prod X)
( issec-inv-map-left-unit-law-prod X)
( isretr-inv-map-left-unit-law-prod X)
left-unit-law-prod :
{l : Level} (X : UU l) → (unit × X) ≃ X
left-unit-law-prod X =
pair pr2 (is-equiv-left-unit-law-prod X)
is-equiv-inl-join-unit :
{l : Level} (X : UU l) → is-equiv (inl-join unit X)
is-equiv-inl-join-unit X =
is-equiv-universal-property-pushout'
( pr1)
( pr2)
( cocone-join unit X)
( is-equiv-left-unit-law-prod X)
( up-join unit X)
left-zero-law-join :
{l : Level} (X : UU l) → is-contr (unit * X)
left-zero-law-join X =
is-contr-equiv'
( unit)
( pair (inl-join unit X) (is-equiv-inl-join-unit X))
( is-contr-unit)
inv-map-right-unit-law-prod :
{l : Level} (X : UU l) → X → X × unit
inv-map-right-unit-law-prod X x = pair x star
issec-inv-map-right-unit-law-prod :
{l : Level} (X : UU l) → (pr1 ∘ (inv-map-right-unit-law-prod X)) ~ id
issec-inv-map-right-unit-law-prod X x = refl
isretr-inv-map-right-unit-law-prod :
{l : Level} (X : UU l) → ((inv-map-right-unit-law-prod X) ∘ pr1) ~ id
isretr-inv-map-right-unit-law-prod X (pair x star) = refl
is-equiv-right-unit-law-prod :
{l : Level} (X : UU l) → is-equiv (pr1 {A = X} {B = λ t → unit})
is-equiv-right-unit-law-prod X =
is-equiv-has-inverse
( inv-map-right-unit-law-prod X)
( issec-inv-map-right-unit-law-prod X)
( isretr-inv-map-right-unit-law-prod X)
right-unit-law-prod :
{l : Level} (X : UU l) → (X × unit) ≃ X
right-unit-law-prod X =
pair pr1 (is-equiv-right-unit-law-prod X)
is-equiv-inr-join-unit :
{l : Level} (X : UU l) → is-equiv (inr-join X unit)
is-equiv-inr-join-unit X =
is-equiv-universal-property-pushout
( pr1)
( pr2)
( cocone-join X unit)
( is-equiv-right-unit-law-prod X)
( up-join X unit)
right-zero-law-join :
{l : Level} (X : UU l) → is-contr (X * unit)
right-zero-law-join X =
is-contr-equiv'
( unit)
( pair (inr-join X unit) (is-equiv-inr-join-unit X))
( is-contr-unit)
unit-pt : UU-pt lzero
unit-pt = pair unit star
is-contr-pt :
{l : Level} → UU-pt l → UU l
is-contr-pt A = is-contr (pr1 A)
-- Exercise 16.2
-- ev-disjunction :
-- {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) →
-- ((type-Prop P) * (type-Prop Q) → (type-Prop R)) →
-- (type-Prop P → type-Prop R) × (type-Prop Q → type-Prop R)
-- ev-disjunction P Q R f =
-- pair
-- ( f ∘ (inl-join (type-Prop P) (type-Prop Q)))
-- ( f ∘ (inr-join (type-Prop P) (type-Prop Q)))
-- comparison-ev-disjunction :
-- {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) →
-- cocone-join (type-Prop P) (type-Prop Q) (type-Prop R)
-- universal-property-disjunction-join-prop :
-- {l1 l2 l3 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) (R : UU-Prop l3) →
-- is-equiv (ev-disjunction P Q R)
|
algebraic-stack_agda0000_doc_4663 | {-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Category.Monoidal
-- the definition used here is not very similar to what one usually sees in nLab or
-- any textbook. the difference is that usually closed monoidal category is defined
-- through a right adjoint of -⊗X, which is [X,-]. then there is an induced bifunctor
-- [-,-].
--
-- but in proof relevant context, the induced bifunctor [-,-] does not have to be
-- exactly the intended bifunctor! in fact, one can probably only show that the
-- intended bifunctor is only naturally isomorphic to the induced one, which is
-- significantly weaker.
--
-- the approach taken here as an alternative is to BEGIN with a bifunctor
-- already. however, is it required to have mates between any given two adjoints. this
-- definition can be shown equivalent to the previous one but just works better.
module Categories.Category.Monoidal.Closed {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where
private
module C = Category C
open Category C
variable
X Y A B : Obj
open import Level
open import Data.Product using (_,_)
open import Categories.Adjoint
open import Categories.Adjoint.Mate
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Bifunctor
open import Categories.Functor.Hom
open import Categories.Category.Instance.Setoids
open import Categories.NaturalTransformation hiding (id)
open import Categories.NaturalTransformation.Properties
open import Categories.NaturalTransformation.NaturalIsomorphism as NI
record Closed : Set (levelOfTerm M) where
open Monoidal M public
field
[-,-] : Bifunctor C.op C C
adjoint : (-⊗ X) ⊣ appˡ [-,-] X
mate : (f : X ⇒ Y) → Mate (adjoint {X}) (adjoint {Y}) (appʳ-nat ⊗ f) (appˡ-nat [-,-] f)
module [-,-] = Functor [-,-]
module adjoint {X} = Adjoint (adjoint {X})
module mate {X Y} f = Mate (mate {X} {Y} f)
[_,-] : Obj → Functor C C
[_,-] = appˡ [-,-]
[-,_] : Obj → Functor C.op C
[-,_] = appʳ [-,-]
[_,_]₀ : Obj → Obj → Obj
[ X , Y ]₀ = [-,-].F₀ (X , Y)
[_,_]₁ : A ⇒ B → X ⇒ Y → [ B , X ]₀ ⇒ [ A , Y ]₀
[ f , g ]₁ = [-,-].F₁ (f , g)
Hom[-⊗_,-] : ∀ X → Bifunctor C.op C (Setoids ℓ e)
Hom[-⊗ X ,-] = adjoint.Hom[L-,-] {X}
Hom[-,[_,-]] : ∀ X → Bifunctor C.op C (Setoids ℓ e)
Hom[-,[ X ,-]] = adjoint.Hom[-,R-] {X}
Hom-NI : ∀ {X : Obj} → NaturalIsomorphism Hom[-⊗ X ,-] Hom[-,[ X ,-]]
Hom-NI = Hom-NI′ adjoint
|
algebraic-stack_agda0000_doc_4664 | {-# OPTIONS --universe-polymorphism #-}
module Categories.Bifunctor where
open import Level
open import Data.Product using (_,_; swap)
open import Categories.Category
open import Categories.Functor public
open import Categories.Product
Bifunctor : ∀ {o ℓ e} {o′ ℓ′ e′} {o′′ ℓ′′ e′′} → Category o ℓ e → Category o′ ℓ′ e′ → Category o′′ ℓ′′ e′′ → Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ o′′ ⊔ ℓ′′ ⊔ e′′)
Bifunctor C D E = Functor (Product C D) E
overlap-× : ∀ {o ℓ e} {o′₁ ℓ′₁ e′₁} {o′₂ ℓ′₂ e′₂} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {D₂ : Category o′₂ ℓ′₂ e′₂} (H : Bifunctor D₁ D₂ C) {o″ ℓ″ e″} {E : Category o″ ℓ″ e″} (F : Functor E D₁) (G : Functor E D₂) → Functor E C
overlap-× H F G = H ∘ (F ※ G)
reduce-× : ∀ {o ℓ e} {o′₁ ℓ′₁ e′₁} {o′₂ ℓ′₂ e′₂} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {D₂ : Category o′₂ ℓ′₂ e′₂} (H : Bifunctor D₁ D₂ C) {o″₁ ℓ″₁ e″₁} {E₁ : Category o″₁ ℓ″₁ e″₁} (F : Functor E₁ D₁) {o″₂ ℓ″₂ e″₂} {E₂ : Category o″₂ ℓ″₂ e″₂} (G : Functor E₂ D₂) → Bifunctor E₁ E₂ C
reduce-× H F G = H ∘ (F ⁂ G)
flip-bifunctor : ∀ {o ℓ e} {o′ ℓ′ e′} {o′′ ℓ′′ e′′} {C : Category o ℓ e} → {D : Category o′ ℓ′ e′} → {E : Category o′′ ℓ′′ e′′} → Bifunctor C D E → Bifunctor D C E
flip-bifunctor {C = C} {D = D} {E = E} b = _∘_ b (Swap {C = C} {D = D})
|
algebraic-stack_agda0000_doc_4665 | module Cats.Functor.Op where
open import Cats.Category.Base
open import Cats.Category.Op using (_ᵒᵖ)
open import Cats.Functor using (Functor)
open Functor
Op : ∀ {lo la l≈ lo′ la′ l≈′}
→ {C : Category lo la l≈} {D : Category lo′ la′ l≈′}
→ Functor C D
→ Functor (C ᵒᵖ) (D ᵒᵖ)
Op F = record
{ fobj = fobj F
; fmap = fmap F
; fmap-resp = fmap-resp F
; fmap-id = fmap-id F
; fmap-∘ = fmap-∘ F
}
|
algebraic-stack_agda0000_doc_4666 |
module Tactic.Deriving.Quotable where
open import Prelude
open import Container.Traversable
open import Tactic.Reflection
open import Tactic.Reflection.Quote.Class
open import Tactic.Deriving
private
-- Bootstrapping
qVis : Visibility → Term
qVis visible = con (quote visible) []
qVis hidden = con (quote hidden) []
qVis instance′ = con (quote instance′) []
qRel : Relevance → Term
qRel relevant = con (quote relevant) []
qRel irrelevant = con (quote irrelevant) []
qArgInfo : ArgInfo → Term
qArgInfo (arg-info v r) = con₂ (quote arg-info) (qVis v) (qRel r)
qArg : Arg Term → Term
qArg (arg i x) = con₂ (quote arg) (qArgInfo i) x
qList : List Term → Term
qList = foldr (λ x xs → con₂ (quote List._∷_) x xs)
(con₀ (quote List.[]))
-- Could compute this from the type of the dictionary constructor
quoteType : Name → TC Type
quoteType d =
caseM instanceTelescope d (quote Quotable) of λ
{ (tel , vs) → pure $ telPi tel $ def d vs `→ def (quote Term) []
}
dictConstructor : TC Name
dictConstructor =
caseM getConstructors (quote Quotable) of λ
{ (c ∷ []) → pure c
; _ → typeErrorS "impossible" }
patArgs : Telescope → List (Arg Pattern)
patArgs tel = map (var "x" <$_) tel
quoteArgs′ : Nat → Telescope → List Term
quoteArgs′ 0 _ = []
quoteArgs′ _ [] = []
quoteArgs′ (suc n) (a ∷ tel) =
qArg (def₁ (quote `) (var n []) <$ a) ∷ quoteArgs′ n tel
quoteArgs : Nat → Telescope → Term
quoteArgs pars tel = qList $ replicate pars (qArg $ hArg (con₀ (quote Term.unknown))) ++
quoteArgs′ (length tel) tel
constructorClause : Nat → Name → TC Clause
constructorClause pars c = do
tel ← drop pars ∘ fst ∘ telView <$> getType c
pure (clause (vArg (con c (patArgs tel)) ∷ [])
(con₂ (quote Term.con) (lit (name c)) (quoteArgs pars tel)))
quoteClauses : Name → TC (List Clause)
quoteClauses d = do
n ← getParameters d
caseM getConstructors d of λ where
[] → pure [ absurd-clause (vArg absurd ∷ []) ]
cs → mapM (constructorClause n) cs
declareQuotableInstance : Name → Name → TC ⊤
declareQuotableInstance iname d =
declareDef (iArg iname) =<< instanceType d (quote Quotable)
defineQuotableInstance : Name → Name → TC ⊤
defineQuotableInstance iname d = do
fname ← freshName ("quote[" & show d & "]")
declareDef (vArg fname) =<< quoteType d
dictCon ← dictConstructor
defineFun iname (clause [] (con₁ dictCon (def₀ fname)) ∷ [])
defineFun fname =<< quoteClauses d
return _
deriveQuotable : Name → Name → TC ⊤
deriveQuotable iname d =
declareQuotableInstance iname d >>
defineQuotableInstance iname d
|
algebraic-stack_agda0000_doc_4667 | open import Data.Product using ( _×_ )
open import FRP.LTL.ISet.Core using ( ISet ; ⌈_⌉ ; M⟦_⟧ )
open import FRP.LTL.Time using ( Time )
open import FRP.LTL.Time.Bound using ( fin ; _≺_ )
open import FRP.LTL.Time.Interval using ( [_⟩ ; sing )
module FRP.LTL.ISet.Until where
data _Until_ (A B : ISet) (t : Time) : Set where
now : M⟦ B ⟧ (sing t) → (A Until B) t
later : ∀ {u} → .(t≺u : fin t ≺ fin u) → M⟦ A ⟧ [ t≺u ⟩ → M⟦ B ⟧ (sing u) → (A Until B) t
_U_ : ISet → ISet → ISet
A U B = ⌈ A Until B ⌉ |
algebraic-stack_agda0000_doc_4668 | module Sets.ExtensionalPredicateSet where
import Lvl
open import Data
open import Data.Boolean
open import Data.Either as Either using (_‖_)
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Function.Equals
open import Function.Equals.Proofs
open import Function.Inverse
open import Function.Proofs
open import Logic
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Logic.Predicate
open import Structure.Setoid renaming (_≡_ to _≡ₑ_)
open import Structure.Function.Domain
open import Structure.Function.Domain.Proofs
open import Structure.Function
open import Structure.Relator.Equivalence
import Structure.Relator.Names as Names
open import Structure.Relator.Properties
open import Structure.Relator.Proofs
open import Structure.Relator
open import Syntax.Transitivity
open import Type
open import Type.Size
private variable ℓ ℓₒ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓ₁ ℓ₂ ℓ₃ : Lvl.Level
private variable T A A₁ A₂ B : Type{ℓ}
-- A set of objects of a certain type where equality is based on setoids.
-- This is defined by the containment predicate (_∋_) and a proof that it respects the setoid structure.
-- (A ∋ a) is read "The set A contains the element a".
-- Note: This is only a "set" within a certain type, so a collection of type PredSet(T) is actually a subcollection of T.
record PredSet {ℓ ℓₒ ℓₑ} (T : Type{ℓₒ}) ⦃ equiv : Equiv{ℓₑ}(T) ⦄ : Type{Lvl.𝐒(ℓ) Lvl.⊔ ℓₒ Lvl.⊔ ℓₑ} where
constructor intro
field
_∋_ : T → Stmt{ℓ}
⦃ preserve-equiv ⦄ : UnaryRelator(_∋_)
open PredSet using (_∋_) public
open PredSet using (preserve-equiv)
-- Element-set relations.
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
-- The membership relation.
-- (a ∈ A) is read "The element a is included in the set A".
_∈_ : T → PredSet{ℓ}(T) → Stmt
_∈_ = swap(_∋_)
_∉_ : T → PredSet{ℓ}(T) → Stmt
_∉_ = (¬_) ∘₂ (_∈_)
_∌_ : PredSet{ℓ}(T) → T → Stmt
_∌_ = (¬_) ∘₂ (_∋_)
NonEmpty : PredSet{ℓ}(T) → Stmt
NonEmpty(S) = ∃(_∈ S)
-- Set-bounded quantifiers.
module _ {T : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
∀ₛ : PredSet{ℓ}(T) → (T → Stmt{ℓ₁}) → Stmt{ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓₒ}
∀ₛ(S) P = ∀{elem : T} → (elem ∈ S) → P(elem)
∃ₛ : PredSet{ℓ}(T) → (T → Stmt{ℓ₁}) → Stmt{ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓₒ}
∃ₛ(S) P = ∃(elem ↦ (elem ∈ S) ∧ P(elem))
-- Sets and set operations.
module _ {T : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
-- An empty set.
-- Contains nothing.
∅ : PredSet{ℓ}(T)
∅ ∋ x = Empty
UnaryRelator.substitution (preserve-equiv ∅) = const id
-- An universal set.
-- Contains everything.
-- Note: Everything as in every object of type T.
𝐔 : PredSet{ℓ}(T)
𝐔 ∋ x = Unit
UnaryRelator.substitution (preserve-equiv 𝐔) = const id
-- A singleton set (a set containing only one element).
•_ : T → PredSet(T)
(• a) ∋ x = x ≡ₑ a
UnaryRelator.substitution (preserve-equiv (• a)) xy xa = symmetry(_≡ₑ_) xy 🝖 xa
-- An union of two sets.
-- Contains the elements that any of the both sets contain.
_∪_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → PredSet(T)
(A ∪ B) ∋ x = (A ∋ x) ∨ (B ∋ x)
UnaryRelator.substitution (preserve-equiv (A ∪ B)) xy = Either.map (substitute₁(A ∋_) xy) (substitute₁(B ∋_) xy)
infixr 1000 _∪_
-- An intersection of two sets.
-- Contains the elements that both of the both sets contain.
_∩_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → PredSet(T)
(A ∩ B) ∋ x = (A ∋ x) ∧ (B ∋ x)
UnaryRelator.substitution (preserve-equiv (A ∩ B)) xy = Tuple.map (substitute₁(A ∋_) xy) (substitute₁(B ∋_) xy)
infixr 1001 _∩_
-- A complement of a set.
-- Contains the elements that the set does not contain.
∁_ : PredSet{ℓ}(T) → PredSet(T)
(∁ A) ∋ x = A ∌ x
UnaryRelator.substitution (preserve-equiv (∁ A)) xy = contrapositiveᵣ (substitute₁(A ∋_) (symmetry(_≡ₑ_) xy))
infixr 1002 ∁_
-- A relative complement of a set.
-- Contains the elements that the left set contains without the elements included in the right set..
_∖_ : PredSet{ℓ₁}(T) → PredSet{ℓ₂}(T) → PredSet(T)
A ∖ B = (A ∩ (∁ B))
infixr 1001 _∖_
filter : (P : T → Stmt{ℓ₁}) ⦃ _ : UnaryRelator(P) ⦄ → PredSet{ℓ₂}(T) → PredSet(T)
filter P(A) ∋ x = (x ∈ A) ∧ P(x)
_⨯_.left (UnaryRelator.substitution (preserve-equiv (filter P A)) xy ([∧]-intro xA Px)) = substitute₁(A ∋_) xy xA
_⨯_.right (UnaryRelator.substitution (preserve-equiv (filter P A)) xy ([∧]-intro xA Px)) = substitute₁(P) xy Px
unapply : ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ → (f : A → B) ⦃ func-f : Function(f) ⦄ → B → PredSet(A)
unapply f(y) ∋ x = f(x) ≡ₑ y
preserve-equiv (unapply f(y)) = [∘]-unaryRelator ⦃ rel = binary-unaryRelatorᵣ ⦃ rel-P = [≡]-binaryRelator ⦄ ⦄
⊶ : ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → (f : A → B) → PredSet(B)
⊶ f ∋ y = ∃(x ↦ f(x) ≡ₑ y)
preserve-equiv (⊶ f) = [∃]-unaryRelator ⦃ rel-P = binary-unaryRelatorₗ ⦃ rel-P = [≡]-binaryRelator ⦄ ⦄
unmap : ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → (f : A → B) ⦃ _ : Function(f) ⦄ → PredSet{ℓ}(B) → PredSet(A)
(unmap f(Y)) ∋ x = f(x) ∈ Y
preserve-equiv (unmap f x) = [∘]-unaryRelator
map : ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → (f : A → B) → PredSet{ℓ}(A) → PredSet(B)
map f(S) ∋ y = ∃(x ↦ (x ∈ S) ∧ (f(x) ≡ₑ y))
preserve-equiv (map f S) = [∃]-unaryRelator ⦃ rel-P = [∧]-unaryRelator ⦃ rel-Q = binary-unaryRelatorₗ ⦃ rel-P = [≡]-binaryRelator ⦄ ⦄ ⦄
map₂ : ⦃ _ : Equiv{ℓₑ₁}(A₁) ⦄ ⦃ _ : Equiv{ℓₑ₂}(A₂) ⦄ ⦃ _ : Equiv{ℓₑ₃}(B) ⦄ → (_▫_ : A₁ → A₂ → B) → PredSet{ℓ₁}(A₁) → PredSet{ℓ₂}(A₂) → PredSet(B)
map₂(_▫_) S₁ S₂ ∋ y = ∃{Obj = _ ⨯ _}(\{(x₁ , x₂) → (x₁ ∈ S₁) ∧ (x₂ ∈ S₂) ∧ ((x₁ ▫ x₂) ≡ₑ y)})
preserve-equiv (map₂ (_▫_) S₁ S₂) = [∃]-unaryRelator ⦃ rel-P = [∧]-unaryRelator ⦃ rel-P = [∧]-unaryRelator ⦄ ⦃ rel-Q = binary-unaryRelatorₗ ⦃ rel-P = [≡]-binaryRelator ⦄ ⦄ ⦄
-- Set-set relations.
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
record _⊆_ (A : PredSet{ℓ₁}(T)) (B : PredSet{ℓ₂}(T)) : Stmt{Lvl.of(T) Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : ∀{x} → (x ∈ A) → (x ∈ B)
record _⊇_ (A : PredSet{ℓ₁}(T)) (B : PredSet{ℓ₂}(T)) : Stmt{Lvl.of(T) Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : ∀{x} → (x ∈ A) ← (x ∈ B)
record _≡_ (A : PredSet{ℓ₁}(T)) (B : PredSet{ℓ₂}(T)) : Stmt{Lvl.of(T) Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂} where
constructor intro
field proof : ∀{x} → (x ∈ A) ↔ (x ∈ B)
instance
[≡]-reflexivity : Reflexivity(_≡_ {ℓ})
Reflexivity.proof [≡]-reflexivity = intro [↔]-reflexivity
instance
[≡]-symmetry : Symmetry(_≡_ {ℓ})
Symmetry.proof [≡]-symmetry (intro xy) = intro([↔]-symmetry xy)
[≡]-transitivity-raw : ∀{A : PredSet{ℓ₁}(T)}{B : PredSet{ℓ₂}(T)}{C : PredSet{ℓ₃}(T)} → (A ≡ B) → (B ≡ C) → (A ≡ C)
[≡]-transitivity-raw (intro xy) (intro yz) = intro([↔]-transitivity xy yz)
instance
[≡]-transitivity : Transitivity(_≡_ {ℓ})
Transitivity.proof [≡]-transitivity (intro xy) (intro yz) = intro([↔]-transitivity xy yz)
instance
[≡]-equivalence : Equivalence(_≡_ {ℓ})
[≡]-equivalence = intro
instance
[≡]-equiv : Equiv(PredSet{ℓ}(T))
Equiv._≡_ ([≡]-equiv {ℓ}) x y = x ≡ y
Equiv.equivalence [≡]-equiv = [≡]-equivalence
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
instance
-- Note: The purpose of this module is to satisfy this property for arbitrary equivalences.
[∋]-binaryRelator : BinaryRelator(_∋_ {ℓ}{T = T})
BinaryRelator.substitution [∋]-binaryRelator (intro pₛ) pₑ p = [↔]-to-[→] pₛ(substitute₁(_) pₑ p)
instance
[∋]-unaryRelatorₗ : ∀{a : T} → UnaryRelator(A ↦ _∋_ {ℓ} A a)
[∋]-unaryRelatorₗ = BinaryRelator.left [∋]-binaryRelator
-- TODO: There are level problems here that I am not sure how to solve. The big union of a set of sets are not of the same type as the inner sets. So, for example it would be useful if (⋃ As : PredSet{ℓₒ Lvl.⊔ Lvl.𝐒(ℓ₁)}(T)) and (A : PredSet{ℓ₁}(T)) for (A ∈ As) had the same type/levels when (As : PredSet{Lvl.𝐒(ℓ₁)}(PredSet{ℓ₁}(T))) so that they become comparable. But here, the result of big union is a level greater.
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
-- ⋃_ : PredSet{Lvl.𝐒(ℓ₁)}(PredSet{ℓ₁}(T)) → PredSet{ℓₒ Lvl.⊔ Lvl.𝐒(ℓ₁)}(T)
⋃ : PredSet{ℓ₁}(PredSet{ℓ₂}(T)) → PredSet(T)
(⋃ As) ∋ x = ∃(A ↦ (A ∈ As) ∧ (x ∈ A))
UnaryRelator.substitution (preserve-equiv (⋃ As)) xy = [∃]-map-proof (Tuple.mapRight (substitute₁(_) xy))
⋂ : PredSet{ℓ₁}(PredSet{ℓ₂}(T)) → PredSet(T)
(⋂ As) ∋ x = ∀{A} → (A ∈ As) → (x ∈ A)
UnaryRelator.substitution (preserve-equiv (⋂ As)) xy = substitute₁(_) xy ∘_
-- Indexed set operations.
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
⋃ᵢ : ∀{I : Type{ℓ₁}} → (I → PredSet{ℓ₂}(T)) → PredSet{ℓ₁ Lvl.⊔ ℓ₂}(T)
(⋃ᵢ Ai) ∋ x = ∃(i ↦ x ∈ Ai(i))
UnaryRelator.substitution (preserve-equiv (⋃ᵢ Ai)) xy = [∃]-map-proof (\{i} → substitute₁(_) ⦃ preserve-equiv(Ai(i)) ⦄ xy)
⋂ᵢ : ∀{I : Type{ℓ₁}} → (I → PredSet{ℓ₂}(T)) → PredSet{ℓ₁ Lvl.⊔ ℓ₂}(T)
(⋂ᵢ Ai) ∋ x = ∀ₗ(i ↦ x ∈ Ai(i))
UnaryRelator.substitution (preserve-equiv (⋂ᵢ Ai)) xy p {i} = substitute₁(_) ⦃ preserve-equiv(Ai(i)) ⦄ xy p
-- When the indexed union is indexed by a boolean, it is the same as the small union.
⋃ᵢ-of-boolean : ∀{A B : PredSet{ℓ}(T)} → ((⋃ᵢ{I = Bool}(if_then B else A)) ≡ (A ∪ B))
∃.witness (_⨯_.left (_≡_.proof ⋃ᵢ-of-boolean) ([∨]-introₗ p)) = 𝐹
∃.proof (_⨯_.left (_≡_.proof ⋃ᵢ-of-boolean) ([∨]-introₗ p)) = p
∃.witness (_⨯_.left (_≡_.proof ⋃ᵢ-of-boolean) ([∨]-introᵣ p)) = 𝑇
∃.proof (_⨯_.left (_≡_.proof ⋃ᵢ-of-boolean) ([∨]-introᵣ p)) = p
_⨯_.right (_≡_.proof ⋃ᵢ-of-boolean) ([∃]-intro 𝐹 ⦃ p ⦄) = [∨]-introₗ p
_⨯_.right (_≡_.proof ⋃ᵢ-of-boolean) ([∃]-intro 𝑇 ⦃ p ⦄) = [∨]-introᵣ p
-- When the indexed intersection is indexed by a boolean, it is the same as the small intersection.
⋂ᵢ-of-boolean : ∀{A B : PredSet{ℓ}(T)} → ((⋂ᵢ{I = Bool}(if_then B else A)) ≡ (A ∩ B))
_⨯_.left (_≡_.proof ⋂ᵢ-of-boolean) p {𝐹} = [∧]-elimₗ p
_⨯_.left (_≡_.proof ⋂ᵢ-of-boolean) p {𝑇} = [∧]-elimᵣ p
_⨯_.left (_⨯_.right (_≡_.proof ⋂ᵢ-of-boolean) p) = p{𝐹}
_⨯_.right (_⨯_.right (_≡_.proof ⋂ᵢ-of-boolean) p) = p{𝑇}
module _
⦃ equiv : Equiv{ℓₑ}(T) ⦄
⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄
where
⋃ᵢ-of-bijection : ∀{f : B → PredSet{ℓ}(T)} ⦃ func-f : Function(f)⦄ → (([∃]-intro g) : A ≍ B) → (⋃ᵢ{I = A}(f ∘ g) ≡ ⋃ᵢ{I = B}(f))
∃.witness (_⨯_.left (_≡_.proof (⋃ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄))) ([∃]-intro b ⦃ p ⦄)) = inv g ⦃ bijective-to-invertible ⦄ (b)
∃.proof (_⨯_.left (_≡_.proof (⋃ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄))) ([∃]-intro b ⦃ p ⦄)) = substitute₂(_∋_) (symmetry(_≡_) (congruence₁(f) (inverse-right(g)(inv g ⦃ bijective-to-invertible ⦄) ⦃ [∧]-elimᵣ([∃]-proof bijective-to-invertible) ⦄))) (reflexivity(_≡ₑ_)) p
∃.witness (_⨯_.right (_≡_.proof (⋃ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄))) ([∃]-intro a ⦃ p ⦄)) = g(a)
∃.proof (_⨯_.right (_≡_.proof (⋃ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄))) ([∃]-intro b ⦃ p ⦄)) = p
⋂ᵢ-of-bijection : ∀{f : B → PredSet{ℓ}(T)} ⦃ func-f : Function(f)⦄ → (([∃]-intro g) : A ≍ B) → (⋂ᵢ{I = A}(f ∘ g) ≡ ⋂ᵢ{I = B}(f))
_⨯_.left (_≡_.proof (⋂ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄)) {x}) p {b} = p{g(b)}
_⨯_.right (_≡_.proof (⋂ᵢ-of-bijection {f = f} ([∃]-intro g ⦃ bij-g ⦄)) {x}) p {b} = substitute₂(_∋_) (congruence₁(f) (inverse-right(g)(inv g ⦃ bijective-to-invertible ⦄) ⦃ [∧]-elimᵣ([∃]-proof bijective-to-invertible) ⦄)) (reflexivity(_≡ₑ_)) (p{inv g ⦃ bijective-to-invertible ⦄ (b)})
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
instance
singleton-function : ∀{A : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(A) ⦄ → Function{A = A}(•_)
_≡_.proof (Function.congruence singleton-function {x} {y} xy) {a} = [↔]-intro (_🝖 symmetry(_≡ₑ_) xy) (_🝖 xy)
|
algebraic-stack_agda0000_doc_4669 | open import MLib.Prelude
open import MLib.Algebra.PropertyCode
open import MLib.Algebra.PropertyCode.Structures
module MLib.Matrix.Plus {c ℓ} (struct : Struct bimonoidCode c ℓ) {m n : ℕ} where
open import MLib.Matrix.Core
open import MLib.Matrix.Equality struct
open FunctionProperties
-- Pointwise addition --
infixl 6 _⊕_
_⊕_ : Matrix S m n → Matrix S m n → Matrix S m n
(A ⊕ B) i j = A i j ⟨ + ⟩ B i j
⊕-cong : Congruent₂ _⊕_
⊕-cong p q = λ i j → S.cong + (p i j) (q i j)
⊕-assoc : ⦃ props : Has₁ (associative on +) ⦄ → Associative _⊕_
⊕-assoc ⦃ props ⦄ A B C i j = from props (associative on +) (A i j) (B i j) (C i j)
0● : Matrix S m n
0● _ _ = ⟦ 0# ⟧
⊕-identityˡ : ⦃ props : Has₁ (0# is leftIdentity for +) ⦄ → LeftIdentity 0● _⊕_
⊕-identityˡ ⦃ props ⦄ A i j = from props (0# is leftIdentity for +) (A i j)
⊕-identityʳ : ⦃ props : Has₁ (0# is rightIdentity for +) ⦄ → RightIdentity 0● _⊕_
⊕-identityʳ ⦃ props ⦄ A i j = from props (0# is rightIdentity for +) (A i j)
⊕-comm : ⦃ props : Has₁ (commutative on +) ⦄ → Commutative _⊕_
⊕-comm ⦃ props ⦄ A B i j = from props (commutative on +) (A i j) (B i j)
|
algebraic-stack_agda0000_doc_4670 | {-
Practical Relational Algebra
Toon Nolten
based on
The Power Of Pi
-}
module relational-algebra where
open import Data.Empty
open import Data.Unit hiding (_≤_)
open import Data.Bool
open import Data.Nat
open import Data.Integer hiding (show)
open import Data.List
open import Data.Char hiding (_==_) renaming (show to charToString)
open import Data.Vec hiding (_++_; lookup; map; foldr; _>>=_)
open import Data.String using (String; toVec; _==_; strictTotalOrder)
renaming (_++_ to _∥_)
open import Data.Product using (_×_; _,_; proj₁)
open import Coinduction
open import IO
open import Relation.Binary
open StrictTotalOrder Data.String.strictTotalOrder renaming (compare to str_cmp)
data Order : Set where
LT EQ GT : Order
module InsertionSort where
insert : {A : Set} → (A → A → Order) → A → List A → List A
insert _ e [] = e ∷ []
insert cmp e (l ∷ ls) with cmp e l
... | GT = l ∷ insert cmp e ls
... | _ = e ∷ l ∷ ls
sort : {A : Set} → (A → A → Order) → List A → List A
sort cmp = foldr (insert cmp) []
open InsertionSort using (insert; sort)
-- Universe U exists of type U and el : U → Set
data U : Set where
CHAR NAT BOOL : U
VEC : U → ℕ → U
el : U → Set
el CHAR = Char
el NAT = ℕ
el (VEC u n) = Vec (el u) n
el BOOL = Bool
parens : String → String
parens str = "(" ∥ str ∥ ")"
show : {u : U} → el u → String
show {CHAR } c = charToString c
show {NAT } zero = "Zero"
show {NAT } (suc k) = "Succ " ∥ parens (show k)
show {VEC u zero } Nil = "Nil"
show {VEC u (suc k)} (x ∷ xs) = parens (show x) ∥ " ∷ " ∥ parens (show xs)
show {BOOL } true = "True"
show {BOOL } false = "False"
_=ᴺ_ : ℕ → ℕ → Bool
zero =ᴺ zero = true
suc m =ᴺ suc n = (m =ᴺ n)
_ =ᴺ _ = false
_≤ᴺ_ : ℕ → ℕ → Order
zero ≤ᴺ zero = EQ
zero ≤ᴺ _ = LT
_ ≤ᴺ zero = GT
suc a ≤ᴺ suc b = a ≤ᴺ b
_=ᵁ_ : U → U → Bool
CHAR =ᵁ CHAR = true
NAT =ᵁ NAT = true
BOOL =ᵁ BOOL = true
VEC u x =ᵁ VEC u' x' = (u =ᵁ u') ∧ (x =ᴺ x')
_ =ᵁ _ = false
_≤ᵁ_ : U → U → Order
CHAR ≤ᵁ CHAR = EQ
CHAR ≤ᵁ _ = LT
_ ≤ᵁ CHAR = GT
NAT ≤ᵁ NAT = EQ
NAT ≤ᵁ _ = LT
_ ≤ᵁ NAT = GT
BOOL ≤ᵁ BOOL = EQ
BOOL ≤ᵁ _ = LT
_ ≤ᵁ BOOL = GT
VEC a x ≤ᵁ VEC b y with a ≤ᵁ b
... | LT = LT
... | EQ = x ≤ᴺ y
... | GT = GT
So : Bool → Set
So true = ⊤
So false = ⊥
data SqlValue : Set where
SqlString : String → SqlValue
SqlChar : Char → SqlValue
SqlBool : Bool → SqlValue
SqlInteger : ℤ → SqlValue
--{-# COMPILED_DATA SqlValue SqlValue SqlString SqlChar SqlBool SqlInteger #-}
module OrderedSchema where
SchemaDescription = List (List SqlValue)
Attribute : Set
Attribute = String × U
-- Compare on type if names are equal.
-- SQL DB's probably don't allow columns with the same name
-- but nothing prevents us from writing a Schema that does,
-- this is necessary to make our sort return a unique answer.
attr_cmp : Attribute → Attribute → Order
attr_cmp (nm₁ , U₁) (nm₂ , U₂) with str_cmp nm₁ nm₂ | U₁ ≤ᵁ U₂
... | tri< _ _ _ | _ = LT
... | tri≈ _ _ _ | U₁≤U₂ = U₁≤U₂
... | tri> _ _ _ | _ = GT
data Schema : Set where
sorted : List Attribute → Schema
mkSchema : List Attribute → Schema
mkSchema xs = sorted (sort attr_cmp xs)
expandSchema : Attribute → Schema → Schema
expandSchema x (sorted xs) = sorted (insert attr_cmp x xs)
schemify : SchemaDescription → Schema
schemify sdesc = {!!}
disjoint : Schema → Schema → Bool
disjoint (sorted [] ) (_ ) = true
disjoint (_ ) (sorted [] ) = true
disjoint (sorted (x ∷ xs)) (sorted (y ∷ ys)) with attr_cmp x y
... | LT = disjoint (sorted xs ) (sorted (y ∷ ys))
... | EQ = false
... | GT = disjoint (sorted (x ∷ xs)) (sorted ys )
sub : Schema → Schema → Bool
sub (sorted [] ) (_ ) = true
sub (sorted (x ∷ _) ) (sorted [] ) = false
sub (sorted (x ∷ xs)) (sorted (X ∷ Xs)) with attr_cmp x X
... | LT = false
... | EQ = sub (sorted xs ) (sorted Xs)
... | GT = sub (sorted (x ∷ xs)) (sorted Xs)
same' : List Attribute → List Attribute → Bool
same' ([] ) ([] ) = true
same' ((nm₁ , ty₁) ∷ xs) ((nm₂ , ty₂) ∷ ys) =
(nm₁ == nm₂) ∧ (ty₁ =ᵁ ty₂) ∧ same' xs ys
same' (_ ) (_ ) = false
same : Schema → Schema → Bool
same (sorted xs) (sorted ys) = same' xs ys
occurs : String → Schema → Bool
occurs nm (sorted s) = any (_==_ nm) (map (proj₁) s)
lookup' : (nm : String) → (s : List Attribute)
→ So (occurs nm (sorted s)) → U
lookup' _ [] ()
lookup' nm ((name , type) ∷ s') p with nm == name
... | true = type
... | false = lookup' nm s' p
lookup : (nm : String) → (s : Schema) → So (occurs nm s) → U
lookup nm (sorted s) = lookup' nm s
append : (s s' : Schema) → Schema
append (sorted s) (sorted s') = mkSchema (s ++ s')
open OrderedSchema using (Schema; mkSchema; expandSchema; schemify;
disjoint; sub; same; occurs; lookup;
append)
data Row : Schema → Set where
EmptyRow : Row (mkSchema [])
ConsRow : ∀ {name u s} → el u → Row s → Row (expandSchema (name , u) s)
Table : Schema → Set
Table s = List (Row s)
DatabasePath = String
TableName = String
postulate
Connection : Set
connectSqlite3 : DatabasePath → IO Connection
describe_table : TableName → Connection → IO (List (List SqlValue))
-- {-# COMPILED_TYPE Connection Connection #-}
-- {-# COMPILED connectSqlite3 connectSqlite3 #-}
-- {-# COMPILED describe_table describe_table #-}
data Handle : Schema → Set where
conn : Connection → (s : Schema) → Handle s
-- Connect currently ignores differences between
-- the expected schema and the actual schema.
-- According to tpop this should result in
-- "a *runtime exception* in the *IO* monad."
-- Agda does not have exceptions(?)
-- -> postulate error with a compiled pragma?
connect : DatabasePath → TableName → (s : Schema) → IO (Handle s)
connect DB table schema_expect =
♯ (connectSqlite3 DB) >>=
(λ sqlite_conn →
♯ (♯ (describe_table table sqlite_conn) >>=
(λ description →
♯ (♯ (return (schemify description)) >>=
(λ schema_actual →
♯ (♯ (return (same schema_expect schema_actual)) >>=
(λ { true → ♯ (return (conn sqlite_conn schema_expect));
false → ♯ (return (conn sqlite_conn schema_expect)) })))))))
data Expr : Schema → U → Set where
equal : ∀ {u s} → Expr s u → Expr s u → Expr s BOOL
lessThan : ∀ {u s} → Expr s u → Expr s u → Expr s BOOL
_!_ : (s : Schema) → (nm : String) → {p : So (occurs nm s)}
→ Expr s (lookup nm s p)
data RA : Schema → Set where
Read : ∀ {s} → Handle s → RA s
Union : ∀ {s} → RA s → RA s → RA s
Diff : ∀ {s} → RA s → RA s → RA s
Product : ∀ {s s'} → {_ : So (disjoint s s')} → RA s → RA s'
→ RA (append s s')
Project : ∀ {s} → (s' : Schema) → {_ : So (sub s' s)} → RA s → RA s'
Select : ∀ {s} → Expr s BOOL → RA s → RA s
-- ...
{-
As we mentioned previously, we have taken a very minimal set of relational
algebra operators. It should be fairly straightforward to add operators
for the many other operators in relational algebra, such as the
natural join, θ-join, equijoin, renaming, or division,
using the same techniques. Alternatively, you can define many of these
operations in terms of the operations we have implemented in the RA data type.
-}
-- We could:
postulate
toSQL : ∀ {s} → RA s → String
-- We can do much better:
postulate
query : {s : Schema} → RA s → IO (List (Row s))
{-
The *query* function uses *toSQL* to produce a query, and passes this to the
database server. When the server replies, however, we know exactly how to
parse the response: we know the schema of the table resulting from our query,
and can use this to parse the database server's response in a type-safe
manner. The type checker can then statically check that the program uses the
returned list in a way consistent with its type.
-}
Cars : Schema
Cars = mkSchema (("Model" , VEC CHAR 20) ∷ ("Time" , VEC CHAR 6)
∷ ("Wet" , BOOL) ∷ [])
zonda : Row Cars
zonda = ConsRow (toVec "Pagani Zonda C12 F ")
(ConsRow (toVec "1:18.4")
(ConsRow false EmptyRow))
Models : Schema
Models = mkSchema (("Model" , VEC CHAR 20) ∷ [])
models : Handle Cars → RA Models
models h = Project Models (Read h)
wet : Handle Cars → RA Models
wet h = Project Models (Select (Cars ! "Wet") (Read h))
{- Discussion
==========
There are many, many aspects of this proposal that can be improved. Some
attributes of a schema contain *NULL*-values; we should close our universe
under *Maybe* accordingly. Some database servers silently truncate strings
longer than 255 characters. We would do well to ensure statically that this
never happens. Our goal, however, was not to provide a complete model of all
of SQL's quirks and idiosyncrasies: we want to show how a language with
dependent types can schine where Haskell struggles.
Our choice of *Schema* data type suffers from the usual disadvantages of
using a list to represent a set: our *Schema* data type may contain
duplicates and the order of the elements matters. The first problem is easy
to solve. Using an implicit proof argument in the *Cons* case, we can define
a data type for lists that do not contain duplicates. The type of *Cons* then
becomes:
Cons : (nm : String) → (u : U) → (s : Schema) → {_ : So (not (elem nm s))}
→ Schema
The second point is a bit trickier. The real solution would involve quotient
types to make the order of the elements unobservable. As Agda does not
support quotient types, however, the best we can do is parameterise our
constructors by an additional proof argument, when necessary. For example,
the *Union* constructor could be defined as follows:
Union : ∀ {s s'} → {_ : So (permute s s')} → RA s → RA s' → RA s
Instead of requiring that both arguments of *Union* are indexed by the same
schema, we should only require that the two schemas are equal up to a
permutation of the elements. Alternatively, we could represent the *Schema*
using a data structure that fixes the order in which its constituent
elements occur, such as a trie or sorted list.
Finally, we would like to return to our example table. We chose to model
the lap time as a fixed-length string ─ clearly, a triple of integers would
be a better representation. Unfortunately, most database servers only
support a handful of built-in types, such as strings, numbers, bits. There
is no way to extend these primitive types. This problem is sometimes
referred to as the *object-relational impedance mismatch*. We believe the
generic programming techniques and views from the previous sections can be
used to marshall data between a low-level representation in the database
and the high-level representation in our programming language.
-}
|
algebraic-stack_agda0000_doc_4671 | {-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U
open import Definition.Typed
open import Definition.Typed.Weakening
open import Agda.Primitive
open import Tools.Product
open import Tools.Embedding
import Tools.PropositionalEquality as PE
-- The different cases of the logical relation are spread out through out
-- this file. This is due to them having different dependencies.
-- We will refer to expressions that satisfies the logical relation as reducible.
-- Reducibility of Neutrals:
-- Neutral type
record _⊩ne_ (Γ : Con Term) (A : Term) : Set where
constructor ne
field
K : Term
D : Γ ⊢ A :⇒*: K
neK : Neutral K
K≡K : Γ ⊢ K ~ K ∷ U
-- Neutral type equality
record _⊩ne_≡_/_ (Γ : Con Term) (A B : Term) ([A] : Γ ⊩ne A) : Set where
constructor ne₌
open _⊩ne_ [A]
field
M : Term
D′ : Γ ⊢ B :⇒*: M
neM : Neutral M
K≡M : Γ ⊢ K ~ M ∷ U
-- Neutral term in WHNF
record _⊩neNf_∷_ (Γ : Con Term) (k A : Term) : Set where
inductive
constructor neNfₜ
field
neK : Neutral k
⊢k : Γ ⊢ k ∷ A
k≡k : Γ ⊢ k ~ k ∷ A
-- Neutral term
record _⊩ne_∷_/_ (Γ : Con Term) (t A : Term) ([A] : Γ ⊩ne A) : Set where
inductive
constructor neₜ
open _⊩ne_ [A]
field
k : Term
d : Γ ⊢ t :⇒*: k ∷ K
nf : Γ ⊩neNf k ∷ K
-- Neutral term equality in WHNF
record _⊩neNf_≡_∷_ (Γ : Con Term) (k m A : Term) : Set where
inductive
constructor neNfₜ₌
field
neK : Neutral k
neM : Neutral m
k≡m : Γ ⊢ k ~ m ∷ A
-- Neutral term equality
record _⊩ne_≡_∷_/_ (Γ : Con Term) (t u A : Term) ([A] : Γ ⊩ne A) : Set where
constructor neₜ₌
open _⊩ne_ [A]
field
k m : Term
d : Γ ⊢ t :⇒*: k ∷ K
d′ : Γ ⊢ u :⇒*: m ∷ K
nf : Γ ⊩neNf k ≡ m ∷ K
-- Reducibility of natural numbers:
-- Natural number type
_⊩ℕ_ : (Γ : Con Term) (A : Term) → Set
Γ ⊩ℕ A = Γ ⊢ A :⇒*: ℕ
-- Natural number type equality
data _⊩ℕ_≡_ (Γ : Con Term) (A B : Term) : Set where
ℕ₌ : Γ ⊢ B ⇒* ℕ → Γ ⊩ℕ A ≡ B
mutual
-- Natural number term
data _⊩ℕ_∷ℕ (Γ : Con Term) (t : Term) : Set where
ℕₜ : (n : Term) (d : Γ ⊢ t :⇒*: n ∷ ℕ) (n≡n : Γ ⊢ n ≅ n ∷ ℕ)
(prop : Natural-prop Γ n)
→ Γ ⊩ℕ t ∷ℕ
-- WHNF property of natural number terms
data Natural-prop (Γ : Con Term) : (n : Term) → Set where
sucᵣ : ∀ {n} → Γ ⊩ℕ n ∷ℕ → Natural-prop Γ (suc n)
zeroᵣ : Natural-prop Γ zero
ne : ∀ {n} → Γ ⊩neNf n ∷ ℕ → Natural-prop Γ n
mutual
-- Natural number term equality
data _⊩ℕ_≡_∷ℕ (Γ : Con Term) (t u : Term) : Set where
ℕₜ₌ : (k k′ : Term) (d : Γ ⊢ t :⇒*: k ∷ ℕ) (d′ : Γ ⊢ u :⇒*: k′ ∷ ℕ)
(k≡k′ : Γ ⊢ k ≅ k′ ∷ ℕ)
(prop : [Natural]-prop Γ k k′) → Γ ⊩ℕ t ≡ u ∷ℕ
-- WHNF property of Natural number term equality
data [Natural]-prop (Γ : Con Term) : (n n′ : Term) → Set where
sucᵣ : ∀ {n n′} → Γ ⊩ℕ n ≡ n′ ∷ℕ → [Natural]-prop Γ (suc n) (suc n′)
zeroᵣ : [Natural]-prop Γ zero zero
ne : ∀ {n n′} → Γ ⊩neNf n ≡ n′ ∷ ℕ → [Natural]-prop Γ n n′
-- Natural extraction from term WHNF property
natural : ∀ {Γ n} → Natural-prop Γ n → Natural n
natural (sucᵣ x) = sucₙ
natural zeroᵣ = zeroₙ
natural (ne (neNfₜ neK ⊢k k≡k)) = ne neK
-- Natural extraction from term equality WHNF property
split : ∀ {Γ a b} → [Natural]-prop Γ a b → Natural a × Natural b
split (sucᵣ x) = sucₙ , sucₙ
split zeroᵣ = zeroₙ , zeroₙ
split (ne (neNfₜ₌ neK neM k≡m)) = ne neK , ne neM
-- Type levels
data TypeLevel : Set where
⁰ : TypeLevel
¹ : TypeLevel
data _<_ : (i j : TypeLevel) → Set where
0<1 : ⁰ < ¹
toLevel : TypeLevel → Level
toLevel ⁰ = lzero
toLevel ¹ = lsuc lzero
-- Logical relation
record LogRelKit (ℓ : Level) : Set (lsuc (lsuc ℓ)) where
constructor Kit
field
_⊩U : (Γ : Con Term) → Set (lsuc ℓ)
_⊩Π_ : (Γ : Con Term) → Term → Set (lsuc ℓ)
_⊩_ : (Γ : Con Term) → Term → Set (lsuc ℓ)
_⊩_≡_/_ : (Γ : Con Term) (A B : Term) → Γ ⊩ A → Set ℓ
_⊩_∷_/_ : (Γ : Con Term) (t A : Term) → Γ ⊩ A → Set ℓ
_⊩_≡_∷_/_ : (Γ : Con Term) (t u A : Term) → Γ ⊩ A → Set ℓ
module LogRel (l : TypeLevel) (rec : ∀ {l′} → l′ < l → LogRelKit (toLevel l)) where
record _⊩¹U (Γ : Con Term) : Set (lsuc (lsuc (toLevel l))) where
constructor Uᵣ
field
l′ : TypeLevel
l< : l′ < l
⊢Γ : ⊢ Γ
-- Universe type equality
record _⊩¹U≡_ (Γ : Con Term) (B : Term) : Set (lsuc (toLevel l)) where
constructor U₌
field
B≡U : B PE.≡ U
-- Universe term
record _⊩¹U_∷U/_ {l′} (Γ : Con Term) (t : Term) (l< : l′ < l) : Set (lsuc (toLevel l)) where
constructor Uₜ
open LogRelKit (rec l<)
field
A : Term
d : Γ ⊢ t :⇒*: A ∷ U
typeA : Type A
A≡A : Γ ⊢ A ≅ A ∷ U
[t] : Γ ⊩ t
-- Universe term equality
record _⊩¹U_≡_∷U/_ {l′} (Γ : Con Term) (t u : Term) (l< : l′ < l) : Set (lsuc (toLevel l)) where
constructor Uₜ₌
open LogRelKit (rec l<)
field
A B : Term
d : Γ ⊢ t :⇒*: A ∷ U
d′ : Γ ⊢ u :⇒*: B ∷ U
typeA : Type A
typeB : Type B
A≡B : Γ ⊢ A ≅ B ∷ U
[t] : Γ ⊩ t
[u] : Γ ⊩ u
[t≡u] : Γ ⊩ t ≡ u / [t]
RedRel : Set (lsuc (lsuc (lsuc (toLevel l))))
RedRel = Con Term → Term → (Term → Set (lsuc (toLevel l))) → (Term → Set (lsuc (toLevel l))) → (Term → Term → Set (lsuc (toLevel l))) → Set (lsuc (lsuc (toLevel l)))
record _⊩⁰_/_ (Γ : Con Term) (A : Term) (_⊩_▸_▸_▸_ : RedRel) : Set (lsuc (lsuc (toLevel l))) where
inductive
eta-equality
constructor LRPack
field
⊩Eq : Term → Set (lsuc (toLevel l))
⊩Term : Term → Set (lsuc (toLevel l))
⊩EqTerm : Term → Term → Set (lsuc (toLevel l))
⊩LR : Γ ⊩ A ▸ ⊩Eq ▸ ⊩Term ▸ ⊩EqTerm
_⊩⁰_≡_/_ : {R : RedRel} (Γ : Con Term) (A B : Term) → Γ ⊩⁰ A / R → Set (lsuc (toLevel l))
Γ ⊩⁰ A ≡ B / LRPack ⊩Eq ⊩Term ⊩EqTerm ⊩Red = ⊩Eq B
_⊩⁰_∷_/_ : {R : RedRel} (Γ : Con Term) (t A : Term) → Γ ⊩⁰ A / R → Set (lsuc (toLevel l))
Γ ⊩⁰ t ∷ A / LRPack ⊩Eq ⊩Term ⊩EqTerm ⊩Red = ⊩Term t
_⊩⁰_≡_∷_/_ : {R : RedRel} (Γ : Con Term) (t u A : Term) → Γ ⊩⁰ A / R → Set (lsuc (toLevel l))
Γ ⊩⁰ t ≡ u ∷ A / LRPack ⊩Eq ⊩Term ⊩EqTerm ⊩Red = ⊩EqTerm t u
record _⊩¹Π_/_ (Γ : Con Term) (A : Term) (R : RedRel) : Set (lsuc (lsuc (toLevel l))) where
inductive
eta-equality
constructor Πᵣ
field
F : Term
G : Term
D : Γ ⊢ A :⇒*: Π F ▹ G
⊢F : Γ ⊢ F
⊢G : Γ ∙ F ⊢ G
A≡A : Γ ⊢ Π F ▹ G ≅ Π F ▹ G
[F] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Δ ⊩⁰ U.wk ρ F / R
[G] : ∀ {ρ Δ a}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ
→ Δ ⊩⁰ U.wk (lift ρ) G [ a ] / R
G-ext : ∀ {ρ Δ a b}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ ([b] : Δ ⊩⁰ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩⁰ a ≡ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ
→ Δ ⊩⁰ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G [ b ] / [G] [ρ] ⊢Δ [a]
record _⊩¹Π_≡_/_ {R : RedRel} (Γ : Con Term) (A B : Term) ([A] : Γ ⊩¹Π A / R) : Set (lsuc (toLevel l)) where
inductive
eta-equality
constructor Π₌
open _⊩¹Π_/_ [A]
field
F′ : Term
G′ : Term
D′ : Γ ⊢ B ⇒* Π F′ ▹ G′
A≡B : Γ ⊢ Π F ▹ G ≅ Π F′ ▹ G′
[F≡F′] : ∀ {ρ Δ}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩⁰ U.wk ρ F ≡ U.wk ρ F′ / [F] [ρ] ⊢Δ
[G≡G′] : ∀ {ρ Δ a}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩⁰ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G′ [ a ] / [G] [ρ] ⊢Δ [a]
-- Term of Π-type
_⊩¹Π_∷_/_ : {R : RedRel} (Γ : Con Term) (t A : Term) ([A] : Γ ⊩¹Π A / R) → Set (lsuc (toLevel l))
Γ ⊩¹Π t ∷ A / Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext =
∃ λ f → Γ ⊢ t :⇒*: f ∷ Π F ▹ G
× Function f
× Γ ⊢ f ≅ f ∷ Π F ▹ G
× (∀ {ρ Δ a b}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
([b] : Δ ⊩⁰ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
([a≡b] : Δ ⊩⁰ a ≡ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩⁰ U.wk ρ f ∘ a ≡ U.wk ρ f ∘ b ∷ U.wk (lift ρ) G [ a ] / [G] [ρ] ⊢Δ [a])
× (∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩⁰ U.wk ρ f ∘ a ∷ U.wk (lift ρ) G [ a ] / [G] [ρ] ⊢Δ [a])
-- Issue: Agda complains about record use not being strictly positive.
-- Therefore we have to use ×
-- Term equality of Π-type
_⊩¹Π_≡_∷_/_ : {R : RedRel} (Γ : Con Term) (t u A : Term) ([A] : Γ ⊩¹Π A / R) → Set (lsuc (toLevel l))
Γ ⊩¹Π t ≡ u ∷ A / Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext =
let [A] = Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext
in ∃₂ λ f g →
Γ ⊢ t :⇒*: f ∷ Π F ▹ G
× Γ ⊢ u :⇒*: g ∷ Π F ▹ G
× Function f
× Function g
× Γ ⊢ f ≅ g ∷ Π F ▹ G
× Γ ⊩¹Π t ∷ A / [A]
× Γ ⊩¹Π u ∷ A / [A]
× (∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⁰ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩⁰ U.wk ρ f ∘ a ≡ U.wk ρ g ∘ a ∷ U.wk (lift ρ) G [ a ] / [G] [ρ] ⊢Δ [a])
-- Issue: Same as above.
-- Logical relation definition
data _⊩LR_▸_▸_▸_ : RedRel where
LRU : ∀ {Γ} (⊢Γ : ⊢ Γ) → (l' : TypeLevel) → (l< : l' < l) → Γ ⊩LR U
▸ (λ B → Γ ⊩¹U≡ B)
▸ (λ t → Γ ⊩¹U t ∷U/ l<)
▸ (λ t u → Γ ⊩¹U t ≡ u ∷U/ l<)
LRℕ : ∀ {Γ A} → Γ ⊩ℕ A → Γ ⊩LR A
▸ (λ B → ι′ (Γ ⊩ℕ A ≡ B))
▸ (λ t → ι′ (Γ ⊩ℕ t ∷ℕ))
▸ (λ t u → ι′ (Γ ⊩ℕ t ≡ u ∷ℕ))
LRne : ∀ {Γ A} → (neA : Γ ⊩ne A) → Γ ⊩LR A
▸ (λ B → ι′ (Γ ⊩ne A ≡ B / neA))
▸ (λ t → ι′ (Γ ⊩ne t ∷ A / neA))
▸ (λ t u → ι′ (Γ ⊩ne t ≡ u ∷ A / neA))
LRΠ : ∀ {Γ A} → (ΠA : Γ ⊩¹Π A / _⊩LR_▸_▸_▸_) → Γ ⊩LR A
▸ (λ B → Γ ⊩¹Π A ≡ B / ΠA)
▸ (λ t → Γ ⊩¹Π t ∷ A / ΠA)
▸ (λ t u → Γ ⊩¹Π t ≡ u ∷ A / ΠA)
LRemb : ∀ {Γ A l′} (l< : l′ < l) (let open LogRelKit (rec l<)) ([A] : Γ ⊩ A) → Γ ⊩LR A
▸ (λ B → ι (Γ ⊩ A ≡ B / [A]))
▸ (λ t → ι (Γ ⊩ t ∷ A / [A]))
▸ (λ t u → ι (Γ ⊩ t ≡ u ∷ A / [A]))
_⊩¹_ : (Γ : Con Term) → (A : Term) → Set (lsuc (lsuc (toLevel l)))
Γ ⊩¹ A = Γ ⊩⁰ A / _⊩LR_▸_▸_▸_
_⊩¹_≡_/_ : (Γ : Con Term) (A B : Term) → Γ ⊩¹ A → Set (lsuc (toLevel l))
Γ ⊩¹ A ≡ B / [A] = Γ ⊩⁰ A ≡ B / [A]
_⊩¹_∷_/_ : (Γ : Con Term) (t A : Term) → Γ ⊩¹ A → Set (lsuc (toLevel l))
Γ ⊩¹ t ∷ A / [A] = Γ ⊩⁰ t ∷ A / [A]
_⊩¹_≡_∷_/_ : (Γ : Con Term) (t u A : Term) → Γ ⊩¹ A → Set (lsuc (toLevel l))
Γ ⊩¹ t ≡ u ∷ A / [A] = Γ ⊩⁰ t ≡ u ∷ A / [A]
open LogRel public using (Uᵣ; Πᵣ; Π₌; U₌ ; Uₜ; Uₜ₌ ; LRU ; LRℕ ; LRne ; LRΠ ; LRemb ; LRPack)
pattern Πₜ f d funcF f≡f [f] [f]₁ = f , d , funcF , f≡f , [f] , [f]₁
pattern Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g] = f , g , d , d′ , funcF , funcG , f≡g , [f] , [g] , [f≡g]
pattern ℕᵣ a = LRPack _ _ _ (LRℕ a)
pattern emb′ a b = LRPack _ _ _ (LRemb a b)
pattern Uᵣ′ a b c = LRPack _ _ _ (LRU c a b)
pattern ne′ a b c d = LRPack _ _ _ (LRne (ne a b c d))
pattern Πᵣ′ a b c d e f g h i = LRPack _ _ _ (LRΠ (Πᵣ a b c d e f g h i))
kit₀ : LogRelKit (lsuc (lzero))
kit₀ = Kit _⊩¹U (λ Γ A → Γ ⊩¹Π A / _⊩LR_▸_▸_▸_) _⊩¹_ _⊩¹_≡_/_ _⊩¹_∷_/_ _⊩¹_≡_∷_/_ where open LogRel ⁰ (λ ())
logRelRec : ∀ l {l′} → l′ < l → LogRelKit (toLevel l)
logRelRec ⁰ = λ ()
logRelRec ¹ 0<1 = kit₀
kit : ∀ (l : TypeLevel) → LogRelKit (lsuc (toLevel l))
kit l = Kit _⊩¹U (λ Γ A → Γ ⊩¹Π A / _⊩LR_▸_▸_▸_) _⊩¹_ _⊩¹_≡_/_ _⊩¹_∷_/_ _⊩¹_≡_∷_/_ where open LogRel l (logRelRec l)
-- a bit of repetition in "kit ¹" definition, would work better with Fin 2 for
-- TypeLevel because you could recurse.
record _⊩′⟨_⟩U (Γ : Con Term) (l : TypeLevel) : Set where
constructor Uᵣ
field
l′ : TypeLevel
l< : l′ < l
⊢Γ : ⊢ Γ
_⊩′⟨_⟩Π_ : (Γ : Con Term) (l : TypeLevel) → Term → Set (lsuc (lsuc (toLevel l)))
Γ ⊩′⟨ l ⟩Π A = Γ ⊩Π A where open LogRelKit (kit l)
_⊩⟨_⟩_ : (Γ : Con Term) (l : TypeLevel) → Term → Set (lsuc (lsuc (toLevel l)))
Γ ⊩⟨ l ⟩ A = Γ ⊩ A where open LogRelKit (kit l)
_⊩⟨_⟩_≡_/_ : (Γ : Con Term) (l : TypeLevel) (A B : Term) → Γ ⊩⟨ l ⟩ A → Set (lsuc (toLevel l))
Γ ⊩⟨ l ⟩ A ≡ B / [A] = Γ ⊩ A ≡ B / [A] where open LogRelKit (kit l)
_⊩⟨_⟩_∷_/_ : (Γ : Con Term) (l : TypeLevel) (t A : Term) → Γ ⊩⟨ l ⟩ A → Set (lsuc (toLevel l))
Γ ⊩⟨ l ⟩ t ∷ A / [A] = Γ ⊩ t ∷ A / [A] where open LogRelKit (kit l)
_⊩⟨_⟩_≡_∷_/_ : (Γ : Con Term) (l : TypeLevel) (t u A : Term) → Γ ⊩⟨ l ⟩ A → Set (lsuc (toLevel l))
Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] = Γ ⊩ t ≡ u ∷ A / [A] where open LogRelKit (kit l)
|
algebraic-stack_agda0000_doc_13024 | {-# OPTIONS --safe --postfix-projections #-}
module Cubical.Algebra.OrderedCommMonoid.PropCompletion where
{-
The completion of an ordered monoid, viewed as monoidal prop-enriched category.
This is used in the construction of the upper naturals, which is an idea of David
Jaz Myers presented here
https://felix-cherubini.de/myers-slides-II.pdf
It should be straight forward, but tedious,
to generalize this to enriched monoidal categories.
-}
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Foundations.HLevels
open import Cubical.Functions.Logic
open import Cubical.Functions.Embedding
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation renaming (rec to propTruncRec; rec2 to propTruncRec2)
open import Cubical.Algebra.CommMonoid.Base
open import Cubical.Algebra.OrderedCommMonoid
open import Cubical.Relation.Binary.Poset
private
variable
ℓ : Level
module PropCompletion (ℓ : Level) (M : OrderedCommMonoid ℓ ℓ) where
open OrderedCommMonoidStr (snd M)
_≤p_ : fst M → fst M → hProp ℓ
n ≤p m = (n ≤ m) , (is-prop-valued _ _)
isUpwardClosed : (s : fst M → hProp ℓ) → Type _
isUpwardClosed s = (n m : fst M) → n ≤ m → fst (s n) → fst (s m)
isPropUpwardClosed : (N : fst M → hProp ℓ) → isProp (isUpwardClosed N)
isPropUpwardClosed N =
isPropΠ4 (λ _ m _ _ → snd (N m))
isSetM→Prop : isSet (fst M → hProp ℓ)
isSetM→Prop = isOfHLevelΠ 2 λ _ → isSetHProp
M↑ : Type _
M↑ = Σ[ s ∈ (fst M → hProp ℓ)] isUpwardClosed s
isSetM↑ : isSet M↑
isSetM↑ = isOfHLevelΣ 2 isSetM→Prop λ s → isOfHLevelSuc 1 (isPropUpwardClosed s)
_isUpperBoundOf_ : fst M → M↑ → Type ℓ
n isUpperBoundOf s = fst (fst s n)
isBounded : (s : M↑) → Type _
isBounded s = ∃[ m ∈ (fst M) ] (m isUpperBoundOf s)
isPropIsBounded : (s : M↑) → isProp (isBounded s)
isPropIsBounded s = isPropPropTrunc
_^↑ : fst M → M↑
n ^↑ = n ≤p_ , isUpwardClosed≤
where
isUpwardClosed≤ : {m : fst M} → isUpwardClosed (m ≤p_)
isUpwardClosed≤ = λ {_ _ n≤k m≤n → is-trans _ _ _ m≤n n≤k}
isBounded^ : (m : fst M) → isBounded (m ^↑)
isBounded^ m = ∣ (m , (is-refl m)) ∣₁
1↑ : M↑
1↑ = ε ^↑
_·↑_ : M↑ → M↑ → M↑
s ·↑ l = seq , seqIsUpwardClosed
where
seq : fst M → hProp ℓ
seq n = (∃[ (a , b) ∈ (fst M) × (fst M) ] fst ((fst s a) ⊓ (fst l b) ⊓ ((a · b) ≤p n) )) ,
isPropPropTrunc
seqIsUpwardClosed : isUpwardClosed seq
seqIsUpwardClosed n m n≤m =
propTruncRec
isPropPropTrunc
λ {((a , b) , wa , (wb , a·b≤n)) → ∣ (a , b) , wa , (wb , is-trans _ _ _ a·b≤n n≤m) ∣₁}
·presBounded : (s l : M↑) (bs : isBounded s) (bl : isBounded l) → isBounded (s ·↑ l)
·presBounded s l =
propTruncRec2
isPropPropTrunc
λ {(m , s≤m) (k , l≤k)
→ ∣ (m · k) , ∣ (m , k) , (s≤m , (l≤k , (is-refl (m · k)))) ∣₁ ∣₁
}
{- convenience functions for the proof that ·↑ is the multiplication of a monoid -}
typeAt : fst M → M↑ → Type _
typeAt n s = fst (fst s n)
M↑Path : {s l : M↑} → ((n : fst M) → typeAt n s ≡ typeAt n l) → s ≡ l
M↑Path {s = s} {l = l} pwPath = path
where
seqPath : fst s ≡ fst l
seqPath i n = subtypePathReflection (λ A → isProp A , isPropIsProp)
(fst s n)
(fst l n)
(pwPath n) i
path : s ≡ l
path = subtypePathReflection (λ s → isUpwardClosed s , isPropUpwardClosed s) s l seqPath
pathFromImplications : (s l : M↑)
→ ((n : fst M) → typeAt n s → typeAt n l)
→ ((n : fst M) → typeAt n l → typeAt n s)
→ s ≡ l
pathFromImplications s l s→l l→s =
M↑Path λ n → cong fst (propPath n)
where propPath : (n : fst M) → fst s n ≡ fst l n
propPath n = ⇒∶ s→l n
⇐∶ l→s n
^↑Pres· : (x y : fst M) → (x · y) ^↑ ≡ (x ^↑) ·↑ (y ^↑)
^↑Pres· x y = pathFromImplications ((x · y) ^↑) ((x ^↑) ·↑ (y ^↑)) (⇐) ⇒
where
⇐ : (n : fst M) → typeAt n ((x · y) ^↑) → typeAt n ((x ^↑) ·↑ (y ^↑))
⇐ n x·y≤n = ∣ (x , y) , ((is-refl _) , ((is-refl _) , x·y≤n)) ∣₁
⇒ : (n : fst M) → typeAt n ((x ^↑) ·↑ (y ^↑)) → typeAt n ((x · y) ^↑)
⇒ n = propTruncRec
(snd (fst ((x · y) ^↑) n))
λ {((m , l) , x≤m , (y≤l , m·l≤n))
→ is-trans _ _ _
(is-trans _ _ _ (MonotoneR x≤m)
(MonotoneL y≤l))
m·l≤n
}
·↑Comm : (s l : M↑) → s ·↑ l ≡ l ·↑ s
·↑Comm s l = M↑Path λ n → cong fst (propPath n)
where implication : (s l : M↑) (n : fst M) → fst (fst (s ·↑ l) n) → fst (fst (l ·↑ s) n)
implication s l n = propTruncRec
isPropPropTrunc
(λ {((a , b) , wa , (wb , a·b≤n))
→ ∣ (b , a) , wb , (wa , subst (λ k → fst (k ≤p n)) (·Comm a b) a·b≤n) ∣₁ })
propPath : (n : fst M) → fst (s ·↑ l) n ≡ fst (l ·↑ s) n
propPath n = ⇒∶ implication s l n
⇐∶ implication l s n
·↑Rid : (s : M↑) → s ·↑ 1↑ ≡ s
·↑Rid s = pathFromImplications (s ·↑ 1↑) s (⇒) ⇐
where ⇒ : (n : fst M) → typeAt n (s ·↑ 1↑) → typeAt n s
⇒ n = propTruncRec
(snd (fst s n))
(λ {((a , b) , sa , (1b , a·b≤n))
→ (snd s) a n ( subst (_≤ n) (·IdR a) (is-trans _ _ _ (MonotoneL 1b) a·b≤n)) sa })
⇐ : (n : fst M) → typeAt n s → typeAt n (s ·↑ 1↑)
⇐ n = λ sn → ∣ (n , ε) , (sn , (is-refl _ , subst (_≤ n) (sym (·IdR n)) (is-refl _))) ∣₁
·↑Assoc : (s l k : M↑) → s ·↑ (l ·↑ k) ≡ (s ·↑ l) ·↑ k
·↑Assoc s l k = pathFromImplications (s ·↑ (l ·↑ k)) ((s ·↑ l) ·↑ k) (⇒) ⇐
where ⇒ : (n : fst M) → typeAt n (s ·↑ (l ·↑ k)) → typeAt n ((s ·↑ l) ·↑ k)
⇒ n = propTruncRec
isPropPropTrunc
λ {((a , b) , sa , (l·kb , a·b≤n))
→ propTruncRec
isPropPropTrunc
(λ {((a' , b') , la' , (kb' , a'·b'≤b))
→ ∣ ((a · a') , b') , ∣ (a , a') , (sa , (la' , is-refl _)) ∣₁ , kb' ,
(let a·⟨a'·b'⟩≤n = (is-trans _ _ _ (MonotoneL a'·b'≤b) a·b≤n)
in subst (_≤ n) (·Assoc a a' b') a·⟨a'·b'⟩≤n) ∣₁
}) l·kb
}
⇐ : _
⇐ n = propTruncRec
isPropPropTrunc
λ {((a , b) , s·l≤a , (k≤b , a·b≤n))
→ propTruncRec
isPropPropTrunc
(λ {((a' , b') , s≤a' , (l≤b' , a'·b'≤a))
→ ∣ (a' , b' · b) , s≤a' , ( ∣ (b' , b) , l≤b' , (k≤b , is-refl _) ∣₁ ,
(let ⟨a'·b'⟩·b≤n = (is-trans _ _ _ (MonotoneR a'·b'≤a) a·b≤n)
in subst (_≤ n) (sym (·Assoc a' b' b)) ⟨a'·b'⟩·b≤n) ) ∣₁
}) s·l≤a
}
asCommMonoid : CommMonoid (ℓ-suc ℓ)
asCommMonoid = makeCommMonoid 1↑ _·↑_ isSetM↑ ·↑Assoc ·↑Rid ·↑Comm
{-
Poset structure on M↑
-}
_≤↑_ : (s l : M↑) → Type _
s ≤↑ l = (m : fst M) → fst ((fst l) m) → fst ((fst s) m)
isBounded→≤↑ : (s : M↑) → isBounded s → ∃[ m ∈ fst M ] (s ≤↑ (m ^↑))
isBounded→≤↑ s =
propTruncRec
isPropPropTrunc
λ {(m , mIsBound)
→ ∣ m , (λ n m≤n → snd s m n m≤n mIsBound) ∣₁
}
≤↑IsProp : (s l : M↑) → isProp (s ≤↑ l)
≤↑IsProp s l = isPropΠ2 (λ x p → snd (fst s x))
≤↑IsRefl : (s : M↑) → s ≤↑ s
≤↑IsRefl s = λ m x → x
≤↑IsTrans : (s l t : M↑) → s ≤↑ l → l ≤↑ t → s ≤↑ t
≤↑IsTrans s l t p q x = (p x) ∘ (q x)
≤↑IsAntisym : (s l : M↑) → s ≤↑ l → l ≤↑ s → s ≡ l
≤↑IsAntisym s l p q = pathFromImplications _ _ q p
{-
Compatability with the monoid structure
-}
·↑IsRMonotone : (l t s : M↑) → l ≤↑ t → (l ·↑ s) ≤↑ (t ·↑ s)
·↑IsRMonotone l t s p x =
propTruncRec
isPropPropTrunc
λ { ((a , b) , l≤a , (s≤b , a·b≤x)) → ∣ (a , b) , p a l≤a , s≤b , a·b≤x ∣₁}
·↑IsLMonotone : (l t s : M↑) → l ≤↑ t → (s ·↑ l) ≤↑ (s ·↑ t)
·↑IsLMonotone l t s p x =
propTruncRec
isPropPropTrunc
λ {((a , b) , s≤a , (l≤b , a·b≤x)) → ∣ (a , b) , s≤a , p b l≤b , a·b≤x ∣₁}
asOrderedCommMonoid : OrderedCommMonoid (ℓ-suc ℓ) ℓ
asOrderedCommMonoid .fst = _
asOrderedCommMonoid .snd .OrderedCommMonoidStr._≤_ = _≤↑_
asOrderedCommMonoid .snd .OrderedCommMonoidStr._·_ = _·↑_
asOrderedCommMonoid .snd .OrderedCommMonoidStr.ε = 1↑
asOrderedCommMonoid .snd .OrderedCommMonoidStr.isOrderedCommMonoid =
IsOrderedCommMonoidFromIsCommMonoid
(CommMonoidStr.isCommMonoid (snd asCommMonoid))
≤↑IsProp ≤↑IsRefl ≤↑IsTrans ≤↑IsAntisym ·↑IsRMonotone ·↑IsLMonotone
boundedSubstructure : OrderedCommMonoid (ℓ-suc ℓ) ℓ
boundedSubstructure =
makeOrderedSubmonoid
asOrderedCommMonoid
(λ s → (isBounded s , isPropIsBounded s))
·presBounded
(isBounded^ ε)
PropCompletion :
OrderedCommMonoid ℓ ℓ
→ OrderedCommMonoid (ℓ-suc ℓ) ℓ
PropCompletion M = PropCompletion.asOrderedCommMonoid _ M
BoundedPropCompletion :
OrderedCommMonoid ℓ ℓ
→ OrderedCommMonoid (ℓ-suc ℓ) ℓ
BoundedPropCompletion M = PropCompletion.boundedSubstructure _ M
isSetBoundedPropCompletion :
(M : OrderedCommMonoid ℓ ℓ)
→ isSet (⟨ BoundedPropCompletion M ⟩)
isSetBoundedPropCompletion M =
isSetΣSndProp (isSetOrderedCommMonoid (PropCompletion M))
λ x → PropCompletion.isPropIsBounded _ M x
|
algebraic-stack_agda0000_doc_13025 | -- Andreas, 2018-10-18, re issue #2757
--
-- Extracted this snippet from the standard library
-- as it caused problems during work in #2757
-- (runtime erasue using 0-quantity).
-- {-# OPTIONS -v tc.lhs.unify:65 -v tc.irr:50 #-}
open import Agda.Builtin.Size
data ⊥ : Set where
mutual
data Conat (i : Size) : Set where
zero : Conat i
suc : ∞Conat i → Conat i
record ∞Conat (i : Size) : Set where
coinductive
field force : ∀{j : Size< i} → Conat j
open ∞Conat
infinity : ∀ {i} → Conat i
infinity = suc λ where .force → infinity
data Finite : Conat ∞ → Set where
zero : Finite zero
suc : ∀ {n} → Finite (n .force) → Finite (suc n)
¬Finite∞ : Finite infinity → ⊥
¬Finite∞ (suc p) = ¬Finite∞ p
-- The problem was that the usableMod check in the
-- unifier (LHS.Unify) refuted this pattern match
-- because a runtime-erased argument ∞ (via meta-variable)
-- the the extended lambda.
|
algebraic-stack_agda0000_doc_13026 | open import MJ.Types
open import MJ.Classtable
import MJ.Syntax as Syntax
import MJ.Semantics.Values as Values
--
-- Substitution-free interpretation of welltyped MJ
--
module MJ.Semantics.Functional {c} (Σ : CT c) (ℂ : Syntax.Impl Σ) where
open import Prelude
open import Data.Vec hiding (init)
open import Data.Vec.All.Properties.Extra as Vec∀++
open import Data.Sum
open import Data.List as List
open import Data.List.All as List∀ hiding (lookup)
open import Data.List.All.Properties.Extra
open import Data.List.Any
open import Data.List.Prefix
open import Data.List.Properties.Extra as List+
open import Data.Maybe as Maybe using (Maybe; just; nothing)
open import Relation.Binary.PropositionalEquality
open import Data.Star.Indexed
import Data.Vec.All as Vec∀
open Membership-≡
open Values Σ
open CT Σ
open Syntax Σ
-- open import MJ.Semantics.Objects.Hierarchical Σ ℂ using (encoding)
open import MJ.Semantics.Objects.Flat Σ ℂ using (encoding)
open ObjEncoding encoding
open Heap encoding
⊒-res : ∀ {a}{I : World c → Set a}{W W'} → W' ⊒ W → Res I W' → Res I W
⊒-res {W = W} p (W' , ext' , μ' , v) = W' , ⊑-trans p ext' , μ' , v
mutual
--
-- object initialization
--
init : ∀ {W} cid → Cont (fromList (Class.constr (clookup cid))) (λ W → Obj W cid) W
init cid E μ with Impl.bodies ℂ cid
init cid E μ | impl super-args defs with evalₙ (defs FLD) E μ
... | W₁ , ext₁ , μ₁ , vs with clookup cid | inspect clookup cid
-- case *without* super initialization
init cid E μ | impl nothing defs | (W₁ , ext₁ , μ₁ , vs) | (class nothing constr decls) | [ eq ] =
W₁ , ext₁ , μ₁ , vs
-- case *with* super initialization
init cid E μ | impl (just sc) defs | (W₁ , ext₁ , μ₁ , vs) |
(class (just x) constr decls) | [ eq ] with evalₑ-all sc (Vec∀.map (coerce ext₁) E) μ₁
... | W₂ , ext₂ , μ₂ , svs with init x (all-fromList svs) μ₂
... | W₃ , ext₃ , μ₃ , inherited = W₃ , ⊑-trans (⊑-trans ext₁ ext₂) ext₃ , μ₃ ,
(List∀.map (coerce (⊑-trans ext₂ ext₃)) vs ++-all inherited)
{-}
init cid E μ with Impl.bodies ℂ cid
init cid E μ | impl super-args defs with evalₙ (defs FLD) E μ
... | W₁ , ext₁ , μ₁ , vs with clookup cid | inspect clookup cid
-- case *without* super initialization
init cid E μ | impl nothing defs | (W₁ , ext₁ , μ₁ , vs) |
(class nothing constr decls) | [ eq ] =
, ext₁
, μ₁
, record {
own = λ{
MTH → List∀.tabulate (λ _ → tt) ;
FLD → subst (λ C → All _ (Class.decls C FLD)) (sym eq) vs
};
inherited = subst (λ C → Maybe.All _ (Class.parent C)) (sym eq) nothing
}
-- case *with* super initialization
init cid E μ | impl (just sc) defs | (W₁ , ext₁ , μ₁ , vs) |
(class (just x) constr decls) | [ eq ] with evalₑ-all sc (Vec∀.map (coerce ext₁) E) μ₁
... | W₂ , ext₂ , μ₂ , svs with init x (all-fromList svs) μ₂
... | W₃ , ext₃ , μ₃ , sO =
, ⊑-trans (⊑-trans ext₁ ext₂) ext₃
, μ₃
, record {
own = λ{
MTH → List∀.tabulate (λ _ → tt) ;
FLD → subst
(λ C → All _ (Class.decls C FLD))
(sym eq)
(List∀.map (coerce (⊑-trans ext₂ ext₃)) vs)
};
inherited = subst (λ C → Maybe.All _ (Class.parent C)) (sym eq) (just sO)
}
-}
evalₑ-all : ∀ {n}{Γ : Ctx c n}{as} →
All (Expr Γ) as → ∀ {W} → Cont Γ (λ W' → All (Val W') as) W
evalₑ-all [] E μ = , ⊑-refl , μ , []
evalₑ-all (px ∷ exps) E μ with evalₑ px E μ
... | W' , ext' , μ' , v with evalₑ-all exps (Vec∀.map (coerce ext') E) μ'
... | W'' , ext'' , μ'' , vs = W'' , ⊑-trans ext' ext'' , μ'' , coerce ext'' v ∷ vs
--
-- evaluation of expressions
--
{-# TERMINATING #-}
evalₑ : ∀ {n}{Γ : Ctx c n}{a} → Expr Γ a → ∀ {W} → Cont Γ (flip Val a) W
evalₑ (upcast sub e) E μ with evalₑ e E μ
... | W' , ext' , μ' , (ref r s) = W' , ext' , μ' , ref r (<:-trans s sub)
-- primitive values
evalₑ unit = pure (const unit)
evalₑ (num n) = pure (const (num n))
-- variable lookup
evalₑ (var i) = pure (λ E → Vec∀.lookup i E)
-- object allocation
evalₑ (new C args) {W} E μ with evalₑ-all args E μ
-- create the object, typed under the current heap shape
... | W₁ , ext₁ , μ₁ , vs with init C (all-fromList vs) μ₁
... | W₂ , ext₂ , μ₂ , O =
let
-- extension fact for the heap extended with the new object allocation
ext = ∷ʳ-⊒ (obj C) W₂
in
, ⊑-trans (⊑-trans ext₁ ext₂) ext
, all-∷ʳ (List∀.map (coerce ext) μ₂) (coerce ext (obj C O))
, ref (∈-∷ʳ W₂ (obj C)) refl -- value typed under the extended heap
-- binary interger operations
evalₑ (iop f l r) E μ with evalₑ l E μ
... | W₁ , ext₁ , μ₁ , (num i) with evalₑ r (Vec∀.map (coerce ext₁) E) μ₁
... | W₂ , ext₂ , μ₂ , (num j) = W₂ , ⊑-trans ext₁ ext₂ , μ₂ , num (f i j)
-- method calls
evalₑ (call {C} e mtd args) E μ with evalₑ e E μ -- eval obj expression
... | W₁ , ext₁ , μ₁ , r@(ref o sub) with ∈-all o μ₁ -- lookup obj on the heap
... | val ()
... | obj cid O with evalₑ-all args (Vec∀.map (coerce ext₁) E) μ₁ -- eval arguments
... | W₂ , ext₂ , μ₂ , vs =
-- and finally eval the body of the method under the environment
-- generated from the call arguments and the object's "this"
⊒-res
(⊑-trans ext₁ ext₂)
(eval-body cmd (ref (∈-⊒ o ext₂) <:-fact Vec∀.∷ all-fromList vs) μ₂)
where
-- get the method definition
cmd = getDef C mtd ℂ
-- get a subtyping fact
<:-fact = <:-trans sub (proj₁ (proj₂ mtd))
-- field lookup in the heap
evalₑ (get e fld) E μ with evalₑ e E μ
... | W' , ext' , μ' , ref o C<:C₁ with ∈-all o μ'
... | (val ())
-- apply the runtime subtyping fact to weaken the member fact
... | obj cid O = W' , ext' , μ' , getter O (mem-inherit Σ C<:C₁ fld)
--
-- command evaluation
--
evalc : ∀ {n m}{I : Ctx c n}{O : Ctx c m}{W : World c}{a} →
-- we use a sum for abrupt returns
Cmd I a O → Cont I (λ W → (Val W a) ⊎ (Env O W)) W
-- new locals variable
evalc (loc x e) E μ with evalₑ e E μ
... | W₁ , ext₁ , μ₁ , v = W₁ , ext₁ , μ₁ , inj₂ (v Vec∀.∷ (Vec∀.map (coerce ext₁) E))
-- assigning to a local
evalc (asgn i x) E μ with evalₑ x E μ
... | W₁ , ext₁ , μ₁ , v = W₁ , ext₁ , μ₁ , inj₂ (Vec∀.map (coerce ext₁) E Vec∀++.[ i ]≔ v)
-- setting a field
-- start by lookuping up the referenced object on the heap & eval the expression to assign it
evalc (set rf fld e) E μ with evalₑ rf E μ
... | W₁ , ext₁ , μ₁ , ref p s with List∀.lookup μ₁ p | evalₑ e (Vec∀.map (coerce ext₁) E) μ₁
... | (val ()) | _
... | (obj cid O) | (W₂ , ext₂ , μ₂ , v) = let ext = ⊑-trans ext₁ ext₂ in
, ext
, (μ₂ All[ ∈-⊒ p ext₂ ]≔' -- update the store at the reference location
-- update the object at the member location
obj cid (
setter (coerce ext₂ O) (mem-inherit Σ s fld) v
)
)
, (inj₂ $ Vec∀.map (coerce ext) E)
-- side-effectful expressions
evalc (do x) E μ with evalₑ x E μ
... | W₁ , ext₁ , μ₁ , _ = W₁ , ext₁ , μ₁ , inj₂ (Vec∀.map (coerce ext₁) E)
-- early returns
evalc (ret x) E μ with evalₑ x E μ
... | W₁ , ext₁ , μ₁ , v = W₁ , ext₁ , μ₁ , inj₁ v
eval-body : ∀ {n}{I : Ctx c n}{W : World c}{a} → Body I a → Cont I (λ W → Val W a) W
eval-body (body ε re) E μ = evalₑ re E μ
eval-body (body (x ◅ xs) re) E μ with evalc x E μ
... | W₁ , ext₁ , μ₁ , inj₂ E₁ = ⊒-res ext₁ (eval-body (body xs re) E₁ μ₁)
... | W₁ , ext₁ , μ₁ , inj₁ v = _ , ext₁ , μ₁ , v
evalₙ : ∀ {n}{I : Ctx c n}{W : World c}{as} → All (Body I) as →
Cont I (λ W → All (Val W) as) W
evalₙ [] E μ = , ⊑-refl , μ , []
evalₙ (px ∷ bs) E μ with eval-body px E μ
... | W₁ , ext₁ , μ₁ , v with evalₙ bs (Vec∀.map (coerce ext₁) E) μ₁
... | W₂ , ext₂ , μ₂ , vs = W₂ , ⊑-trans ext₁ ext₂ , μ₂ , coerce ext₂ v ∷ vs
eval : ∀ {a} → Prog a → ∃ λ W → Store W × Val W a
eval (lib , main) with eval-body main Vec∀.[] []
... | W , ext , μ , v = W , μ , v
|
algebraic-stack_agda0000_doc_13027 | {-# OPTIONS --allow-unsolved-metas #-}
module LiteralFormula where
open import OscarPrelude
open import IsLiteralFormula
open import HasNegation
open import Formula
record LiteralFormula : Set
where
constructor ⟨_⟩
field
{formula} : Formula
isLiteralFormula : IsLiteralFormula formula
open LiteralFormula public
instance EqLiteralFormula : Eq LiteralFormula
Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂)
with φ₁ ≟ φ₂
… | no φ₁≢φ₂ = no (λ {refl → φ₁≢φ₂ refl})
Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) | yes refl = case (eqIsLiteralFormula lf₁ lf₂) of λ {refl → yes refl}
instance HasNegationLiteralFormula : HasNegation LiteralFormula
HasNegation.~ HasNegationLiteralFormula ⟨ atomic 𝑃 τs ⟩ = ⟨ logical 𝑃 τs ⟩
HasNegation.~ HasNegationLiteralFormula ⟨ logical 𝑃 τs ⟩ = ⟨ atomic 𝑃 τs ⟩
open import Interpretation
open import Vector
open import Term
open import Elements
open import TruthValue
module _ where
open import HasSatisfaction
instance HasSatisfactionLiteralFormula : HasSatisfaction LiteralFormula
HasSatisfaction._⊨_ HasSatisfactionLiteralFormula I ⟨ atomic 𝑃 τs ⟩ = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ true ⟩
HasSatisfaction._⊨_ HasSatisfactionLiteralFormula I ⟨ logical 𝑃 τs ⟩ = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ false ⟩
instance HasDecidableSatisfactionLiteralFormula : HasDecidableSatisfaction LiteralFormula
HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionLiteralFormula
I ⟨ atomic 𝑃 τs ⟩
with 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩
… | ⟨ true ⟩ = yes refl
… | ⟨ false ⟩ = no λ ()
HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionLiteralFormula
I ⟨ logical 𝑃 τs ⟩
with 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩
… | ⟨ true ⟩ = no λ ()
… | ⟨ false ⟩ = yes refl
instance HasDecidableValidationLiteralFormula : HasDecidableValidation LiteralFormula
HasDecidableValidation.⊨? HasDecidableValidationLiteralFormula = {!!}
module _ where
open import HasSubstantiveDischarge
postulate
instance cs' : CanonicalSubstitution LiteralFormula
instance hpu' : HasPairUnification LiteralFormula (CanonicalSubstitution.S cs')
instance HasSubstantiveDischargeLiteralFormula : HasSubstantiveDischarge LiteralFormula
--HasSubstantiveDischarge._o≽o_ HasSubstantiveDischargeLiteralFormula φ₁ φ₂ = φ₁ ≡ φ₂
HasSubstantiveDischarge.hasNegation HasSubstantiveDischargeLiteralFormula = it
HasSubstantiveDischarge.≽-reflexive HasSubstantiveDischargeLiteralFormula = {!!}
HasSubstantiveDischarge.≽-consistent HasSubstantiveDischargeLiteralFormula = {!!}
HasSubstantiveDischarge.≽-contrapositive HasSubstantiveDischargeLiteralFormula = {!!}
instance HasDecidableSubstantiveDischargeLiteralFormula : HasDecidableSubstantiveDischarge LiteralFormula
HasDecidableSubstantiveDischarge.hasSubstantiveDischarge HasDecidableSubstantiveDischargeLiteralFormula = it
HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeLiteralFormula φ+ φ- = {!!} -- φ+ ≟ φ-
|
algebraic-stack_agda0000_doc_13028 | {-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Bundle where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Fibration
open import Cubical.Foundations.Structure
open import Cubical.Structures.TypeEqvTo
open import Cubical.Data.Sigma.Properties
open import Cubical.HITs.PropositionalTruncation
module _ {ℓb ℓf} {B : Type ℓb} {F : Type ℓf} {ℓ} where
{-
A fiber bundle with base space B and fibers F is a map `p⁻¹ : B → TypeEqvTo F`
taking points in the base space to their respective fibers.
e.g. a double cover is a map `B → TypeEqvTo Bool`
-}
Total : (p⁻¹ : B → TypeEqvTo ℓ F) → Type (ℓ-max ℓb ℓ)
Total p⁻¹ = Σ[ x ∈ B ] p⁻¹ x .fst
pr : (p⁻¹ : B → TypeEqvTo ℓ F) → Total p⁻¹ → B
pr p⁻¹ = fst
inc : (p⁻¹ : B → TypeEqvTo ℓ F) (x : B) → p⁻¹ x .fst → Total p⁻¹
inc p⁻¹ x = (x ,_)
fibPrEquiv : (p⁻¹ : B → TypeEqvTo ℓ F) (x : B) → fiber (pr p⁻¹) x ≃ p⁻¹ x .fst
fibPrEquiv p⁻¹ x = fiberEquiv (λ x → typ (p⁻¹ x)) x
module _ {ℓb ℓf} (B : Type ℓb) (ℓ : Level) (F : Type ℓf) where
private
ℓ' = ℓ-max ℓb ℓ
{-
Equivalently, a fiber bundle with base space B and fibers F is a type E and
a map `p : E → B` with fibers merely equivalent to F.
-}
bundleEquiv : (B → TypeEqvTo ℓ' F) ≃ (Σ[ E ∈ Type ℓ' ] Σ[ p ∈ (E → B) ] ∀ x → ∥ fiber p x ≃ F ∥)
bundleEquiv = compEquiv (compEquiv PiΣ (pathToEquiv p)) assocΣ
where e = fibrationEquiv B ℓ
p : (Σ[ p⁻¹ ∈ (B → Type ℓ') ] ∀ x → ∥ p⁻¹ x ≃ F ∥)
≡ (Σ[ p ∈ (Σ[ E ∈ Type ℓ' ] (E → B)) ] ∀ x → ∥ fiber (snd p) x ≃ F ∥ )
p i = Σ[ q ∈ ua e (~ i) ] ∀ x → ∥ ua-unglue e (~ i) q x ≃ F ∥
|
algebraic-stack_agda0000_doc_13029 | module Generic.Property.Reify where
open import Generic.Core
data ExplView : Visibility -> Set where
yes-expl : ExplView expl
no-expl : ∀ {v} -> ExplView v
explView : ∀ v -> ExplView v
explView expl = yes-expl
explView v = no-expl
ExplMaybe : ∀ {α} -> Visibility -> Set α -> Set α
ExplMaybe v A with explView v
... | yes-expl = A
... | no-expl = ⊤
caseExplMaybe : ∀ {α π} {A : Set α} (P : Visibility -> Set π)
-> (A -> P expl) -> (∀ {v} -> P v) -> ∀ v -> ExplMaybe v A -> P v
caseExplMaybe P f y v x with explView v
... | yes-expl = f x
... | no-expl = y
Prod : ∀ {α} β -> Visibility -> Set α -> Set (α ⊔ β) -> Set (α ⊔ β)
Prod β v A B with explView v
... | yes-expl = A × B
... | no-expl = B
uncurryProd : ∀ {α β γ} {A : Set α} {B : Set (α ⊔ β)} {C : Set γ} v
-> Prod β v A B -> (ExplMaybe v A -> B -> C) -> C
uncurryProd v p g with explView v | p
... | yes-expl | (x , y) = g x y
... | no-expl | y = g tt y
SemReify : ∀ {i β} {I : Set i} -> Desc I β -> Set
SemReify (var i) = ⊤
SemReify (π i q C) = ⊥
SemReify (D ⊛ E) = SemReify D × SemReify E
mutual
ExtendReify : ∀ {i β} {I : Set i} -> Desc I β -> Set β
ExtendReify (var i) = ⊤
ExtendReify (π i q C) = ExtendReifyᵇ i C q
ExtendReify (D ⊛ E) = SemReify D × ExtendReify E
ExtendReifyᵇ : ∀ {ι α β γ q} {I : Set ι} i -> Binder α β γ i q I -> α ≤ℓ β -> Set β
ExtendReifyᵇ {β = β} i (coerce (A , D)) q = Coerce′ q $
Prod β (visibility i) (Reify A) (∀ {x} -> ExtendReify (D x))
-- Can't reify an irrelevant thing into its relevant representation.
postulate
reifyᵢ : ∀ {α} {A : Set α} {{aReify : Reify A}} -> .A -> Term
instance
{-# TERMINATING #-}
DataReify : ∀ {i β} {I : Set i} {D : Data (Desc I β)} {j}
{{reD : All ExtendReify (consTypes D)}} -> Reify (μ D j)
DataReify {ι} {β} {I} {D₀} = record { reify = reifyMu } where
mutual
reifySem : ∀ D {{reD : SemReify D}} -> ⟦ D ⟧ (μ D₀) -> Term
reifySem (var i) d = reifyMu d
reifySem (π i q C) {{()}}
reifySem (D ⊛ E) {{reD , reE}} (x , y) =
sate _,_ (reifySem D {{reD}} x) (reifySem E {{reE}} y)
reifyExtend : ∀ {j} D {{reD : ExtendReify D}} -> Extend D (μ D₀) j -> List Term
reifyExtend (var i) lrefl = []
reifyExtend (π i q C) p = reifyExtendᵇ i C q p
reifyExtend (D ⊛ E) {{reD , reE}} (x , e) =
reifySem D {{reD}} x ∷ reifyExtend E {{reE}} e
reifyExtendᵇ : ∀ {α γ q j} i (C : Binder α β γ i q I) q′ {{reC : ExtendReifyᵇ i C q′}}
-> Extendᵇ i C q′ (μ D₀) j -> List Term
reifyExtendᵇ i (coerce (A , D)) q {{reC}} p =
uncurryProd (visibility i) (uncoerce′ q reC) λ mreA reD -> split q p λ x e ->
let es = reifyExtend (D x) {{reD}} e in
caseExplMaybe _ (λ reA -> elimRelValue _ (reify {{reA}}) (reifyᵢ {{reA}}) x ∷ es)
es
(visibility i)
mreA
reifyDesc : ∀ {j} D {{reD : ExtendReify D}} -> Name -> Extend D (μ D₀) j -> Term
reifyDesc D n e = vis appCon n (reifyExtend D e)
reifyAny : ∀ {j} (Ds : List (Desc I β)) {{reD : All ExtendReify Ds}}
-> ∀ d a b ns -> Node D₀ (packData d a b Ds ns) j -> Term
reifyAny [] d a b tt ()
reifyAny (D ∷ []) {{reD , _}} d a b (n , ns) e = reifyDesc D {{reD}} n e
reifyAny (D ∷ E ∷ Ds) {{reD , reDs}} d a b (n , ns) (inj₁ e) = reifyDesc D {{reD}} n e
reifyAny (D ∷ E ∷ Ds) {{reD , reDs}} d a b (n , ns) (inj₂ r) =
reifyAny (E ∷ Ds) {{reDs}} d a b ns r
reifyMu : ∀ {j} -> μ D₀ j -> Term
reifyMu (node e) = reifyAny (consTypes D₀)
(dataName D₀)
(parsTele D₀)
(indsTele D₀)
(consNames D₀)
e
|
algebraic-stack_agda0000_doc_13030 | module Issue1760g where
data ⊥ : Set where
{-# NO_POSITIVITY_CHECK #-}
{-# NON_TERMINATING #-}
mutual
record U : Set where
constructor roll
field ap : U → U
lemma : U → ⊥
lemma (roll u) = lemma (u (roll u))
bottom : ⊥
bottom = lemma (roll λ x → x)
|
algebraic-stack_agda0000_doc_13031 | {-# OPTIONS --without-K --safe #-}
open import Algebra.Structures.Bundles.Field
module Algebra.Linear.Morphism.VectorSpace
{k ℓᵏ} (K : Field k ℓᵏ)
where
open import Level
open import Algebra.FunctionProperties as FP
import Algebra.Linear.Morphism.Definitions as LinearMorphismDefinitions
import Algebra.Morphism as Morphism
open import Relation.Binary using (Rel; Setoid)
open import Relation.Binary.Morphism.Structures
open import Algebra.Morphism
open import Algebra.Linear.Core
open import Algebra.Linear.Structures.VectorSpace K
open import Algebra.Linear.Structures.Bundles
module LinearDefinitions {a₁ a₂ ℓ₂} (A : Set a₁) (B : Set a₂) (_≈_ : Rel B ℓ₂) where
open Morphism.Definitions A B _≈_ public
open LinearMorphismDefinitions K A B _≈_ public
module _
{a₁ ℓ₁} (From : VectorSpace K a₁ ℓ₁)
{a₂ ℓ₂} (To : VectorSpace K a₂ ℓ₂)
where
private
module F = VectorSpace From
module T = VectorSpace To
K' : Set k
K' = Field.Carrier K
open F using () renaming (Carrier to A; _≈_ to _≈₁_; _+_ to _+₁_; _∙_ to _∙₁_)
open T using () renaming (Carrier to B; _≈_ to _≈₂_; _+_ to _+₂_; _∙_ to _∙₂_)
open import Function
open LinearDefinitions (VectorSpace.Carrier From) (VectorSpace.Carrier To) _≈₂_
record IsLinearMap (⟦_⟧ : Morphism) : Set (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where
field
isAbelianGroupMorphism : IsAbelianGroupMorphism F.abelianGroup T.abelianGroup ⟦_⟧
∙-homo : ScalarHomomorphism ⟦_⟧ _∙₁_ _∙₂_
open IsAbelianGroupMorphism isAbelianGroupMorphism public
renaming (∙-homo to +-homo; ε-homo to 0#-homo)
distrib-linear : ∀ (a b : K') (u v : A) -> ⟦ a ∙₁ u +₁ b ∙₁ v ⟧ ≈₂ a ∙₂ ⟦ u ⟧ +₂ b ∙₂ ⟦ v ⟧
distrib-linear a b u v = T.trans (+-homo (a ∙₁ u) (b ∙₁ v)) (T.+-cong (∙-homo a u) (∙-homo b v))
record IsLinearMonomorphism (⟦_⟧ : Morphism) : Set (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where
field
isLinearMap : IsLinearMap ⟦_⟧
injective : Injective _≈₁_ _≈₂_ ⟦_⟧
open IsLinearMap isLinearMap public
record IsLinearIsomorphism (⟦_⟧ : Morphism) : Set (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where
field
isLinearMonomorphism : IsLinearMonomorphism ⟦_⟧
surjective : Surjective _≈₁_ _≈₂_ ⟦_⟧
open IsLinearMonomorphism isLinearMonomorphism public
module _
{a ℓ} (V : VectorSpace K a ℓ)
where
open VectorSpace V
open LinearDefinitions Carrier Carrier _≈_
IsLinearEndomorphism : Morphism -> Set (k ⊔ a ⊔ ℓ)
IsLinearEndomorphism ⟦_⟧ = IsLinearMap V V ⟦_⟧
IsLinearAutomorphism : Morphism -> Set (k ⊔ a ⊔ ℓ)
IsLinearAutomorphism ⟦_⟧ = IsLinearIsomorphism V V ⟦_⟧
|
algebraic-stack_agda0000_doc_13032 | module helloworld where
open import IO
main = run (putStrLn "Hello World")
|
algebraic-stack_agda0000_doc_13033 | {-# OPTIONS --without-K #-}
module hott.types where
open import hott.types.nat public
open import hott.types.coproduct public
|
algebraic-stack_agda0000_doc_13034 | module README where
----------------------------------------------------------------------
-- The Agda smallib library, version 0.1
----------------------------------------------------------------------
--
-- This library implements a type theory which is described in the
-- Appendix of the HoTT book. It also contains some properties derived
-- from the rules of this theory.
----------------------------------------------------------------------
--
-- This project is meant to be a practice for the author but as a
-- secondary goal it would be nice to create a small library which is
-- less intimidating than the standard one.
--
-- This version was tested using Agda 2.6.1.
----------------------------------------------------------------------
----------------------------------------------------------------------
-- High-level overview of contents
----------------------------------------------------------------------
--
-- The top-level module L is not implemented (yet), it's sole purpose
-- is to prepend all of the module names with something to avoid
-- possible name clashes with the standard library.
--
-- The structure of the library is the following:
--
-- • Base
-- The derivation rules of the implemented type theory and some
-- useful properties which can be derived from these. To make a
-- clear distinction between these every type has a Core and a
-- Properties submodule. In some cases the latter might be empty.
--
-- • Data
-- ◦ Bool
-- A specialized form of the Coproduct type. It implements if as
-- an elimination rule. The following operations are defined on
-- them: not, ∧, ∨, xor.
----------------------------------------------------------------------
----------------------------------------------------------------------
-- Some useful modules
----------------------------------------------------------------------
--
-- • To use several things at once
import L.Base -- Type theory with it's properties.
import L.Base.Core -- Derivation rules.
--
-- • To use only one base type
import L.Base.Sigma -- Products (universe polymorphic).
import L.Base.Coproduct -- Disjoint sums (universe polymorphic).
import L.Base.Empty -- Empty type.
import L.Base.Unit -- Unit type.
import L.Base.Nat -- Natural numbers.
import L.Base.Id -- Propositional equality (universe poly.).
--
-- • To use the properties of the above
import L.Base.Sigma.Properties
import L.Base.Coproduct.Properties
import L.Base.Empty.Properties
import L.Base.Unit.Properties
import L.Base.Nat.Properties
import L.Base.Id.Properties
--
-- • Some datatypes
import L.Data.Bool -- Booleans.
----------------------------------------------------------------------
----------------------------------------------------------------------
-- Notes
----------------------------------------------------------------------
--
-- • L.Base exports L.Coproduct.Core._+_ as _⊎_ to avoid multiple
-- definitions of _+_, as L.Base.Nat declares it as well.
----------------------------------------------------------------------
|
algebraic-stack_agda0000_doc_13035 | {-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.SuspAdjointLoopIso
open import cohomology.WithCoefficients
open import cohomology.Theory
open import cohomology.Exactness
open import cohomology.Choice
{- A spectrum (family (Eₙ | n : ℤ) such that ΩEₙ₊₁ = Eₙ)
- gives rise to a cohomology theory C with Cⁿ(S⁰) = π₁(Eₙ₊₁). -}
module cohomology.SpectrumModel
{i} (E : ℤ → Ptd i) (spectrum : (n : ℤ) → ⊙Ω (E (succ n)) == E n) where
module SpectrumModel where
{- Definition of cohomology group C -}
module _ (n : ℤ) (X : Ptd i) where
C : Group i
C = →Ω-group X (E (succ n))
{- convenient abbreviations -}
CEl = Group.El C
⊙CEl = Group.⊙El C
Cid = Group.ident C
{- before truncation -}
uCEl = fst (X ⊙→ ⊙Ω (E (succ n)))
{- Cⁿ(X) is an abelian group -}
C-abelian : (n : ℤ) (X : Ptd i) → is-abelian (C n X)
C-abelian n X =
transport (is-abelian ∘ →Ω-group X) (spectrum (succ n)) $
Trunc-group-abelian (→Ω-group-structure _ _) $ λ {(f , fpt) (g , gpt) →
⊙λ= (λ x → conc^2-comm (f x) (g x)) (pt-lemma fpt gpt)}
where
pt-lemma : ∀ {i} {A : Type i} {x : A} {p q : idp {a = x} == idp {a = x}}
(α : p == idp) (β : q == idp)
→ ap (uncurry _∙_) (ap2 _,_ α β) ∙ idp
== conc^2-comm p q ∙ ap (uncurry _∙_) (ap2 _,_ β α) ∙ idp
pt-lemma idp idp = idp
{- CF, the functorial action of C:
- contravariant functor from pointed spaces to abelian groups -}
module _ (n : ℤ) {X Y : Ptd i} where
CF-hom : fst (X ⊙→ Y) → (C n Y →ᴳ C n X)
CF-hom f = →Ω-group-dom-act f (E (succ n))
CF : fst (X ⊙→ Y) → fst (⊙CEl n Y ⊙→ ⊙CEl n X)
CF F = GroupHom.⊙f (CF-hom F)
{- CF-hom is a functor from pointed spaces to abelian groups -}
module _ (n : ℤ) {X : Ptd i} where
CF-ident : CF-hom n {X} {X} (⊙idf X) == idhom (C n X)
CF-ident = →Ω-group-dom-idf (E (succ n))
CF-comp : {Y Z : Ptd i} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y))
→ CF-hom n (g ⊙∘ f) == CF-hom n f ∘ᴳ CF-hom n g
CF-comp g f = →Ω-group-dom-∘ g f (E (succ n))
-- Eilenberg-Steenrod Axioms
{- Suspension Axiom -}
private
C-Susp' : {E₁ E₀ : Ptd i} (p : ⊙Ω E₁ == E₀) (X : Ptd i)
→ →Ω-group (⊙Susp X) E₁ ≃ᴳ →Ω-group X E₀
C-Susp' {E₁ = E₁} idp X = SuspAdjointLoopIso.iso X E₁
C-SuspF' : {E₁ E₀ : Ptd i} (p : ⊙Ω E₁ == E₀)
{X Y : Ptd i} (f : fst (X ⊙→ Y))
→ fst (C-Susp' p X) ∘ᴳ →Ω-group-dom-act (⊙susp-fmap f) E₁
== →Ω-group-dom-act f E₀ ∘ᴳ fst (C-Susp' p Y)
C-SuspF' {E₁ = E₁} idp f = SuspAdjointLoopIso.nat-dom f E₁
C-Susp : (n : ℤ) (X : Ptd i) → C (succ n) (⊙Susp X) ≃ᴳ C n X
C-Susp n X = C-Susp' (spectrum (succ n)) X
C-SuspF : (n : ℤ) {X Y : Ptd i} (f : fst (X ⊙→ Y))
→ fst (C-Susp n X) ∘ᴳ CF-hom (succ n) (⊙susp-fmap f)
== CF-hom n f ∘ᴳ fst (C-Susp n Y)
C-SuspF n f = C-SuspF' (spectrum (succ n)) f
{- Non-truncated Exactness Axiom -}
module _ (n : ℤ) {X Y : Ptd i} where
{- precomposing [⊙cfcod' f] and then [f] gives [0] -}
exact-itok-lemma : (f : fst (X ⊙→ Y)) (g : uCEl n (⊙Cof f))
→ (g ⊙∘ ⊙cfcod' f) ⊙∘ f == ⊙cst
exact-itok-lemma (f , fpt) (g , gpt) = ⊙λ=
(λ x → ap g (! (cfglue' f x)) ∙ gpt)
(ap (g ∘ cfcod) fpt
∙ ap g (ap cfcod (! fpt) ∙ ! (cfglue (snd X))) ∙ gpt
=⟨ lemma cfcod g fpt (! (cfglue (snd X))) gpt ⟩
ap g (! (cfglue (snd X))) ∙ gpt
=⟨ ! (∙-unit-r _) ⟩
(ap g (! (cfglue (snd X))) ∙ gpt) ∙ idp ∎)
where
lemma : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
{a₁ a₂ : A} {b : B} {c : C} (f : A → B) (g : B → C)
(p : a₁ == a₂) (q : f a₁ == b) (r : g b == c)
→ ap (g ∘ f) p ∙ ap g (ap f (! p) ∙ q) ∙ r == ap g q ∙ r
lemma f g idp idp idp = idp
{- if g ⊙∘ f is constant then g factors as h ⊙∘ ⊙cfcod' f -}
exact-ktoi-lemma : (f : fst (X ⊙→ Y)) (g : uCEl n Y)
→ g ⊙∘ f == ⊙cst
→ Σ (uCEl n (⊙Cof f)) (λ h → h ⊙∘ ⊙cfcod' f == g)
exact-ktoi-lemma (f , fpt) (h , hpt) p =
((g , ! q ∙ hpt) ,
pair= idp (! (∙-assoc q (! q) hpt) ∙ ap (_∙ hpt) (!-inv-r q)))
where
g : Cofiber f → Ω (E (succ n))
g = CofiberRec.f idp h (! ∘ app= (ap fst p))
q : h (snd Y) == g (cfbase' f)
q = ap g (snd (⊙cfcod' (f , fpt)))
{- Truncated Exactness Axiom -}
module _ (n : ℤ) {X Y : Ptd i} where
{- in image of (CF n (⊙cfcod' f)) ⇒ in kernel of (CF n f) -}
abstract
C-exact-itok : (f : fst (X ⊙→ Y))
→ is-exact-itok (CF-hom n (⊙cfcod' f)) (CF-hom n f)
C-exact-itok f =
itok-alt-in (CF-hom n (⊙cfcod' f)) (CF-hom n f) $
Trunc-elim (λ _ → =-preserves-level _ (Trunc-level {n = 0}))
(ap [_] ∘ exact-itok-lemma n f)
{- in kernel of (CF n f) ⇒ in image of (CF n (⊙cfcod' f)) -}
abstract
C-exact-ktoi : (f : fst (X ⊙→ Y))
→ is-exact-ktoi (CF-hom n (⊙cfcod' f)) (CF-hom n f)
C-exact-ktoi f =
Trunc-elim
(λ _ → Π-level (λ _ → raise-level _ Trunc-level))
(λ h tp → Trunc-rec Trunc-level (lemma h) (–> (Trunc=-equiv _ _) tp))
where
lemma : (h : uCEl n Y) → h ⊙∘ f == ⊙cst
→ Trunc -1 (Σ (CEl n (⊙Cof f))
(λ tk → fst (CF n (⊙cfcod' f)) tk == [ h ]))
lemma h p = [ [ fst wit ] , ap [_] (snd wit) ]
where
wit : Σ (uCEl n (⊙Cof f)) (λ k → k ⊙∘ ⊙cfcod' f == h)
wit = exact-ktoi-lemma n f h p
C-exact : (f : fst (X ⊙→ Y)) → is-exact (CF-hom n (⊙cfcod' f)) (CF-hom n f)
C-exact f = record {itok = C-exact-itok f; ktoi = C-exact-ktoi f}
{- Additivity Axiom -}
module _ (n : ℤ) {A : Type i} (X : A → Ptd i)
(ac : (W : A → Type i) → has-choice 0 A W)
where
into : CEl n (⊙BigWedge X) → Trunc 0 (Π A (uCEl n ∘ X))
into = Trunc-rec Trunc-level (λ H → [ (λ a → H ⊙∘ ⊙bwin a) ])
module Out' (K : Π A (uCEl n ∘ X)) = BigWedgeRec
idp
(fst ∘ K)
(! ∘ snd ∘ K)
out : Trunc 0 (Π A (uCEl n ∘ X)) → CEl n (⊙BigWedge X)
out = Trunc-rec Trunc-level (λ K → [ Out'.f K , idp ])
into-out : ∀ y → into (out y) == y
into-out = Trunc-elim
(λ _ → =-preserves-level _ Trunc-level)
(λ K → ap [_] (λ= (λ a → pair= idp $
ap (Out'.f K) (! (bwglue a)) ∙ idp
=⟨ ∙-unit-r _ ⟩
ap (Out'.f K) (! (bwglue a))
=⟨ ap-! (Out'.f K) (bwglue a) ⟩
! (ap (Out'.f K) (bwglue a))
=⟨ ap ! (Out'.glue-β K a) ⟩
! (! (snd (K a)))
=⟨ !-! (snd (K a)) ⟩
snd (K a) ∎)))
out-into : ∀ x → out (into x) == x
out-into = Trunc-elim
{P = λ tH → out (into tH) == tH}
(λ _ → =-preserves-level _ Trunc-level)
(λ {(h , hpt) → ap [_] $ pair=
(λ= (out-into-fst (h , hpt)))
(↓-app=cst-in $ ! $
ap (λ w → w ∙ hpt) (app=-β (out-into-fst (h , hpt)) bwbase)
∙ !-inv-l hpt)})
where
lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{a₁ a₂ : A} {b : B} (p : a₁ == a₂) (q : f a₁ == b)
→ ! q ∙ ap f p == ! (ap f (! p) ∙ q)
lemma f idp idp = idp
out-into-fst : (H : fst (⊙BigWedge X ⊙→ ⊙Ω (E (succ n))))
→ ∀ w → Out'.f (λ a → H ⊙∘ ⊙bwin a) w == fst H w
out-into-fst (h , hpt) = BigWedge-elim
(! hpt)
(λ _ _ → idp)
(λ a → ↓-='-in $
! hpt ∙ ap h (bwglue a)
=⟨ lemma h (bwglue a) hpt ⟩
! (ap h (! (bwglue a)) ∙ hpt)
=⟨ ! (Out'.glue-β (λ a → (h , hpt) ⊙∘ ⊙bwin a) a) ⟩
ap (Out'.f (λ a → (h , hpt) ⊙∘ ⊙bwin a)) (bwglue a) ∎)
abstract
C-additive : is-equiv (GroupHom.f (Πᴳ-hom-in (CF-hom n ∘ ⊙bwin {X = X})))
C-additive = transport is-equiv
(λ= $ Trunc-elim
(λ _ → =-preserves-level _ $ Π-level $ λ _ → Trunc-level)
(λ _ → idp))
((ac (uCEl n ∘ X)) ∘ise (is-eq into out into-out out-into))
open SpectrumModel
spectrum-cohomology : CohomologyTheory i
spectrum-cohomology = record {
C = C;
CF-hom = CF-hom;
CF-ident = CF-ident;
CF-comp = CF-comp;
C-abelian = C-abelian;
C-Susp = C-Susp;
C-SuspF = C-SuspF;
C-exact = C-exact;
C-additive = C-additive}
spectrum-C-S⁰ : (n : ℤ) → C n (⊙Lift ⊙S⁰) == πS 0 (E (succ n))
spectrum-C-S⁰ n = Bool⊙→Ω-is-π₁ (E (succ n))
|
algebraic-stack_agda0000_doc_13036 | {-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions.Definition
open import Setoids.Setoids
open import Setoids.Subset
module Graphs.Definition where
record Graph {a b : _} (c : _) {V' : Set a} (V : Setoid {a} {b} V') : Set (a ⊔ b ⊔ lsuc c) where
field
_<->_ : Rel {a} {c} V'
noSelfRelation : (x : V') → x <-> x → False
symmetric : {x y : V'} → x <-> y → y <-> x
wellDefined : {x y r s : V'} → Setoid._∼_ V x y → Setoid._∼_ V r s → x <-> r → y <-> s
record GraphIso {a b c d e m : _} {V1' : Set a} {V2' : Set b} {V1 : Setoid {a} {c} V1'} {V2 : Setoid {b} {d} V2'} (G : Graph e V1) (H : Graph m V2) (f : V1' → V2') : Set (a ⊔ b ⊔ c ⊔ d ⊔ e ⊔ m) where
field
bij : SetoidBijection V1 V2 f
respects : (x y : V1') → Graph._<->_ G x y → Graph._<->_ H (f x) (f y)
respects' : (x y : V1') → Graph._<->_ H (f x) (f y) → Graph._<->_ G x y
record Subgraph {a b c d e : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) {pred : V' → Set d} (sub : subset V pred) (_<->'_ : Rel {_} {e} (Sg V' pred)) : Set (a ⊔ b ⊔ c ⊔ d ⊔ e) where
field
inherits : {x y : Sg V' pred} → (x <->' y) → (Graph._<->_ G (underlying x) (underlying y))
symmetric : {x y : Sg V' pred} → (x <->' y) → (y <->' x)
wellDefined : {x y r s : Sg V' pred} → Setoid._∼_ (subsetSetoid V sub) x y → Setoid._∼_ (subsetSetoid V sub) r s → x <->' r → y <->' s
subgraphIsGraph : {a b c d e : _} {V' : Set a} {V : Setoid {a} {b} V'} {G : Graph c V} {pred : V' → Set d} {sub : subset V pred} {rel : Rel {_} {e} (Sg V' pred)} (H : Subgraph G sub rel) → Graph e (subsetSetoid V sub)
Graph._<->_ (subgraphIsGraph {rel = rel} H) = rel
Graph.noSelfRelation (subgraphIsGraph {G = G} H) (v , isSub) v=v = Graph.noSelfRelation G v (Subgraph.inherits H v=v)
Graph.symmetric (subgraphIsGraph H) v1=v2 = Subgraph.symmetric H v1=v2
Graph.wellDefined (subgraphIsGraph H) = Subgraph.wellDefined H
|
algebraic-stack_agda0000_doc_13037 | {-
A defintion of the real projective spaces following:
[BR17] U. Buchholtz, E. Rijke, The real projective spaces in homotopy type theory.
(2017) https://arxiv.org/abs/1704.05770
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.RPn.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Bundle
open import Cubical.Foundations.SIP
open import Cubical.Structures.Pointed
open import Cubical.Structures.TypeEqvTo
open import Cubical.Data.Bool
open import Cubical.Data.Nat hiding (elim)
open import Cubical.Data.NatMinusOne
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Data.Empty as ⊥ hiding (elim)
open import Cubical.Data.Sum as ⊎ hiding (elim)
open import Cubical.Data.Prod renaming (_×_ to _×'_; _×Σ_ to _×_; swapΣEquiv to swapEquiv)
hiding (swapEquiv)
open import Cubical.HITs.PropositionalTruncation as PropTrunc hiding (elim)
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
open import Cubical.HITs.Join
open import Cubical.HITs.Pushout
open import Cubical.HITs.Pushout.Flattening
private
variable
ℓ ℓ' ℓ'' : Level
-- Definition II.1 in [BR17], see also Cubical.Foundations.Bundle
2-EltType₀ = TypeEqvTo ℓ-zero Bool -- Σ[ X ∈ Type₀ ] ∥ X ≃ Bool ∥
2-EltPointed₀ = PointedEqvTo ℓ-zero Bool -- Σ[ X ∈ Type₀ ] X × ∥ X ≃ Bool ∥
Bool* : 2-EltType₀
Bool* = Bool , ∣ idEquiv _ ∣
-- Our first goal is to 'lift' `_⊕_ : Bool → Bool ≃ Bool` to a function `_⊕_ : A → A ≃ Bool`
-- for any 2-element type (A, ∣e∣).
-- `isContr-BoolPointedIso` and `isContr-2-EltPointed-iso` are contained in the proof
-- of Lemma II.2 in [BR17], though we prove `isContr-BoolPointedIso` more directly
-- with ⊕ -- [BR17] proves it for just the x = false case and uses notEquiv to get
-- the x = true case.
-- (λ y → x ⊕ y) is the unqiue pointed isomorphism (Bool , false) ≃ (Bool , x)
isContr-BoolPointedIso : ∀ x → isContr ((Bool , false) ≃[ pointed-iso ] (Bool , x))
fst (isContr-BoolPointedIso x) = ((λ y → x ⊕ y) , isEquiv-⊕ x) , ⊕-comm x false
snd (isContr-BoolPointedIso x) (e , p)
= ΣProp≡ (λ e → isSetBool (equivFun e false) x)
(ΣProp≡ isPropIsEquiv (funExt λ { false → ⊕-comm x false ∙ sym p
; true → ⊕-comm x true ∙ sym q }))
where q : e .fst true ≡ not x
q with dichotomyBool (invEq e (not x))
... | inl q = invEq≡→equivFun≡ e q
... | inr q = ⊥.rec (not≢const x (sym (invEq≡→equivFun≡ e q) ∙ p))
-- Since isContr is a mere proposition, we can eliminate a witness ∣e∣ : ∥ X ≃ Bool ∥ to get
-- that there is therefore a unique pointed isomorphism (Bool , false) ≃ (X , x) for any
-- 2-element pointed type (X , x, ∣e∣).
isContr-2-EltPointed-iso : (X∙ : 2-EltPointed₀)
→ isContr ((Bool , false , ∣ idEquiv Bool ∣) ≃[ PointedEqvTo-iso Bool ] X∙)
isContr-2-EltPointed-iso (X , x , ∣e∣)
= PropTrunc.rec isPropIsContr
(λ e → J (λ X∙ _ → isContr ((Bool , false) ≃[ pointed-iso ] X∙))
(isContr-BoolPointedIso (e .fst x))
(sym (pointed-sip _ _ (e , refl))))
∣e∣
-- This unique isomorphism must be _⊕_ 'lifted' to X. This idea is alluded to at the end of the
-- proof of Theorem III.4 in [BR17], where the authors reference needing ⊕-comm.
module ⊕* (X : 2-EltType₀) where
_⊕*_ : typ X → typ X → Bool
y ⊕* z = invEquiv (fst (fst (isContr-2-EltPointed-iso (fst X , y , snd X)))) .fst z
-- we've already shown that this map is an equivalence on the right
isEquivʳ : (y : typ X) → isEquiv (y ⊕*_)
isEquivʳ y = invEquiv (fst (fst (isContr-2-EltPointed-iso (fst X , y , snd X)))) .snd
Equivʳ : typ X → typ X ≃ Bool
Equivʳ y = (y ⊕*_) , isEquivʳ y
-- any mere proposition that holds for (Bool, _⊕_) holds for (typ X, _⊕*_)
-- this amounts to just carefully unfolding the PropTrunc.elim and J in isContr-2-EltPointed-iso
elim : ∀ {ℓ'} (P : (A : Type₀) (_⊕'_ : A → A → Bool) → Type ℓ') (propP : ∀ A _⊕'_ → isProp (P A _⊕'_))
→ P Bool _⊕_ → P (typ X) _⊕*_
elim {ℓ'} P propP r = PropTrunc.elim {P = λ ∣e∣ → P (typ X) (R₁ ∣e∣)} (λ _ → propP _ _)
(λ e → EquivJ (λ A e → P A (R₂ A e)) r e)
(snd X)
where R₁ : ∥ fst X ≃ Bool ∥ → typ X → typ X → Bool
R₁ ∣e∣ y = invEq (fst (fst (isContr-2-EltPointed-iso (fst X , y , ∣e∣))))
R₂ : (B : Type₀) → B ≃ Bool → B → B → Bool
R₂ A e y = invEq (fst (fst (J (λ A∙ _ → isContr ((Bool , false) ≃[ pointed-iso ] A∙))
(isContr-BoolPointedIso (e .fst y))
(sym (pointed-sip (A , y) (Bool , e .fst y) (e , refl))))))
-- as a consequence, we get that ⊕* is commutative, and is therefore also an equivalence on the left
comm : (y z : typ X) → y ⊕* z ≡ z ⊕* y
comm = elim (λ A _⊕'_ → (x y : A) → x ⊕' y ≡ y ⊕' x)
(λ _ _ → isPropPi (λ _ → isPropPi (λ _ → isSetBool _ _)))
⊕-comm
isEquivˡ : (y : typ X) → isEquiv (_⊕* y)
isEquivˡ y = subst isEquiv (funExt (λ z → comm y z)) (isEquivʳ y)
Equivˡ : typ X → typ X ≃ Bool
Equivˡ y = (_⊕* y) , isEquivˡ y
-- Lemma II.2 in [BR17], though we do not use it here
-- Note: Lemma II.3 is `pointed-sip`, used in `PointedEqvTo-sip`
isContr-2-EltPointed : isContr (2-EltPointed₀)
fst isContr-2-EltPointed = (Bool , false , ∣ idEquiv Bool ∣)
snd isContr-2-EltPointed A∙ = PointedEqvTo-sip Bool _ A∙ (fst (isContr-2-EltPointed-iso A∙))
--------------------------------------------------------------------------------
-- Now we mutually define RP n and its double cover (Definition III.1 in [BR17]),
-- and show that the total space of this double cover is S n (Theorem III.4).
RP : ℕ₋₁ → Type₀
cov⁻¹ : (n : ℕ₋₁) → RP n → 2-EltType₀ -- (see Cubical.Foundations.Bundle)
RP neg1 = ⊥
RP (ℕ→ℕ₋₁ n) = Pushout (pr (cov⁻¹ (-1+ n))) (λ _ → tt)
{-
tt
Total (cov⁻¹ (n-1)) — — — > Unit
| ∙
pr | ∙ inr
| ∙
V V
RP (n-1) ∙ ∙ ∙ ∙ ∙ ∙ > RP n := Pushout pr (const tt)
inl
-}
cov⁻¹ neg1 x = Bool*
cov⁻¹ (ℕ→ℕ₋₁ n) (inl x) = cov⁻¹ (-1+ n) x
cov⁻¹ (ℕ→ℕ₋₁ n) (inr _) = Bool*
cov⁻¹ (ℕ→ℕ₋₁ n) (push (x , y) i) = ua ((λ z → y ⊕* z) , ⊕*.isEquivʳ (cov⁻¹ (-1+ n) x) y) i , ∣p∣ i
where open ⊕* (cov⁻¹ (-1+ n) x)
∣p∣ = isProp→PathP (λ i → squash {A = ua (⊕*.Equivʳ (cov⁻¹ (-1+ n) x) y) i ≃ Bool})
(str (cov⁻¹ (-1+ n) x)) (∣ idEquiv _ ∣)
{-
tt
Total (cov⁻¹ (n-1)) — — — > Unit
| |
pr | // ua α // | Bool
| |
V V
RP (n-1) - - - - - - > Type
cov⁻¹ (n-1)
where α : ∀ (x : Total (cov⁻¹ (n-1))) → cov⁻¹ (n-1) (pr x) ≃ Bool
α (x , y) = (λ z → y ⊕* z) , ⊕*.isEquivʳ y
-}
TotalCov≃Sn : ∀ n → Total (cov⁻¹ n) ≃ S n
TotalCov≃Sn neg1 = isoToEquiv (iso (λ { () }) (λ { () }) (λ { () }) (λ { () }))
TotalCov≃Sn (ℕ→ℕ₋₁ n) =
Total (cov⁻¹ (ℕ→ℕ₋₁ n)) ≃⟨ i ⟩
Pushout Σf Σg ≃⟨ ii ⟩
join (Total (cov⁻¹ (-1+ n))) Bool ≃⟨ iii ⟩
S (ℕ→ℕ₋₁ n) ■
where
{-
(i) First we want to show that `Total (cov⁻¹ (ℕ→ℕ₋₁ n))` is equivalent to a pushout.
We do this using the flattening lemma, which states:
Given f,g,F,G,e such that the following square commutes:
g
A — — — — > C Define: E : Pushout f g → Type
| | E (inl b) = F b
f | ua e | G E (inr c) = G c
V V E (push a i) = ua (e a) i
B — — — — > Type
F
Then, the total space `Σ (Pushout f g) E` is the following pushout:
Σg := (g , e a)
Σ[ a ∈ A ] F (f a) — — — — — — — — > Σ[ c ∈ C ] G c
| ∙
Σf := (f , id) | ∙
V V
Σ[ b ∈ B ] F b ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ > Σ (Pushout f g) E
In our case, setting `f = pr (cov⁻¹ (n-1))`, `g = λ _ → tt`, `F = cov⁻¹ (n-1)`, `G = λ _ → Bool`,
and `e = λ (x , y) → ⊕*.Equivʳ (cov⁻¹ (n-1) x) y` makes E equal (up to funExt) to `cov⁻¹ n`.
Thus the flattening lemma gives us that `Total (cov⁻¹ n) ≃ Pushout Σf Σg`.
-}
open FlatteningLemma {- f = -} (λ x → pr (cov⁻¹ (-1+ n)) x) {- g = -} (λ _ → tt)
{- F = -} (λ x → typ (cov⁻¹ (-1+ n) x)) {- G = -} (λ _ → Bool)
{- e = -} (λ { (x , y) → ⊕*.Equivʳ (cov⁻¹ (-1+ n) x) y })
hiding (Σf ; Σg)
cov⁻¹≃E : ∀ x → typ (cov⁻¹ (ℕ→ℕ₋₁ n) x) ≃ E x
cov⁻¹≃E (inl x) = idEquiv _
cov⁻¹≃E (inr x) = idEquiv _
cov⁻¹≃E (push a i) = idEquiv _
-- for easier reference, we copy these definitons here
Σf : Σ[ x ∈ Total (cov⁻¹ (-1+ n)) ] typ (cov⁻¹ (-1+ n) (fst x)) → Total (cov⁻¹ (-1+ n))
Σg : Σ[ x ∈ Total (cov⁻¹ (-1+ n)) ] typ (cov⁻¹ (-1+ n) (fst x)) → Unit × Bool
Σf ((x , y) , z) = (x , z) -- ≡ (f a , x)
Σg ((x , y) , z) = (tt , y ⊕* z) -- ≡ (g a , (e a) .fst x)
where open ⊕* (cov⁻¹ (-1+ n) x)
i : Total (cov⁻¹ (ℕ→ℕ₋₁ n)) ≃ Pushout Σf Σg
i = (Σ[ x ∈ RP (ℕ→ℕ₋₁ n) ] typ (cov⁻¹ (ℕ→ℕ₋₁ n) x)) ≃⟨ congΣEquiv cov⁻¹≃E ⟩
(Σ[ x ∈ RP (ℕ→ℕ₋₁ n) ] E x) ≃⟨ flatten ⟩
Pushout Σf Σg ■
{-
(ii) Next we want to show that `Pushout Σf Σg` is equivalent to `join (Total (cov⁻¹ (n-1))) Bool`.
Since both are pushouts, this can be done by defining a diagram equivalence:
Σf Σg
Total (cov⁻¹ (n-1)) < — — Σ[ x ∈ Total (cov⁻¹ (n-1)) ] cov⁻¹ (n-1) (pr x) — — > Unit × Bool
| ∙ |
id |≃ u ∙≃ snd |≃
V V V
Total (cov⁻¹ (n-1)) < — — — — — — — Total (cov⁻¹ (n-1)) × Bool — — — — — — — — — > Bool
proj₁ proj₂
where the equivalence u above must therefore satisfy: `u .fst x ≡ (Σf x , snd (Σg x))`
Unfolding this, we get: `u .fst ((x , y) , z) ≡ ((x , z) , (y ⊕* z))`
It suffices to show that the map y ↦ y ⊕* z is an equivalence, since we can then express u as
the following composition of equivalences:
((x , y) , z) ↦ (x , (y , z)) ↦ (x , (z , y)) ↦ (x , (z , y ⊕* z)) ↦ ((x , z) , y ⊕* z)
This was proved above by ⊕*.isEquivˡ.
-}
u : ∀ {n} → (Σ[ x ∈ Total (cov⁻¹ n) ] typ (cov⁻¹ n (fst x))) ≃ (Total (cov⁻¹ n) ×' Bool)
u {n} = Σ[ x ∈ Total (cov⁻¹ n) ] typ (cov⁻¹ n (fst x)) ≃⟨ assocΣ ⟩
Σ[ x ∈ RP n ] (typ (cov⁻¹ n x)) × (typ (cov⁻¹ n x)) ≃⟨ congΣEquiv (λ x → swapEquiv _ _) ⟩
Σ[ x ∈ RP n ] (typ (cov⁻¹ n x)) × (typ (cov⁻¹ n x)) ≃⟨ congΣEquiv (λ x → congΣEquiv (λ y →
⊕*.Equivˡ (cov⁻¹ n x) y)) ⟩
Σ[ x ∈ RP n ] (typ (cov⁻¹ n x)) × Bool ≃⟨ invEquiv assocΣ ⟩
Total (cov⁻¹ n) × Bool ≃⟨ invEquiv A×B≃A×ΣB ⟩
Total (cov⁻¹ n) ×' Bool ■
H : ∀ x → u .fst x ≡ (Σf x , snd (Σg x))
H x = refl
nat : 3-span-equiv (3span Σf Σg) (3span {A2 = Total (cov⁻¹ (-1+ n)) ×' Bool} proj₁ proj₂)
nat = record { e0 = idEquiv _ ; e2 = u ; e4 = ΣUnit _
; H1 = λ x → cong proj₁ (H x)
; H3 = λ x → cong proj₂ (H x) }
ii : Pushout Σf Σg ≃ join (Total (cov⁻¹ (-1+ n))) Bool
ii = compEquiv (pathToEquiv (spanEquivToPushoutPath nat)) (joinPushout≃join _ _)
{-
(iii) Finally, it's trivial to show that `join (Total (cov⁻¹ (n-1))) Bool` is equivalent to
`Susp (Total (cov⁻¹ (n-1)))`. Induction then gives us that `Susp (Total (cov⁻¹ (n-1)))`
is equivalent to `S n`, which completes the proof.
-}
iii : join (Total (cov⁻¹ (-1+ n))) Bool ≃ S (ℕ→ℕ₋₁ n)
iii = join (Total (cov⁻¹ (-1+ n))) Bool ≃⟨ invEquiv Susp≃joinBool ⟩
Susp (Total (cov⁻¹ (-1+ n))) ≃⟨ congSuspEquiv (TotalCov≃Sn (-1+ n)) ⟩
S (ℕ→ℕ₋₁ n) ■
-- the usual covering map S n → RP n, with fibers exactly cov⁻¹
cov : (n : ℕ₋₁) → S n → RP n
cov n = pr (cov⁻¹ n) ∘ invEq (TotalCov≃Sn n)
fibcov≡cov⁻¹ : ∀ n (x : RP n) → fiber (cov n) x ≡ cov⁻¹ n x .fst
fibcov≡cov⁻¹ n x =
fiber (cov n) x ≡[ i ]⟨ fiber {A = ua e i} (pr (cov⁻¹ n) ∘ ua-unglue e i) x ⟩
fiber (pr (cov⁻¹ n)) x ≡⟨ ua (fibPrEquiv (cov⁻¹ n) x) ⟩
cov⁻¹ n x .fst ∎
where e = invEquiv (TotalCov≃Sn n)
--------------------------------------------------------------------------------
-- Finally, we state the trivial equivalences for RP 0 and RP 1 (Example III.3 in [BR17])
RP0≃Unit : RP 0 ≃ Unit
RP0≃Unit = isoToEquiv (iso (λ _ → tt) (λ _ → inr tt) (λ _ → refl) (λ { (inr tt) → refl }))
RP1≡S1 : RP 1 ≡ S 1
RP1≡S1 = Pushout {A = Total (cov⁻¹ 0)} {B = RP 0} (pr (cov⁻¹ 0)) (λ _ → tt) ≡⟨ i ⟩
Pushout {A = Total (cov⁻¹ 0)} {B = Unit} (λ _ → tt) (λ _ → tt) ≡⟨ ii ⟩
Pushout {A = S 0} {B = Unit} (λ _ → tt) (λ _ → tt) ≡⟨ PushoutSusp≡Susp ⟩
S 1 ∎
where i = λ i → Pushout {A = Total (cov⁻¹ 0)}
{B = ua RP0≃Unit i}
(λ x → ua-gluePt RP0≃Unit i (pr (cov⁻¹ 0) x))
(λ _ → tt)
ii = λ j → Pushout {A = ua (TotalCov≃Sn 0) j} (λ _ → tt) (λ _ → tt)
|
algebraic-stack_agda0000_doc_13038 | {-# OPTIONS --allow-unsolved-metas #-}
open import Agda.Builtin.Bool
postulate
A : Set
F : Bool → Set
F true = A
F false = A
data D {b : Bool} (x : F b) : Set where
variable
b : Bool
x : F b
postulate
f : D x → (P : F b → Set) → P x
|
algebraic-stack_agda0000_doc_13039 | -- {-# OPTIONS -v scope.clash:20 #-}
-- Andreas, 2012-10-19 test case for Issue 719
module ShadowModule2 where
open import Common.Size as YesDuplicate
import Common.Size as NotDuplicate
private open module YesDuplicate = NotDuplicate
-- should report:
-- Duplicate definition of module YesDuplicate.
-- NOT: Duplicate definition of module NotDuplicate.
|
algebraic-stack_agda0000_doc_4832 | module CS410-Monoid where
open import CS410-Prelude
record Monoid (M : Set) : Set where
field
-- OPERATIONS ----------------------------------------
e : M
op : M -> M -> M
-- LAWS ----------------------------------------------
lunit : forall m -> op e m == m
runit : forall m -> op m e == m
assoc : forall m m' m'' ->
op m (op m' m'') == op (op m m') m''
|
algebraic-stack_agda0000_doc_4833 | ------------------------------------------------------------------------
-- A combinator for running two computations in parallel
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Delay-monad.Parallel where
import Equality.Propositional as Eq
open import Prelude
open import Prelude.Size
open import Conat Eq.equality-with-J as Conat
using (zero; suc; force; max)
open import Delay-monad
open import Delay-monad.Bisimilarity
open import Delay-monad.Bisimilarity.Kind
open import Delay-monad.Monad
import Delay-monad.Sequential as S
private
variable
a b : Level
A B : Type a
i : Size
k : Kind
f f₁ f₂ g : Delay (A → B) ∞
x x₁ x₂ y y₁ y₂ : Delay A ∞
f′ : Delay′ (A → B) ∞
x′ : Delay′ A ∞
h : A → B
z : A
------------------------------------------------------------------------
-- The _⊛_ operator
-- Parallel composition of computations.
infixl 6 _⊛_
_⊛_ : Delay (A → B) i → Delay A i → Delay B i
now f ⊛ now x = now (f x)
now f ⊛ later x = later λ { .force → now f ⊛ x .force }
later f ⊛ now x = later λ { .force → f .force ⊛ now x }
later f ⊛ later x = later λ { .force → f .force ⊛ x .force }
-- The number of later constructors in f ⊛ x is bisimilar to the
-- maximum of the number of later constructors in f and the number of
-- later constructors in x.
steps-⊛∼max-steps-steps :
Conat.[ i ] steps (f ⊛ x) ∼ max (steps f) (steps x)
steps-⊛∼max-steps-steps {f = now _} {x = now _} = zero
steps-⊛∼max-steps-steps {f = now _} {x = later _} = suc λ { .force → steps-⊛∼max-steps-steps }
steps-⊛∼max-steps-steps {f = later _} {x = now _} = suc λ { .force → steps-⊛∼max-steps-steps }
steps-⊛∼max-steps-steps {f = later _} {x = later _} = suc λ { .force → steps-⊛∼max-steps-steps }
-- Rearrangement lemmas for _⊛_.
later-⊛ :
later f′ ⊛ x ∼ later (record { force = f′ .force ⊛ drop-later x })
later-⊛ {x = now _} = later λ { .force → _ ∎ }
later-⊛ {x = later _} = later λ { .force → _ ∎ }
⊛-later :
f ⊛ later x′ ∼ later (record { force = drop-later f ⊛ x′ .force })
⊛-later {f = now _} = later λ { .force → _ ∎ }
⊛-later {f = later _} = later λ { .force → _ ∎ }
-- The _⊛_ operator preserves strong and weak bisimilarity and
-- expansion.
infixl 6 _⊛-cong_
_⊛-cong_ :
[ i ] f₁ ⟨ k ⟩ f₂ →
[ i ] x₁ ⟨ k ⟩ x₂ →
[ i ] f₁ ⊛ x₁ ⟨ k ⟩ f₂ ⊛ x₂
now ⊛-cong now = now
now ⊛-cong later q = later λ { .force → now ⊛-cong q .force }
now ⊛-cong laterˡ q = laterˡ (now ⊛-cong q)
now ⊛-cong laterʳ q = laterʳ (now ⊛-cong q)
later p ⊛-cong now = later λ { .force → p .force ⊛-cong now }
laterˡ p ⊛-cong now = laterˡ (p ⊛-cong now)
laterʳ p ⊛-cong now = laterʳ (p ⊛-cong now)
later p ⊛-cong later q = later λ { .force → p .force ⊛-cong q .force }
laterʳ p ⊛-cong laterʳ q = laterʳ (p ⊛-cong q)
laterˡ p ⊛-cong laterˡ q = laterˡ (p ⊛-cong q)
later {x = f₁} {y = f₂} p ⊛-cong laterˡ {x = x₁} {y = x₂} q =
later f₁ ⊛ later x₁ ∼⟨ (later λ { .force → _ ∎ }) ⟩
later (record { force = f₁ .force ⊛ x₁ .force }) ?⟨ (later λ { .force → p .force ⊛-cong drop-laterʳ q }) ⟩∼
later (record { force = f₂ .force ⊛ drop-later x₂ }) ∼⟨ symmetric later-⊛ ⟩
later f₂ ⊛ x₂ ∎
later {x = f₁} {y = f₂} p ⊛-cong laterʳ {x = x₁} {y = x₂} q =
later f₁ ⊛ x₁ ∼⟨ later-⊛ ⟩
later (record { force = f₁ .force ⊛ drop-later x₁ }) ≈⟨ (later λ { .force → p .force ⊛-cong drop-laterˡ q }) ⟩∼
later (record { force = f₂ .force ⊛ x₂ .force }) ∼⟨ (later λ { .force → _ ∎ }) ⟩
later f₂ ⊛ later x₂ ∎
laterˡ {x = f₁} {y = f₂} p ⊛-cong later {x = x₁} {y = x₂} q =
later f₁ ⊛ later x₁ ∼⟨ (later λ { .force → _ ∎ }) ⟩
later (record { force = f₁ .force ⊛ x₁ .force }) ?⟨ (later λ { .force → drop-laterʳ p ⊛-cong q .force }) ⟩∼
later (record { force = drop-later f₂ ⊛ x₂ .force }) ∼⟨ symmetric ⊛-later ⟩
f₂ ⊛ later x₂ ∎
laterʳ {x = f₁} {y = f₂} p ⊛-cong later {x = x₁} {y = x₂} q =
f₁ ⊛ later x₁ ∼⟨ ⊛-later ⟩
later (record { force = drop-later f₁ ⊛ x₁ .force }) ≈⟨ (later λ { .force → drop-laterˡ p ⊛-cong q .force }) ⟩∼
later (record { force = f₂ .force ⊛ x₂ .force }) ∼⟨ (later λ { .force → _ ∎ }) ⟩
later f₂ ⊛ later x₂ ∎
laterˡ {x = f₁} {y = f₂} p ⊛-cong laterʳ {x = x₁} {y = x₂} q =
later f₁ ⊛ x₁ ∼⟨ later-⊛ ⟩
later (record { force = f₁ .force ⊛ drop-later x₁ }) ≈⟨ (later λ { .force → drop-laterʳ p ⊛-cong drop-laterˡ q }) ⟩∼
later (record { force = drop-later f₂ ⊛ x₂ .force }) ∼⟨ symmetric ⊛-later ⟩
f₂ ⊛ later x₂ ∎
laterʳ {x = f₁} {y = f₂} p ⊛-cong laterˡ {x = x₁} {y = x₂} q =
f₁ ⊛ later x₁ ∼⟨ ⊛-later ⟩
later (record { force = drop-later f₁ ⊛ x₁ .force }) ≈⟨ (later λ { .force → drop-laterˡ p ⊛-cong drop-laterʳ q }) ⟩∼
later (record { force = f₂ .force ⊛ drop-later x₂ }) ∼⟨ symmetric later-⊛ ⟩
later f₂ ⊛ x₂ ∎
-- The _⊛_ operator is (kind of) commutative.
⊛-comm : [ i ] f ⊛ x ∼ map′ (flip _$_) x ⊛ f
⊛-comm {f = now f} {x = now x} = reflexive _
⊛-comm {f = now f} {x = later x} = later λ { .force → ⊛-comm }
⊛-comm {f = later f} {x = now x} = later λ { .force → ⊛-comm }
⊛-comm {f = later f} {x = later x} = later λ { .force → ⊛-comm }
-- The function map′ can be expressed using _⊛_.
map∼now-⊛ : [ i ] map′ h x ∼ now h ⊛ x
map∼now-⊛ {x = now x} = now
map∼now-⊛ {x = later x} = later λ { .force → map∼now-⊛ }
-- The applicative functor laws hold up to strong bisimilarity.
now-id-⊛ : [ i ] now id ⊛ x ∼ x
now-id-⊛ {x = now x} = now
now-id-⊛ {x = later x} = later λ { .force → now-id-⊛ }
now-∘-⊛-⊛-⊛ :
[ i ] now (λ f → f ∘_) ⊛ f ⊛ g ⊛ x ∼ f ⊛ (g ⊛ x)
now-∘-⊛-⊛-⊛ {f = now _} {g = now _} {x = now _} = now
now-∘-⊛-⊛-⊛ {f = now _} {g = now _} {x = later _} = later λ { .force → now-∘-⊛-⊛-⊛ }
now-∘-⊛-⊛-⊛ {f = now _} {g = later _} {x = now _} = later λ { .force → now-∘-⊛-⊛-⊛ }
now-∘-⊛-⊛-⊛ {f = now _} {g = later _} {x = later _} = later λ { .force → now-∘-⊛-⊛-⊛ }
now-∘-⊛-⊛-⊛ {f = later _} {g = now _} {x = now _} = later λ { .force → now-∘-⊛-⊛-⊛ }
now-∘-⊛-⊛-⊛ {f = later _} {g = now _} {x = later _} = later λ { .force → now-∘-⊛-⊛-⊛ }
now-∘-⊛-⊛-⊛ {f = later _} {g = later _} {x = now _} = later λ { .force → now-∘-⊛-⊛-⊛ }
now-∘-⊛-⊛-⊛ {f = later _} {g = later _} {x = later _} = later λ { .force → now-∘-⊛-⊛-⊛ }
now-⊛-now : [ i ] now h ⊛ now z ∼ now (h z)
now-⊛-now = now
⊛-now : [ i ] f ⊛ now z ∼ now (λ f → f z) ⊛ f
⊛-now {f = now f} = now
⊛-now {f = later f} = later λ { .force → ⊛-now }
-- Sequential composition is an expansion of parallel composition.
⊛≳⊛ : [ i ] f S.⊛ x ≳ f ⊛ x
⊛≳⊛ {f = now f} {x = now x} = now (f x) ∎
⊛≳⊛ {f = now f} {x = later x} = later λ { .force →
now f S.⊛ x .force ≳⟨ ⊛≳⊛ ⟩∎
now f ⊛ x .force ∎ }
⊛≳⊛ {f = later f} {x = now x} = later λ { .force →
f .force S.⊛ now x ≳⟨ ⊛≳⊛ ⟩∎
f .force ⊛ now x ∎ }
⊛≳⊛ {f = later f} {x = later x} = later λ { .force →
f .force S.⊛ later x ≳⟨ ((f .force ∎) >>=-cong λ _ → laterˡ (_ ∎)) ⟩
f .force S.⊛ x .force ≳⟨ ⊛≳⊛ ⟩∎
f .force ⊛ x .force ∎ }
------------------------------------------------------------------------
-- The _∣_ operator
-- Parallel composition of computations.
infix 10 _∣_
_∣_ : Delay A i → Delay B i → Delay (A × B) i
x ∣ y = map′ _,_ x ⊛ y
-- The number of later constructors in x ∣ y is bisimilar to the
-- maximum of the number of later constructors in x and the number of
-- later constructors in y.
steps-∣∼max-steps-steps :
Conat.[ i ] steps (x ∣ y) ∼ max (steps x) (steps y)
steps-∣∼max-steps-steps {x = x} {y = y} =
steps (x ∣ y) Conat.∼⟨ Conat.reflexive-∼ _ ⟩
steps (map′ _,_ x ⊛ y) Conat.∼⟨ steps-⊛∼max-steps-steps ⟩
max (steps (map′ _,_ x)) (steps y) Conat.∼⟨ Conat.max-cong (steps-map′ x) (Conat.reflexive-∼ _) ⟩∎
max (steps x) (steps y) ∎∼
-- The _∣_ operator preserves strong and weak bisimilarity and
-- expansion.
infix 10 _∣-cong_
_∣-cong_ :
[ i ] x₁ ⟨ k ⟩ x₂ →
[ i ] y₁ ⟨ k ⟩ y₂ →
[ i ] x₁ ∣ y₁ ⟨ k ⟩ x₂ ∣ y₂
p ∣-cong q = map-cong _,_ p ⊛-cong q
-- The _∣_ operator is commutative (up to swapping of results).
∣-comm : [ i ] x ∣ y ∼ map′ swap (y ∣ x)
∣-comm {x = x} {y = y} =
x ∣ y ∼⟨⟩
map′ _,_ x ⊛ y ∼⟨ ⊛-comm ⟩
map′ (flip _$_) y ⊛ map′ _,_ x ∼⟨ map∼now-⊛ ⊛-cong map∼now-⊛ ⟩
now (flip _$_) ⊛ y ⊛ (now _,_ ⊛ x) ∼⟨ symmetric now-∘-⊛-⊛-⊛ ⟩
now (λ f → f ∘_) ⊛ (now (flip _$_) ⊛ y) ⊛ now _,_ ⊛ x ∼⟨ symmetric now-∘-⊛-⊛-⊛ ⊛-cong (_ ∎) ⊛-cong (_ ∎) ⟩
now _∘_ ⊛ now (λ f → f ∘_) ⊛ now (flip _$_) ⊛ y ⊛ now _,_ ⊛ x ∼⟨⟩
now (λ x f y → f y x) ⊛ y ⊛ now _,_ ⊛ x ∼⟨ ⊛-now ⊛-cong (_ ∎) ⟩
now (_$ _,_) ⊛ (now (λ x f y → f y x) ⊛ y) ⊛ x ∼⟨ symmetric now-∘-⊛-⊛-⊛ ⊛-cong (_ ∎) ⟩
now _∘_ ⊛ now (_$ _,_) ⊛ now (λ x f y → f y x) ⊛ y ⊛ x ∼⟨⟩
now (curry swap) ⊛ y ⊛ x ∼⟨⟩
now _∘_ ⊛ now (swap ∘_) ⊛ now _,_ ⊛ y ⊛ x ∼⟨ now-∘-⊛-⊛-⊛ ⊛-cong (_ ∎) ⟩
now (swap ∘_) ⊛ (now _,_ ⊛ y) ⊛ x ∼⟨ (_ ∎) ⊛-cong symmetric map∼now-⊛ ⊛-cong (_ ∎) ⟩
now (swap ∘_) ⊛ map′ _,_ y ⊛ x ∼⟨⟩
now _∘_ ⊛ now swap ⊛ map′ _,_ y ⊛ x ∼⟨ now-∘-⊛-⊛-⊛ ⟩
now swap ⊛ (map′ _,_ y ⊛ x) ∼⟨ symmetric map∼now-⊛ ⟩
map′ swap (map′ _,_ y ⊛ x) ∼⟨⟩
map′ swap (y ∣ x) ∎
-- Sequential composition is an expansion of parallel composition.
∣≳∣ : [ i ] x S.∣ y ≳ x ∣ y
∣≳∣ {x = x} {y = y} =
x S.∣ y ∼⟨⟩
map′ _,_ x S.⊛ y ≳⟨ ⊛≳⊛ ⟩
map′ _,_ x ⊛ y ∼⟨⟩
x ∣ y ∎
|
algebraic-stack_agda0000_doc_4834 | {-# OPTIONS --allow-exec #-}
open import Agda.Builtin.FromNat
open import Data.Bool.Base using (T; Bool; if_then_else_)
open import Data.String using (String; _++_; lines)
open import Data.Nat.Base using (ℕ)
open import Data.Fin using (Fin)
import Data.Fin.Literals as Fin
import Data.Nat.Literals as Nat
open import Data.Vec.Base using (Vec)
open import Data.Float.Base using (Float; _≤ᵇ_)
open import Data.List.Base using (List; []; _∷_)
open import Data.Unit.Base using (⊤; tt)
open import Relation.Nullary using (does)
open import Relation.Binary.Core using (Rel)
open import Reflection.Argument
open import Reflection.Term
open import Reflection.External
open import Reflection.TypeChecking.Monad
open import Reflection.TypeChecking.Monad.Syntax
open import Reflection.Show using (showTerm)
open import Vehicle.Utils
module Vehicle where
------------------------------------------------------------------------
-- Metadata
------------------------------------------------------------------------
VEHICLE_COMMAND : String
VEHICLE_COMMAND = "vehicle"
------------------------------------------------------------------------
-- Checking
------------------------------------------------------------------------
record CheckArgs : Set where
field
proofCache : String
checkCmd : CheckArgs → CmdSpec
checkCmd checkArgs = cmdSpec VEHICLE_COMMAND
( "check"
∷ ("--proofCache=" ++ proofCache)
∷ []) ""
where open CheckArgs checkArgs
checkSuccessful : String → Bool
checkSuccessful output = "verified" ⊆ output
postulate valid : ∀ {a} {A : Set a} → A
`valid : Term
`valid = def (quote valid) (hArg unknown ∷ [])
checkSpecificationMacro : CheckArgs → Term → TC ⊤
checkSpecificationMacro args hole = do
goal ← inferType hole
-- (showTerm goal)
output ← runCmdTC (checkCmd args)
if checkSuccessful output
then unify hole `valid
else typeError (strErr ("Error: " ++ output) ∷ [])
macro
checkSpecification : CheckArgs → Term → TC ⊤
checkSpecification = checkSpecificationMacro
------------------------------------------------------------------------
-- Other
------------------------------------------------------------------------
instance
finNumber : ∀ {n} -> Number (Fin n)
finNumber {n} = Fin.number n
natNumber : Number ℕ
natNumber = Nat.number
|
algebraic-stack_agda0000_doc_4835 | module Theory where
open import Data.List using (List; []; _∷_; _++_)
open import Data.Fin using () renaming (zero to fzero; suc to fsuc)
open import Relation.Binary using (Rel)
open import Level using (suc; _⊔_)
open import Syntax
record Theory ℓ₁ ℓ₂ ℓ₃ : Set (suc (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)) where
field
Sg : Signature ℓ₁ ℓ₂
open Signature Sg
open Term Sg
field
Ax : forall Γ A -> Rel (Γ ⊢ A) ℓ₃
infix 3 _⊢_≡_
infix 3 _⊨_≡_
data _⊢_≡_ : forall Γ {A} -> Γ ⊢ A -> Γ ⊢ A -> Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)
data _⊨_≡_ : forall Γ {Γ′} -> Γ ⊨ Γ′ -> Γ ⊨ Γ′ -> Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)
-- Theorems
data _⊢_≡_ where
ax : forall {Γ A e₁ e₂} -> Ax Γ A e₁ e₂ -> Γ ⊢ e₁ ≡ e₂
refl : forall {Γ} {A} {e : Γ ⊢ A} -> Γ ⊢ e ≡ e
sym : forall {Γ} {A} {e₁ : Γ ⊢ A} {e₂} -> Γ ⊢ e₁ ≡ e₂ -> Γ ⊢ e₂ ≡ e₁
trans : forall {Γ} {A} {e₁ : Γ ⊢ A} {e₂ e₃} -> Γ ⊢ e₁ ≡ e₂ -> Γ ⊢ e₂ ≡ e₃ -> Γ ⊢ e₁ ≡ e₃
sub/id : forall {Γ} {A} {e : Γ ⊢ A} -> Γ ⊢ e [ id ] ≡ e
sub/∙ : forall {Γ} {A} {Γ′ Γ′′} {e : Γ′′ ⊢ A} {γ : Γ′ ⊨ Γ′′} {δ}
-> Γ ⊢ e [ γ ∙ δ ] ≡ e [ γ ] [ δ ]
eta/Unit : forall {Γ} (e : Γ ⊢ Unit) -> Γ ⊢ unit ≡ e
beta/*₁ : forall {Γ} {A B} (e₁ : Γ ⊢ A) (e₂ : Γ ⊢ B) -> Γ ⊢ fst (pair e₁ e₂) ≡ e₁
beta/*₂ : forall {Γ} {A B} (e₁ : Γ ⊢ A) (e₂ : Γ ⊢ B) -> Γ ⊢ snd (pair e₁ e₂) ≡ e₂
eta/* : forall {Γ} {A B} (e : Γ ⊢ A * B) -> Γ ⊢ pair (fst e) (snd e) ≡ e
beta/=> : forall {Γ} {A B} (e : A ∷ Γ ⊢ B) (e′ : Γ ⊢ A) -> Γ ⊢ app (abs e) e′ ≡ e [ ext id e′ ]
eta/=> : forall {Γ} {A B} (e : Γ ⊢ A => B) -> Γ ⊢ abs (app (e [ weaken ]) var) ≡ e
-- cong
cong/func : forall {Γ} {f : Func} {e e′ : Γ ⊢ dom f}
-> Γ ⊢ e ≡ e′
-> Γ ⊢ func f e ≡ func f e′
cong/sub : forall {Γ Γ′} {γ γ′ : Γ ⊨ Γ′} {A} {e e′ : Γ′ ⊢ A}
-> Γ ⊨ γ ≡ γ′
-> Γ′ ⊢ e ≡ e′
-> Γ ⊢ e [ γ ] ≡ e′ [ γ′ ]
cong/pair : forall {Γ} {A B} {e₁ e₁′ : Γ ⊢ A} {e₂ e₂′ : Γ ⊢ B}
-> Γ ⊢ e₁ ≡ e₁′
-> Γ ⊢ e₂ ≡ e₂′
-> Γ ⊢ pair e₁ e₂ ≡ pair e₁′ e₂′
cong/fst : forall {Γ} {A B} {e e′ : Γ ⊢ A * B}
-> Γ ⊢ e ≡ e′
-> Γ ⊢ fst e ≡ fst e′
cong/snd : forall {Γ} {A B} {e e′ : Γ ⊢ A * B}
-> Γ ⊢ e ≡ e′
-> Γ ⊢ snd e ≡ snd e′
cong/abs : forall {Γ} {A B} {e e′ : A ∷ Γ ⊢ B}
-> A ∷ Γ ⊢ e ≡ e′
-> Γ ⊢ abs e ≡ abs e′
cong/app : forall {Γ} {A B} {e₁ e₁′ : Γ ⊢ A => B} {e₂ e₂′ : Γ ⊢ A}
-> Γ ⊢ e₁ ≡ e₁′
-> Γ ⊢ e₂ ≡ e₂′
-> Γ ⊢ app e₁ e₂ ≡ app e₁′ e₂′
-- subst commutes with term formers
comm/func : forall Γ Γ′ (γ : Γ ⊨ Γ′) f e
-> Γ ⊢ func f e [ γ ] ≡ func f (e [ γ ])
comm/unit : forall Γ Γ′ (γ : Γ ⊨ Γ′)
-> Γ ⊢ unit [ γ ] ≡ unit
comm/pair : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e₁ : Γ′ ⊢ A} {e₂ : Γ′ ⊢ B}
-> Γ ⊢ pair e₁ e₂ [ γ ] ≡ pair (e₁ [ γ ]) (e₂ [ γ ])
comm/fst : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e : Γ′ ⊢ A * B}
-> Γ ⊢ fst e [ γ ] ≡ fst (e [ γ ])
comm/snd : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e : Γ′ ⊢ A * B}
-> Γ ⊢ snd e [ γ ] ≡ snd (e [ γ ])
comm/abs : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e : A ∷ Γ′ ⊢ B}
-> Γ ⊢ (abs e) [ γ ] ≡ abs (e [ ext (γ ∙ weaken) var ])
comm/app : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A B} {e₁ : Γ′ ⊢ A => B} {e₂}
-> Γ ⊢ app e₁ e₂ [ γ ] ≡ app (e₁ [ γ ]) (e₂ [ γ ])
var/ext : forall {Γ Γ′} (γ : Γ ⊨ Γ′) {A} (e : Γ ⊢ A)
-> Γ ⊢ var [ ext γ e ] ≡ e
data _⊨_≡_ where
refl : forall {Γ Γ′} {γ : Γ ⊨ Γ′} -> Γ ⊨ γ ≡ γ
sym : forall {Γ Γ′} {γ γ′ : Γ ⊨ Γ′} -> Γ ⊨ γ ≡ γ′ -> Γ ⊨ γ′ ≡ γ
trans : forall {Γ Γ′} {γ₁ γ₂ γ₃ : Γ ⊨ Γ′}
-> Γ ⊨ γ₁ ≡ γ₂
-> Γ ⊨ γ₂ ≡ γ₃
-> Γ ⊨ γ₁ ≡ γ₃
id∙ˡ : forall {Γ Γ′} {γ : Γ ⊨ Γ′} -> Γ ⊨ id ∙ γ ≡ γ
id∙ʳ : forall {Γ Γ′} {γ : Γ ⊨ Γ′} -> Γ ⊨ γ ∙ id ≡ γ
assoc∙ : forall {Γ Γ′ Γ′′ Γ′′′} {γ₁ : Γ′′ ⊨ Γ′′′} {γ₂ : Γ′ ⊨ Γ′′} {γ₃ : Γ ⊨ Γ′}
-> Γ ⊨ (γ₁ ∙ γ₂) ∙ γ₃ ≡ γ₁ ∙ (γ₂ ∙ γ₃)
!-unique : forall {Γ} {γ : Γ ⊨ []} -> Γ ⊨ ! ≡ γ
η-pair : forall {Γ : Context} {A : Type}
-> A ∷ Γ ⊨ ext weaken var ≡ id
ext∙ : forall {Γ Γ′ Γ′′} {γ : Γ′ ⊨ Γ′′} {γ′ : Γ ⊨ Γ′} {A} {e : Γ′ ⊢ A}
-> Γ ⊨ ext γ e ∙ γ′ ≡ ext (γ ∙ γ′) (e [ γ′ ])
weaken/ext : forall {Γ Γ′} {γ : Γ ⊨ Γ′} {A} {e : Γ ⊢ A}
-> Γ ⊨ weaken ∙ ext γ e ≡ γ
cong/ext : forall {Γ Γ′} {γ γ′ : Γ ⊨ Γ′} {A} {e e′ : Γ ⊢ A}
-> Γ ⊨ γ ≡ γ′
-> Γ ⊢ e ≡ e′
-> Γ ⊨ ext γ e ≡ ext γ′ e′
cong/∙ : forall {Γ Γ′ Γ′′} {γ γ′ : Γ′ ⊨ Γ′′} {δ δ′ : Γ ⊨ Γ′}
-> Γ′ ⊨ γ ≡ γ′
-> Γ ⊨ δ ≡ δ′
-> Γ ⊨ γ ∙ δ ≡ γ′ ∙ δ′
×id′-∙ : forall {Γ Γ′ Γ′′} {γ′ : Γ ⊨ Γ′} {γ : Γ′ ⊨ Γ′′} {A}
-> A ∷ Γ ⊨ γ ×id′ ∙ γ′ ×id′ ≡ (γ ∙ γ′) ×id′
×id′-∙ = trans ext∙ (cong/ext (trans assoc∙ (trans (cong/∙ refl weaken/ext) (sym assoc∙))) (var/ext _ _))
×id′-ext : forall {Γ Γ′ Γ′′} {γ′ : Γ ⊨ Γ′} {γ : Γ′ ⊨ Γ′′} {A} {e : Γ ⊢ A}
-> Γ ⊨ γ ×id′ ∙ ext γ′ e ≡ ext (γ ∙ γ′) e
×id′-ext = trans ext∙ (cong/ext (trans assoc∙ (cong/∙ refl weaken/ext)) (var/ext _ _))
open import Relation.Binary.Bundles
TermSetoid : forall {Γ : Context} {A : Type} -> Setoid (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)
TermSetoid {Γ} {A} = record
{ Carrier = Γ ⊢ A
; _≈_ = λ e₁ e₂ → Γ ⊢ e₁ ≡ e₂
;isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
}
SubstSetoid : forall {Γ : Context} {Γ′ : Context} -> Setoid (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)
SubstSetoid {Γ} {Γ′} = record
{ Carrier = Γ ⊨ Γ′
; _≈_ = λ γ₁ γ₂ → Γ ⊨ γ₁ ≡ γ₂
;isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
}
open import Categories.Category
open import Categories.Category.CartesianClosed
module _ {o ℓ e} (𝒞 : Category o ℓ e) (CC : CartesianClosed 𝒞) {ℓ₁ ℓ₂ ℓ₃} (Th : Theory ℓ₁ ℓ₂ ℓ₃) where
open Category 𝒞
open import Data.Product using (Σ-syntax)
open Theory Th
open import Semantics 𝒞 CC Sg
Model : Set (o ⊔ ℓ ⊔ e ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)
Model = Σ[ M ∈ Structure ] forall {Γ A e₁ e₂} -> Ax Γ A e₁ e₂ -> ⟦ e₁ ⟧ M ≈ ⟦ e₂ ⟧ M
|
algebraic-stack_agda0000_doc_4836 | module Prelude.Unit where
data Unit : Set where
unit : Unit
|
algebraic-stack_agda0000_doc_4837 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Bounded vectors (inefficient implementation)
------------------------------------------------------------------------
-- Vectors of a specified maximum length.
module Data.Star.BoundedVec where
open import Data.Star
open import Data.Star.Nat
open import Data.Star.Decoration
open import Data.Star.Pointer
open import Data.Star.List using (List)
open import Data.Unit
open import Function
import Data.Maybe as Maybe
open import Relation.Binary
open import Relation.Binary.Consequences
------------------------------------------------------------------------
-- The type
-- Finite sets decorated with elements (note the use of suc).
BoundedVec : Set → ℕ → Set
BoundedVec a n = Any (λ _ → a) (λ _ → ⊤) (suc n)
[] : ∀ {a n} → BoundedVec a n
[] = this tt
infixr 5 _∷_
_∷_ : ∀ {a n} → a → BoundedVec a n → BoundedVec a (suc n)
_∷_ = that
------------------------------------------------------------------------
-- Increasing the bound
-- Note that this operation is linear in the length of the list.
↑ : ∀ {a n} → BoundedVec a n → BoundedVec a (suc n)
↑ {a} = gmap inc lift
where
inc = Maybe.map (map-NonEmpty suc)
lift : Pointer (λ _ → a) (λ _ → ⊤) =[ inc ]⇒
Pointer (λ _ → a) (λ _ → ⊤)
lift (step x) = step x
lift (done _) = done _
------------------------------------------------------------------------
-- Conversions
fromList : ∀ {a} → (xs : List a) → BoundedVec a (length xs)
fromList ε = []
fromList (x ◅ xs) = x ∷ fromList xs
toList : ∀ {a n} → BoundedVec a n → List a
toList xs = gmap (const tt) decoration (init xs)
|
algebraic-stack_agda0000_doc_4838 | {-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.SmashFmapConn where
module _ {i} {j} {A : Type i} (B : A → Type j) where
custom-assoc : {a₀ a₁ a₂ a₃ : A}
{b₀ : B a₀} {b₁ b₁' b₁'' : B a₁} {b₂ : B a₂} {b₃ : B a₃}
{p : a₀ == a₁} (p' : b₀ == b₁ [ B ↓ p ])
(q' : b₁ == b₁')
(r' : b₁' == b₁'')
{s : a₁ == a₂} (s' : b₁'' == b₂ [ B ↓ s ])
{t : a₂ == a₃} (t' : b₂ == b₃ [ B ↓ t ])
→ p' ∙ᵈ (((q' ∙ r') ◃ s') ∙ᵈ t')
==
((p' ▹ q') ▹ r') ∙ᵈ s' ∙ᵈ t'
custom-assoc {p = idp} p'@idp q'@idp r'@idp {s = idp} s'@idp {t = idp} t' = idp
transp-over : {a₀ a₁ : A} (p : a₀ == a₁) (b₀ : B a₀)
→ b₀ == transport B p b₀ [ B ↓ p ]
transp-over p b₀ = from-transp B p (idp {a = transport B p b₀})
transp-over-naturality : ∀ {a₀ a₁ : A} (p : a₀ == a₁)
{b₀ b₀' : B a₀} (q : b₀ == b₀')
→ q ◃ transp-over p b₀'
==
transp-over p b₀ ▹ ap (transport B p) q
transp-over-naturality p@idp q@idp = idp
to-transp-over : {a₀ a₁ : A} {p : a₀ == a₁}
{b₀ : B a₀} {b₁ : B a₁} (q : b₀ == b₁ [ B ↓ p ])
→ q ▹ ! (to-transp q) == transp-over p b₀
to-transp-over {p = idp} q@idp = idp
module _ {i} {j} {S* : Type i} (P* : S* → Type j) where
-- cpa = custom path algebra
cpa₁ : {s₁ s₂ t : S*} (p* : P* s₂) (p₁ : s₁ == t) (p₂ : s₂ == t)
→ transport P* (! (p₁ ∙ ! p₂)) p* == transport P* p₂ p* [ P* ↓ p₁ ]
cpa₁ p* p₁@idp p₂@idp = idp
-- cpac = custom path algebra coherence
cpac₁ : ∀ {k} {C : Type k} (f : C → S*)
{c₁ c₂ : C} (q : c₁ == c₂)
(d : Π C (P* ∘ f))
{t : S*} (p₁ : f c₁ == t) (p₂ : f c₂ == t)
(r : ap f q == p₁ ∙' ! p₂)
{u : P* (f c₂)} (v : u == transport P* (! (p₂ ∙ ! p₂)) (d c₂))
{u' : P* (f c₁)} (v' : u' == transport P* (! (p₁ ∙ ! p₂)) (d c₂))
→ (v' ∙
ap (λ pp → transport P* pp (d c₂)) (ap ! (! (r ∙ ∙'=∙ p₁ (! p₂))) ∙ !-ap f q) ∙
to-transp {B = P*} {p = ap f (! q)}
(↓-ap-in P* f (apd d (! q)))) ◃
apd d q
==
↓-ap-out= P* f q (r ∙ ∙'=∙ p₁ (! p₂))
((v' ◃ cpa₁ (d c₂) p₁ p₂) ∙ᵈ !ᵈ (v ◃ cpa₁ (d c₂) p₂ p₂)) ▹
(v ∙ ap (λ pp → transport P* (! pp) (d c₂)) (!-inv-r p₂))
cpac₁ f q@idp d p₁@.idp p₂@idp r@idp v@idp v'@idp = idp
cpa₂ : ∀ {k} {C : Type k} (f : C → S*)
{c₁ c₂ : C} (q : c₁ == c₂)
(d : Π C (P* ∘ f))
{s t : S*} (p : f c₁ == s) (r : s == t) (u : f c₂ == t)
(h : ap f q == p ∙' (r ∙ ! u))
→ transport P* p (d c₁)
==
transport P* u (d c₂)
[ P* ↓ r ]
cpa₂ f q@idp d [email protected] r@idp u@idp h@idp = idp
cpac₂ : ∀ {k} {C : Type k} (f : C → S*)
{c₁ c₂ c₃ : C} (q : c₁ == c₂) (q' : c₃ == c₂)
(d : Π C (P* ∘ f))
{s t : S*} (p : f c₁ == s) (p' : f c₃ == f c₂) (r : s == t) (u : f c₂ == t)
(h : ap f q == p ∙' (r ∙ ! u))
(h' : ap f q' == p' ∙' u ∙ ! u)
{x : P* (f c₂)} (x' : x == transport P* p' (d c₃))
{y : P* (f c₁)} (y' : y == d c₁)
→ ↓-ap-out=
P*
f
q
(h ∙ ∙'=∙ p (r ∙ ! u))
((y' ◃ transp-over P* p (d c₁)) ∙ᵈ cpa₂ f q d p r u h ∙ᵈ !ᵈ (x' ◃ cpa₂ f q' d p' u u h')) ▹
(x' ∙
ap (λ pp → transport P* pp (d c₃))
(! (∙-unit-r p') ∙
ap (p' ∙_) (! (!-inv-r u)) ∙
! (h' ∙ ∙'=∙ p' (u ∙ ! u))) ∙
to-transp (↓-ap-in P* f (apd d q')))
==
y' ◃ apd d q
cpac₂ f q@idp q'@idp d [email protected] p'@.idp r@idp u@idp h@idp h'@idp x'@idp y'@idp = idp
module _ {i} {j} {k} {A : Ptd i} {A' : Ptd j} (f : A ⊙→ A') (B : Ptd k)
{m n : ℕ₋₂}
(f-is-m-conn : has-conn-fibers m (fst f))
(B-is-Sn-conn : is-connected (S n) (de⊙ B)) where
private
a₀ = pt A
a₀' = pt A'
b₀ = pt B
module ConnIn (P : A' ∧ B → (n +2+ m) -Type (lmax i (lmax j k)))
(d : ∀ (ab : A ∧ B) → fst (P (∧-fmap f (⊙idf B) ab))) where
h : ∀ (b : de⊙ B)
→ (∀ (a' : de⊙ A') → fst (P (smin a' b)))
→ (∀ (a : de⊙ A) → fst (P (smin (fst f a) b)))
h b s = s ∘ fst f
Q : de⊙ B → n -Type (lmax i (lmax j k))
Q b = Q' , Q'-level
where
Q' : Type (lmax i (lmax j k))
Q' = hfiber (h b) (λ a → d (smin a b))
Q'-level : has-level n Q'
Q'-level =
conn-extend-general
{n = m} {k = n}
f-is-m-conn
(λ a → P (smin a b))
(λ a → d (smin a b))
s₀ : ∀ (a' : de⊙ A') → fst (P (smin a' b₀))
s₀ a' = transport (fst ∘ P) (! (∧-norm-l a')) (d smbasel)
∧-fmap-smgluel-β-∙' : ∀ (a : de⊙ A) →
ap (∧-fmap f (⊙idf B)) (smgluel a)
==
smgluel (fst f a) ∙' ! (smgluel a₀')
∧-fmap-smgluel-β-∙' a =
∧-fmap-smgluel-β' f (⊙idf B) a ∙
∙=∙' (smgluel (fst f a)) (! (smgluel a₀'))
∧-fmap-smgluel-β-∙ : ∀ (a : de⊙ A) →
ap (∧-fmap f (⊙idf B)) (smgluel a)
==
smgluel (fst f a) ∙ ! (smgluel a₀')
∧-fmap-smgluel-β-∙ a =
∧-fmap-smgluel-β-∙' a ∙
∙'=∙ (smgluel (fst f a)) (! (smgluel a₀'))
∧-fmap-smgluer-β-∙' : ∀ (b : de⊙ B) →
ap (∧-fmap f (⊙idf B)) (smgluer b)
==
ap (λ a' → smin a' b) (snd f) ∙' ∧-norm-r b
∧-fmap-smgluer-β-∙' b =
∧-fmap-smgluer-β' f (⊙idf B) b ∙
∙=∙' (ap (λ a' → smin a' b) (snd f)) (∧-norm-r b)
∧-fmap-smgluer-β-∙ : ∀ (b : de⊙ B) →
ap (∧-fmap f (⊙idf B)) (smgluer b)
==
ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b
∧-fmap-smgluer-β-∙ b =
∧-fmap-smgluer-β-∙' b ∙
∙'=∙ (ap (λ a' → smin a' b) (snd f)) (∧-norm-r b)
s₀-f : ∀ (a : de⊙ A) → s₀ (fst f a) == d (smin a b₀)
s₀-f a =
ap (λ p → transport (λ a'b → fst (P a'b)) p (d smbasel)) q ∙
to-transp {B = fst ∘ P}
{p = ap (∧-fmap f (⊙idf B)) (! (smgluel a))}
(↓-ap-in (fst ∘ P)
(∧-fmap f (⊙idf B))
(apd d (! (smgluel a))))
where
q : ! (∧-norm-l (fst f a)) == ap (∧-fmap f (⊙idf B)) (! (smgluel a))
q = ap ! (! (∧-fmap-smgluel-β-∙ a)) ∙ !-ap (∧-fmap f (⊙idf B)) (smgluel a)
q₀ : fst (Q b₀)
q₀ = s₀ , s₀-lies-over-pt
where
s₀-lies-over-pt : h b₀ s₀ == (λ a → d (smin a b₀))
s₀-lies-over-pt = λ= s₀-f
q : ∀ (b : de⊙ B) → fst (Q b)
q = conn-extend {n = n} {h = cst b₀}
(pointed-conn-out (de⊙ B) b₀ {{B-is-Sn-conn}})
Q
(λ _ → q₀)
q-f : q b₀ == q₀
q-f = conn-extend-β {n = n} {h = cst b₀}
(pointed-conn-out (de⊙ B) b₀ {{B-is-Sn-conn}})
Q
(λ _ → q₀)
unit
s : ∀ (a' : de⊙ A') (b : de⊙ B) → fst (P (smin a' b))
s a' b = fst (q b) a'
s-b₀ : ∀ (a' : de⊙ A') → s a' b₀ == s₀ a'
s-b₀ a' = ap (λ u → fst u a') q-f
s-f : ∀ (a : de⊙ A) (b : de⊙ B)
→ s (fst f a) b == d (smin a b)
s-f a b = app= (snd (q b)) a
s-f-b₀ : ∀ (a : de⊙ A)
→ s-f a b₀ == s-b₀ (fst f a) ∙ s₀-f a
s-f-b₀ a =
app= (snd (q b₀)) a
=⟨ ↓-app=cst-out' (apd (λ u → app= (snd u) a) q-f) ⟩
s-b₀ (fst f a) ∙' app= (snd q₀) a
=⟨ ap (s-b₀ (fst f a) ∙'_) (app=-β s₀-f a) ⟩
s-b₀ (fst f a) ∙' s₀-f a
=⟨ ∙'=∙ (s-b₀ (fst f a)) (s₀-f a) ⟩
s-b₀ (fst f a) ∙ s₀-f a =∎
s-a₀' : ∀ (b : de⊙ B) →
s a₀' b
==
transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))
s-a₀' b = ↯ $
s a₀' b
=⟪ ! (to-transp (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)))) ⟫
transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (s (fst f a₀) b)
=⟪ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)))
(s-f a₀ b) ⟫
transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b)) ∎∎
section-smbasel : fst (P smbasel)
section-smbasel = transport (fst ∘ P) (smgluel a₀') (d smbasel)
section-smbaser : fst (P smbaser)
section-smbaser = transport (fst ∘ P) (smgluer b₀) (d smbaser)
section-smgluel' : ∀ (a' : de⊙ A') → s₀ a' == section-smbasel [ fst ∘ P ↓ smgluel a' ]
section-smgluel' a' = cpa₁ (fst ∘ P) (d smbasel) (smgluel a') (smgluel a₀')
section-smgluel : ∀ (a' : de⊙ A') → s a' b₀ == section-smbasel [ fst ∘ P ↓ smgluel a' ]
section-smgluel a' = s-b₀ a' ◃ section-smgluel' a'
section-smgluer' : ∀ (b : de⊙ B) →
transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))
==
section-smbaser
[ fst ∘ P ↓ smgluer b ]
section-smgluer' b =
cpa₂
(fst ∘ P)
(∧-fmap f (⊙idf B))
(smgluer b)
d
(ap (λ a' → smin a' b) (snd f))
(smgluer b)
(smgluer b₀)
(∧-fmap-smgluer-β-∙' b)
section-smgluer : ∀ (b : de⊙ B) → s a₀' b == section-smbaser [ fst ∘ P ↓ smgluer b ]
section-smgluer b = s-a₀' b ◃ section-smgluer' b
module Section =
SmashElim
{P = fst ∘ P}
s
section-smbasel
section-smbaser
section-smgluel
section-smgluer
section : Π (A' ∧ B) (fst ∘ P)
section = Section.f
is-section-smbasel : s a₀' b₀ == d smbasel
is-section-smbasel = ↯ $
s a₀' b₀
=⟪ s-b₀ a₀' ⟫
s₀ a₀'
=⟪idp⟫
transport (fst ∘ P) (! (∧-norm-l a₀')) (d smbasel)
=⟪ ap (λ p → transport (fst ∘ P) (! p) (d smbasel))
(!-inv-r (smgluel a₀')) ⟫
d smbasel ∎∎
is-section-smgluel : ∀ (a : de⊙ A) →
s-f a b₀ ◃ apd d (smgluel a)
==
apd (section ∘ ∧-fmap f (⊙idf B)) (smgluel a) ▹
is-section-smbasel
is-section-smgluel a =
s-f a b₀ ◃ apd d (smgluel a)
=⟨ ap (_◃ apd d (smgluel a)) (s-f-b₀ a) ⟩
(s-b₀ (fst f a) ∙ s₀-f a) ◃ apd d (smgluel a)
=⟨ cpac₁
(fst ∘ P)
(∧-fmap f (⊙idf B))
(smgluel a)
d
(smgluel (fst f a))
(smgluel a₀')
(∧-fmap-smgluel-β-∙' a)
(s-b₀ a₀')
(s-b₀ (fst f a)) ⟩
↓-ap-out= (fst ∘ P)
(∧-fmap f (⊙idf B))
(smgluel a)
(∧-fmap-smgluel-β-∙ a)
(section-smgluel (fst f a) ∙ᵈ !ᵈ (section-smgluel a₀')) ▹
is-section-smbasel
=⟨ ! $ ap (_▹ is-section-smbasel) $
ap (↓-ap-out= (fst ∘ P)
(∧-fmap f (⊙idf B))
(smgluel a)
(∧-fmap-smgluel-β-∙ a)) $
apd-section-norm-l (fst f a) ⟩
↓-ap-out= (fst ∘ P)
(∧-fmap f (⊙idf B))
(smgluel a)
(∧-fmap-smgluel-β-∙ a)
(apd section (∧-norm-l (fst f a))) ▹
is-section-smbasel
=⟨ ! $ ap (_▹ is-section-smbasel) $
apd-∘'' section
(∧-fmap f (⊙idf B))
(smgluel a)
(∧-fmap-smgluel-β-∙ a) ⟩
apd (section ∘ ∧-fmap f (⊙idf B)) (smgluel a) ▹
is-section-smbasel =∎
where
apd-section-norm-l : ∀ (a' : de⊙ A') →
apd section (∧-norm-l a')
==
section-smgluel a' ∙ᵈ !ᵈ (section-smgluel a₀')
apd-section-norm-l a' =
apd section (∧-norm-l a')
=⟨ apd-∙ section (smgluel a') (! (smgluel a₀')) ⟩
apd section (smgluel a') ∙ᵈ apd section (! (smgluel a₀'))
=⟨ ap2 _∙ᵈ_ (Section.smgluel-β a')
(apd-! section (smgluel a₀') ∙
ap !ᵈ (Section.smgluel-β a₀')) ⟩
section-smgluel a' ∙ᵈ !ᵈ (section-smgluel a₀') =∎
is-section-smbaser : s a₀' b₀ == d smbaser
is-section-smbaser = ↯ $
s a₀' b₀
=⟪ s-a₀' b₀ ⟫
transport (fst ∘ P) (ap (λ a' → smin a' b₀) (snd f)) (d (smin a₀ b₀))
=⟪ ap (λ p → transport (fst ∘ P) p (d (smin a₀ b₀))) (↯ r) ⟫
transport (fst ∘ P) (ap (∧-fmap f (⊙idf B)) (smgluer b₀)) (d (smin a₀ b₀))
=⟪ to-transp (↓-ap-in (fst ∘ P) (∧-fmap f (⊙idf B)) (apd d (smgluer b₀))) ⟫
d smbaser ∎∎
where
r : ap (λ a' → smin a' b₀) (snd f) =-= ap (∧-fmap f (⊙idf B)) (smgluer b₀)
r =
ap (λ a' → smin a' b₀) (snd f)
=⟪ ! (∙-unit-r _) ⟫
ap (λ a' → smin a' b₀) (snd f) ∙ idp
=⟪ ap (ap (λ a' → smin a' b₀) (snd f) ∙_)
(! (!-inv-r (smgluer b₀))) ⟫
ap (λ a' → smin a' b₀) (snd f) ∙ ∧-norm-r b₀
=⟪ ! (∧-fmap-smgluer-β-∙ b₀) ⟫
ap (∧-fmap f (⊙idf B)) (smgluer b₀) ∎∎
is-section-smgluer : ∀ (b : de⊙ B) →
s-f a₀ b ◃
apd d (smgluer b)
==
apd (section ∘ ∧-fmap f (⊙idf B)) (smgluer b) ▹
is-section-smbaser
is-section-smgluer b = ! $
apd (section ∘ ∧-fmap f (⊙idf B)) (smgluer b) ▹
is-section-smbaser
=⟨ ap (_▹ is-section-smbaser) $
apd-∘'' section
(∧-fmap f (⊙idf B))
(smgluer b)
(∧-fmap-smgluer-β-∙ b) ⟩
↓-ap-out= (fst ∘ P)
(∧-fmap f (⊙idf B))
(smgluer b)
(∧-fmap-smgluer-β-∙ b)
(apd section (ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b)) ▹
is-section-smbaser
=⟨ ap (_▹ is-section-smbaser) $
ap (↓-ap-out= (fst ∘ P)
(∧-fmap f (⊙idf B))
(smgluer b)
(∧-fmap-smgluer-β-∙ b)) $
apd-section-helper ⟩
↓-ap-out= (fst ∘ P)
(∧-fmap f (⊙idf B))
(smgluer b)
(∧-fmap-smgluer-β-∙ b)
((s-f a₀ b ◃ transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))) ∙ᵈ
section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)) ▹
is-section-smbaser
=⟨ cpac₂
(fst ∘ P)
(∧-fmap f (⊙idf B))
(smgluer b)
(smgluer b₀)
d
(ap (λ a' → smin a' b) (snd f))
(ap (λ a' → smin a' b₀) (snd f))
(smgluer b)
(smgluer b₀)
(∧-fmap-smgluer-β-∙' b)
(∧-fmap-smgluer-β-∙' b₀)
(s-a₀' b₀)
(s-f a₀ b) ⟩
s-f a₀ b ◃
apd d (smgluer b) =∎
where
apd-section-helper :
apd section (ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b)
==
(s-f a₀ b ◃ transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))) ∙ᵈ
section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)
apd-section-helper =
apd section (ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b)
=⟨ apd-∙ section (ap (λ a' → smin a' b) (snd f)) (∧-norm-r b) ⟩
apd section (ap (λ a' → smin a' b) (snd f)) ∙ᵈ
apd section (∧-norm-r b)
=⟨ ap2 _∙ᵈ_
(apd-∘''' section (λ a' → smin a' b) (snd f))
(apd-∙ section (smgluer b) (! (smgluer b₀))) ⟩
↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ∙ᵈ
apd section (smgluer b) ∙ᵈ apd section (! (smgluer b₀))
=⟨ ap (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ∙ᵈ_) $
ap2 _∙ᵈ_
(Section.smgluer-β b)
(apd-! section (smgluer b₀) ∙
ap !ᵈ (Section.smgluer-β b₀)) ⟩
↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ∙ᵈ
section-smgluer b ∙ᵈ !ᵈ (section-smgluer b₀)
=⟨ custom-assoc (fst ∘ P)
(↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)))
(! (to-transp (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)))))
(ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b))
(section-smgluer' b)
(!ᵈ (section-smgluer b₀)) ⟩
((↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ▹
! (to-transp (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f))))) ▹
ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) ∙ᵈ
section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)
=⟨ ap (λ u → (u ▹ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) ∙ᵈ
section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)) $
to-transp-over (fst ∘ P) $
↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ⟩
(transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (s (fst f a₀) b) ▹
ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) ∙ᵈ
section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)
=⟨ ! $ ap (_∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)) $
transp-over-naturality (fst ∘ P)
(ap (λ a' → smin a' b) (snd f))
(s-f a₀ b) ⟩
(s-f a₀ b ◃ transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))) ∙ᵈ
section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀) =∎
is-section : section ∘ ∧-fmap f (⊙idf B) ∼ d
is-section =
Smash-PathOver-elim
{P = λ ab → fst (P (∧-fmap f (⊙idf B) ab))}
(section ∘ ∧-fmap f (⊙idf B))
d
s-f
is-section-smbasel
is-section-smbaser
is-section-smgluel
is-section-smgluer
{- Proposition 4.3.2 in Guillaume Brunerie's thesis -}
∧-fmap-conn-l : has-conn-fibers (n +2+ m) (∧-fmap f (⊙idf B))
∧-fmap-conn-l = conn-in (λ P → ConnIn.section P , ConnIn.is-section P)
private
∧-swap-conn : ∀ {i} {j} (X : Ptd i) (Y : Ptd j) (n : ℕ₋₂)
→ has-conn-fibers n (∧-swap X Y)
∧-swap-conn X Y n yx =
Trunc-preserves-level {n = -2} n $
equiv-is-contr-map (∧-swap-is-equiv X Y) yx
∧-fmap-conn-r : ∀ {i} {j} {k}
(A : Ptd i) {B : Ptd j} {B' : Ptd k} (g : B ⊙→ B')
{k l : ℕ₋₂}
→ is-connected (S k) (de⊙ A)
→ has-conn-fibers l (fst g)
→ has-conn-fibers (k +2+ l) (∧-fmap (⊙idf A) g)
∧-fmap-conn-r A {B} {B'} g {k} {l} A-is-Sk-conn g-is-l-conn =
transport
(has-conn-fibers (k +2+ l))
(λ= (∧-swap-fmap (⊙idf A) g)) $
∘-conn (∧-swap A B)
(∧-swap B' A ∘ ∧-fmap g (⊙idf A))
(∧-swap-conn A B _) $
∘-conn (∧-fmap g (⊙idf A))
(∧-swap B' A)
(∧-fmap-conn-l g A g-is-l-conn A-is-Sk-conn)
(∧-swap-conn B' A _)
private
∘-conn' : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
{n m : ℕ₋₂} (g : B → C) (f : A → B)
→ has-conn-fibers m g
→ has-conn-fibers n f
→ has-conn-fibers (minT n m) (g ∘ f)
∘-conn' {n = n} {m = m} g f g-conn f-conn =
∘-conn f g
(λ b → connected-≤T (minT≤l n m) {{f-conn b}})
(λ c → connected-≤T (minT≤r n m) {{g-conn c}})
{- Proposition 4.3.5 in Guillaume Brunerie's thesis -}
∧-fmap-conn : ∀ {i i' j j'}
{A : Ptd i} {A' : Ptd i'} (f : A ⊙→ A')
{B : Ptd j} {B' : Ptd j'} (g : B ⊙→ B')
{m n k l : ℕ₋₂}
→ is-connected (S k) (de⊙ A')
→ is-connected (S n) (de⊙ B)
→ has-conn-fibers m (fst f)
→ has-conn-fibers l (fst g)
→ has-conn-fibers (minT (n +2+ m) (k +2+ l)) (∧-fmap f g)
∧-fmap-conn {A = A} {A'} f {B} {B'} g {m} {n} {k} {l}
A'-is-Sk-conn B-is-Sn-conn f-is-m-conn g-is-l-conn =
transport (has-conn-fibers (minT (n +2+ m) (k +2+ l))) p $
∘-conn' (∧-fmap (⊙idf A') g)
(∧-fmap f (⊙idf B))
(∧-fmap-conn-r A' g A'-is-Sk-conn g-is-l-conn)
(∧-fmap-conn-l f B f-is-m-conn B-is-Sn-conn)
where
p : ∧-fmap (⊙idf A') g ∘ ∧-fmap f (⊙idf B) == ∧-fmap f g
p =
∧-fmap (⊙idf A') g ∘ ∧-fmap f (⊙idf B)
=⟨ ! (λ= (∧-fmap-comp f (⊙idf A') (⊙idf B) g)) ⟩
∧-fmap (⊙idf A' ⊙∘ f) (g ⊙∘ ⊙idf B)
=⟨ ap (λ h → ∧-fmap h g) (⊙λ= (⊙∘-unit-l f)) ⟩
∧-fmap f g =∎
|
algebraic-stack_agda0000_doc_4839 | {-# OPTIONS --allow-unsolved-metas #-}
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- CS410 2017/18 Exercise 1 VECTORS AND FRIENDS (worth 25%)
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- NOTE (19/9/17) This file is currently incomplete: more will arrive on
-- GitHub.
-- MARK SCHEME (transcribed from paper): the (m) numbers add up to slightly
-- more than 25, so should be taken as the maximum number of marks losable on
-- the exercise. In fact, I did mark it negatively, but mostly because it was
-- done so well (with Agda's help) that it was easier to find the errors.
------------------------------------------------------------------------------
-- Dependencies
------------------------------------------------------------------------------
open import CS410-Prelude
------------------------------------------------------------------------------
-- Vectors
------------------------------------------------------------------------------
data Vec (X : Set) : Nat -> Set where -- like lists, but length-indexed
[] : Vec X zero
_,-_ : {n : Nat} -> X -> Vec X n -> Vec X (suc n)
infixr 4 _,-_ -- the "cons" operator associates to the right
-- I like to use the asymmetric ,- to remind myself that the element is to
-- the left and the rest of the list is to the right.
-- Vectors are useful when there are important length-related safety
-- properties.
------------------------------------------------------------------------------
-- Heads and Tails
------------------------------------------------------------------------------
-- We can rule out nasty head and tail errors by insisting on nonemptiness!
--??--1.1-(2)-----------------------------------------------------------------
vHead : {X : Set}{n : Nat} -> Vec X (suc n) -> X
vHead xs = {!!}
vTail : {X : Set}{n : Nat} -> Vec X (suc n) -> Vec X n
vTail xs = {!!}
vHeadTailFact : {X : Set}{n : Nat}(xs : Vec X (suc n)) ->
(vHead xs ,- vTail xs) == xs
vHeadTailFact xs = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Concatenation and its Inverse
------------------------------------------------------------------------------
--??--1.2-(2)-----------------------------------------------------------------
_+V_ : {X : Set}{m n : Nat} -> Vec X m -> Vec X n -> Vec X (m +N n)
xs +V ys = {!!}
infixr 4 _+V_
vChop : {X : Set}(m : Nat){n : Nat} -> Vec X (m +N n) -> Vec X m * Vec X n
vChop m xs = {!!}
vChopAppendFact : {X : Set}{m n : Nat}(xs : Vec X m)(ys : Vec X n) ->
vChop m (xs +V ys) == (xs , ys)
vChopAppendFact xs ys = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Map, take I
------------------------------------------------------------------------------
-- Implement the higher-order function that takes an operation on
-- elements and does it to each element of a vector. Use recursion
-- on the vector.
-- Note that the type tells you the size remains the same.
-- Show that if the elementwise function "does nothing", neither does
-- its vMap. "map of identity is identity"
-- Show that two vMaps in a row can be collapsed to just one, or
-- "composition of maps is map of compositions"
--??--1.3-(2)-----------------------------------------------------------------
vMap : {X Y : Set} -> (X -> Y) -> {n : Nat} -> Vec X n -> Vec Y n
vMap f xs = {!!}
vMapIdFact : {X : Set}{f : X -> X}(feq : (x : X) -> f x == x) ->
{n : Nat}(xs : Vec X n) -> vMap f xs == xs
vMapIdFact feq xs = {!!}
vMapCpFact : {X Y Z : Set}{f : Y -> Z}{g : X -> Y}{h : X -> Z}
(heq : (x : X) -> f (g x) == h x) ->
{n : Nat}(xs : Vec X n) ->
vMap f (vMap g xs) == vMap h xs
vMapCpFact heq xs = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- vMap and +V
------------------------------------------------------------------------------
-- Show that if you've got two vectors of Xs and a function from X to Y,
-- and you want to concatenate and map, it doesn't matter which you do
-- first.
--??--1.4-(1)-----------------------------------------------------------------
vMap+VFact : {X Y : Set}(f : X -> Y) ->
{m n : Nat}(xs : Vec X m)(xs' : Vec X n) ->
vMap f (xs +V xs') == (vMap f xs +V vMap f xs')
vMap+VFact f xs xs' = {!!}
--??--------------------------------------------------------------------------
-- Think about what you could prove, relating vMap with vHead, vTail, vChop...
-- Now google "Philip Wadler" "Theorems for Free"
------------------------------------------------------------------------------
-- Applicative Structure (giving mapping and zipping cheaply)
------------------------------------------------------------------------------
--??--1.5-(2)-----------------------------------------------------------------
-- HINT: you will need to override the default invisibility of n to do this.
vPure : {X : Set} -> X -> {n : Nat} -> Vec X n
vPure x {n} = {!!}
_$V_ : {X Y : Set}{n : Nat} -> Vec (X -> Y) n -> Vec X n -> Vec Y n
fs $V xs = {!!}
infixl 3 _$V_ -- "Application associates to the left,
-- rather as we all did in the sixties." (Roger Hindley)
-- Pattern matching and recursion are forbidden for the next two tasks.
-- implement vMap again, but as a one-liner
vec : {X Y : Set} -> (X -> Y) -> {n : Nat} -> Vec X n -> Vec Y n
vec f xs = {!!}
-- implement the operation which pairs up corresponding elements
vZip : {X Y : Set}{n : Nat} -> Vec X n -> Vec Y n -> Vec (X * Y) n
vZip xs ys = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Applicative Laws
------------------------------------------------------------------------------
-- According to "Applicative programming with effects" by
-- Conor McBride and Ross Paterson
-- some laws should hold for applicative functors.
-- Check that this is the case.
--??--1.6-(2)-----------------------------------------------------------------
vIdentity : {X : Set}{f : X -> X}(feq : (x : X) -> f x == x) ->
{n : Nat}(xs : Vec X n) -> (vPure f $V xs) == xs
vIdentity feq xs = {!!}
vHomomorphism : {X Y : Set}(f : X -> Y)(x : X) ->
{n : Nat} -> (vPure f $V vPure x) == vPure (f x) {n}
vHomomorphism f x {n} = {!!}
vInterchange : {X Y : Set}{n : Nat}(fs : Vec (X -> Y) n)(x : X) ->
(fs $V vPure x) == (vPure (_$ x) $V fs)
vInterchange fs x = {!!}
vComposition : {X Y Z : Set}{n : Nat}
(fs : Vec (Y -> Z) n)(gs : Vec (X -> Y) n)(xs : Vec X n) ->
(vPure _<<_ $V fs $V gs $V xs) == (fs $V (gs $V xs))
vComposition fs gs xs = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Order-Preserving Embeddings (also known in the business as "thinnings")
------------------------------------------------------------------------------
-- What have these to do with Pascal's Triangle?
data _<=_ : Nat -> Nat -> Set where
oz : zero <= zero
os : {n m : Nat} -> n <= m -> suc n <= suc m
o' : {n m : Nat} -> n <= m -> n <= suc m
-- Find all the values in each of the following <= types.
-- This is a good opportunity to learn to use C-c C-a with the -l option
-- (a.k.a. "google the type" without "I feel lucky")
-- The -s n option also helps.
--??--1.7-(1)-----------------------------------------------------------------
all0<=4 : Vec (0 <= 4) {!!}
all0<=4 = {!!}
all1<=4 : Vec (1 <= 4) {!!}
all1<=4 = {!!}
all2<=4 : Vec (2 <= 4) {!!}
all2<=4 = {!!}
all3<=4 : Vec (3 <= 4) {!!}
all3<=4 = {!!}
all4<=4 : Vec (4 <= 4) {!!}
all4<=4 = {!!}
-- Prove the following. A massive case analysis "rant" is fine.
no5<=4 : 5 <= 4 -> Zero
no5<=4 th = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Order-Preserving Embeddings Select From Vectors
------------------------------------------------------------------------------
-- Use n <= m to encode the choice of n elements from an m-Vector.
-- The os constructor tells you to take the next element of the vector;
-- the o' constructor tells you to omit the next element of the vector.
--??--1.8-(2)-----------------------------------------------------------------
_<?=_ : {X : Set}{n m : Nat} -> n <= m -> Vec X m
-> Vec X n
th <?= xs = {!!}
-- it shouldn't matter whether you map then select or select then map
vMap<?=Fact : {X Y : Set}(f : X -> Y)
{n m : Nat}(th : n <= m)(xs : Vec X m) ->
vMap f (th <?= xs) == (th <?= vMap f xs)
vMap<?=Fact f th xs = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Our Favourite Thinnings
------------------------------------------------------------------------------
-- Construct the identity thinning and the empty thinning.
--??--1.9-(1)-----------------------------------------------------------------
oi : {n : Nat} -> n <= n
oi {n} = {!!}
oe : {n : Nat} -> 0 <= n
oe {n} = {!!}
--??--------------------------------------------------------------------------
-- Show that all empty thinnings are equal to yours.
--??--1.10-(1)----------------------------------------------------------------
oeUnique : {n : Nat}(th : 0 <= n) -> th == oe
oeUnique i = {!!}
--??--------------------------------------------------------------------------
-- Show that there are no thinnings of form big <= small (TRICKY)
-- Then show that all the identity thinnings are equal to yours.
-- Note that you can try the second even if you haven't finished the first.
-- HINT: you WILL need to expose the invisible numbers.
-- HINT: check CS410-Prelude for a reminder of >=
--??--1.11-(3)----------------------------------------------------------------
oTooBig : {n m : Nat} -> n >= m -> suc n <= m -> Zero
oTooBig {n} {m} n>=m th = {!!}
oiUnique : {n : Nat}(th : n <= n) -> th == oi
oiUnique th = {!!}
--??--------------------------------------------------------------------------
-- Show that the identity thinning selects the whole vector
--??--1.12-(1)----------------------------------------------------------------
id-<?= : {X : Set}{n : Nat}(xs : Vec X n) -> (oi <?= xs) == xs
id-<?= xs = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Composition of Thinnings
------------------------------------------------------------------------------
-- Define the composition of thinnings and show that selecting by a
-- composite thinning is like selecting then selecting again.
-- A small bonus applies to minimizing the length of the proof.
-- To collect the bonus, you will need to think carefully about
-- how to make the composition as *lazy* as possible.
--??--1.13-(3)----------------------------------------------------------------
_o>>_ : {p n m : Nat} -> p <= n -> n <= m -> p <= m
th o>> th' = {!!}
cp-<?= : {p n m : Nat}(th : p <= n)(th' : n <= m) ->
{X : Set}(xs : Vec X m) ->
((th o>> th') <?= xs) == (th <?= (th' <?= xs))
cp-<?= th th' xs = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Thinning Dominoes
------------------------------------------------------------------------------
--??--1.14-(3)----------------------------------------------------------------
idThen-o>> : {n m : Nat}(th : n <= m) -> (oi o>> th) == th
idThen-o>> th = {!!}
idAfter-o>> : {n m : Nat}(th : n <= m) -> (th o>> oi) == th
idAfter-o>> th = {!!}
assoc-o>> : {q p n m : Nat}(th0 : q <= p)(th1 : p <= n)(th2 : n <= m) ->
((th0 o>> th1) o>> th2) == (th0 o>> (th1 o>> th2))
assoc-o>> th0 th1 th2 = {!!}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Vectors as Arrays
------------------------------------------------------------------------------
-- We can use 1 <= n as the type of bounded indices into a vector and do
-- a kind of "array projection". First we select a 1-element vector from
-- the n-element vector, then we take its head to get the element out.
vProject : {n : Nat}{X : Set} -> Vec X n -> 1 <= n -> X
vProject xs i = vHead (i <?= xs)
-- Your (TRICKY) mission is to reverse the process, tabulating a function
-- from indices as a vector. Then show that these operations are inverses.
--??--1.15-(3)----------------------------------------------------------------
-- HINT: composition of functions
vTabulate : {n : Nat}{X : Set} -> (1 <= n -> X) -> Vec X n
vTabulate {n} f = {!!}
-- This should be easy if vTabulate is correct.
vTabulateProjections : {n : Nat}{X : Set}(xs : Vec X n) ->
vTabulate (vProject xs) == xs
vTabulateProjections xs = {!!}
-- HINT: oeUnique
vProjectFromTable : {n : Nat}{X : Set}(f : 1 <= n -> X)(i : 1 <= n) ->
vProject (vTabulate f) i == f i
vProjectFromTable f i = {!!}
--??--------------------------------------------------------------------------
|
algebraic-stack_agda0000_doc_4840 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- A categorical view of Vec
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Categorical {a n} where
open import Category.Applicative using (RawApplicative)
open import Category.Applicative.Indexed using (Morphism)
open import Category.Functor as Fun using (RawFunctor)
import Function.Identity.Categorical as Id
open import Category.Monad using (RawMonad)
open import Data.Fin using (Fin)
open import Data.Vec as Vec hiding (_⊛_)
open import Data.Vec.Properties
open import Function
------------------------------------------------------------------------
-- Functor and applicative
functor : RawFunctor (λ (A : Set a) → Vec A n)
functor = record
{ _<$>_ = map
}
applicative : RawApplicative (λ (A : Set a) → Vec A n)
applicative = record
{ pure = replicate
; _⊛_ = Vec._⊛_
}
------------------------------------------------------------------------
-- Get access to other monadic functions
module _ {f F} (App : RawApplicative {f} F) where
open RawApplicative App
sequenceA : ∀ {A n} → Vec (F A) n → F (Vec A n)
sequenceA [] = pure []
sequenceA (x ∷ xs) = _∷_ <$> x ⊛ sequenceA xs
mapA : ∀ {a} {A : Set a} {B n} → (A → F B) → Vec A n → F (Vec B n)
mapA f = sequenceA ∘ map f
forA : ∀ {a} {A : Set a} {B n} → Vec A n → (A → F B) → F (Vec B n)
forA = flip mapA
module _ {m M} (Mon : RawMonad {m} M) where
private App = RawMonad.rawIApplicative Mon
sequenceM : ∀ {A n} → Vec (M A) n → M (Vec A n)
sequenceM = sequenceA App
mapM : ∀ {a} {A : Set a} {B n} → (A → M B) → Vec A n → M (Vec B n)
mapM = mapA App
forM : ∀ {a} {A : Set a} {B n} → Vec A n → (A → M B) → M (Vec B n)
forM = forA App
------------------------------------------------------------------------
-- Other
-- lookup is a functor morphism from Vec to Identity.
lookup-functor-morphism : (i : Fin n) → Fun.Morphism functor Id.functor
lookup-functor-morphism i = record
{ op = flip lookup i
; op-<$> = lookup-map i
}
-- lookup is an applicative functor morphism.
lookup-morphism : (i : Fin n) → Morphism applicative Id.applicative
lookup-morphism i = record
{ op = flip lookup i
; op-pure = lookup-replicate i
; op-⊛ = lookup-⊛ i
}
|
algebraic-stack_agda0000_doc_4841 | -- A placeholder module so that we can write a main. Agda compilation
-- does not work without a main so batch compilation is bound to give
-- errors. For travis builds, we want batch compilation and this is
-- module can be imported to serve that purpose. There is nothing
-- useful that can be achieved from this module though.
module io.placeholder where
open import hott.core.universe
postulate
Unit : Type₀
IO : Type₀ → Type₀
dummyMain : IO Unit
{-# COMPILED_TYPE Unit () #-}
{-# COMPILED_TYPE IO IO #-}
{-# COMPILED dummyMain (return ()) #-}
{-# BUILTIN IO IO #-}
|
algebraic-stack_agda0000_doc_4842 | open import Mockingbird.Forest using (Forest)
import Mockingbird.Forest.Birds as Birds
-- The Master Forest
module Mockingbird.Problems.Chapter18 {b ℓ} (forest : Forest {b} {ℓ})
⦃ _ : Birds.HasStarling forest ⦄
⦃ _ : Birds.HasKestrel forest ⦄ where
open import Data.Maybe using (Maybe; nothing; just)
open import Data.Product using (_×_; _,_; proj₁; ∃-syntax)
open import Data.Vec using (Vec; []; _∷_; _++_)
open import Data.Vec.Relation.Unary.Any.Properties using (++⁺ʳ)
open import Function using (_$_)
open import Level using (_⊔_)
open import Mockingbird.Forest.Combination.Vec forest using (⟨_⟩; here; there; [_]; _⟨∙⟩_∣_; _⟨∙⟩_; [#_])
open import Mockingbird.Forest.Combination.Vec.Properties forest using (subst′; weaken-++ˡ; weaken-++ʳ; ++-comm)
open import Relation.Unary using (_∈_)
open Forest forest
open import Mockingbird.Forest.Birds forest
problem₁ : HasIdentity
problem₁ = record
{ I = S ∙ K ∙ K
; isIdentity = λ x → begin
S ∙ K ∙ K ∙ x ≈⟨ isStarling K K x ⟩
K ∙ x ∙ (K ∙ x) ≈⟨ isKestrel x (K ∙ x) ⟩
x ∎
}
private instance hasIdentity = problem₁
problem₂ : HasMockingbird
problem₂ = record
{ M = S ∙ I ∙ I
; isMockingbird = λ x → begin
S ∙ I ∙ I ∙ x ≈⟨ isStarling I I x ⟩
I ∙ x ∙ (I ∙ x) ≈⟨ congʳ $ isIdentity x ⟩
x ∙ (I ∙ x) ≈⟨ congˡ $ isIdentity x ⟩
x ∙ x ∎
}
private instance hasMockingbird = problem₂
problem₃ : HasThrush
problem₃ = record
{ T = S ∙ (K ∙ (S ∙ I)) ∙ K
; isThrush = λ x y → begin
S ∙ (K ∙ (S ∙ I)) ∙ K ∙ x ∙ y ≈⟨ congʳ $ isStarling (K ∙ (S ∙ I)) K x ⟩
K ∙ (S ∙ I) ∙ x ∙ (K ∙ x) ∙ y ≈⟨ (congʳ $ congʳ $ isKestrel (S ∙ I) x) ⟩
S ∙ I ∙ (K ∙ x) ∙ y ≈⟨ isStarling I (K ∙ x) y ⟩
I ∙ y ∙ (K ∙ x ∙ y) ≈⟨ congʳ $ isIdentity y ⟩
y ∙ (K ∙ x ∙ y) ≈⟨ congˡ $ isKestrel x y ⟩
y ∙ x ∎
}
-- TODO: Problem 4.
I∈⟨S,K⟩ : I ∈ ⟨ S ∷ K ∷ [] ⟩
I∈⟨S,K⟩ = subst′ refl $ [# 0 ] ⟨∙⟩ [# 1 ] ⟨∙⟩ [# 1 ]
-- Try to strengthen a proof of X ∈ ⟨ y ∷ xs ⟩ to X ∈ ⟨ xs ⟩, which can be done
-- if y does not occur in X.
strengthen : ∀ {n X y} {xs : Vec Bird n} → X ∈ ⟨ y ∷ xs ⟩ → Maybe (X ∈ ⟨ xs ⟩)
-- NOTE: it could be the case that y ∈ xs, but checking that requires decidable
-- equality.
strengthen [ here X≈y ] = nothing
strengthen [ there X∈xs ] = just [ X∈xs ]
strengthen (Y∈⟨y,xs⟩ ⟨∙⟩ Z∈⟨y,xs⟩ ∣ YZ≈X) = do
Y∈⟨xs⟩ ← strengthen Y∈⟨y,xs⟩
Z∈⟨xs⟩ ← strengthen Z∈⟨y,xs⟩
just $ Y∈⟨xs⟩ ⟨∙⟩ Z∈⟨xs⟩ ∣ YZ≈X
where
open import Data.Maybe.Categorical using (monad)
open import Category.Monad using (RawMonad)
open RawMonad (monad {b ⊔ ℓ})
eliminate : ∀ {n X y} {xs : Vec Bird n} → X ∈ ⟨ y ∷ xs ⟩ → ∃[ X′ ] (X′ ∈ ⟨ S ∷ K ∷ xs ⟩ × X′ ∙ y ≈ X)
eliminate {X = X} {y} [ here X≈y ] = (I , weaken-++ˡ I∈⟨S,K⟩ , trans (isIdentity y) (sym X≈y))
eliminate {X = X} {y} [ there X∈xs ] = (K ∙ X , [# 1 ] ⟨∙⟩ [ ++⁺ʳ (S ∷ K ∷ []) X∈xs ] , isKestrel X y)
eliminate {X = X} {y} (_⟨∙⟩_∣_ {Y} {Z} Y∈⟨y,xs⟩ [ here Z≈y ] YZ≈X) with strengthen Y∈⟨y,xs⟩
... | just Y∈⟨xs⟩ = (Y , weaken-++ʳ (S ∷ K ∷ []) Y∈⟨xs⟩ , trans (congˡ (sym Z≈y)) YZ≈X)
... | nothing =
let (Y′ , Y′∈⟨S,K,xs⟩ , Y′y≈Y) = eliminate Y∈⟨y,xs⟩
SY′Iy≈X : S ∙ Y′ ∙ I ∙ y ≈ X
SY′Iy≈X = begin
S ∙ Y′ ∙ I ∙ y ≈⟨ isStarling Y′ I y ⟩
Y′ ∙ y ∙ (I ∙ y) ≈⟨ congʳ $ Y′y≈Y ⟩
Y ∙ (I ∙ y) ≈⟨ congˡ $ isIdentity y ⟩
Y ∙ y ≈˘⟨ congˡ Z≈y ⟩
Y ∙ Z ≈⟨ YZ≈X ⟩
X ∎
in (S ∙ Y′ ∙ I , [# 0 ] ⟨∙⟩ Y′∈⟨S,K,xs⟩ ⟨∙⟩ weaken-++ˡ I∈⟨S,K⟩ , SY′Iy≈X)
eliminate {X = X} {y} (_⟨∙⟩_∣_ {Y} {Z} Y∈⟨y,xs⟩ Z∈⟨y,xs⟩ YZ≈X) =
let (Y′ , Y′∈⟨S,K,xs⟩ , Y′y≈Y) = eliminate Y∈⟨y,xs⟩
(Z′ , Z′∈⟨S,K,xs⟩ , Z′y≈Z) = eliminate Z∈⟨y,xs⟩
SY′Z′y≈X : S ∙ Y′ ∙ Z′ ∙ y ≈ X
SY′Z′y≈X = begin
S ∙ Y′ ∙ Z′ ∙ y ≈⟨ isStarling Y′ Z′ y ⟩
Y′ ∙ y ∙ (Z′ ∙ y) ≈⟨ congʳ Y′y≈Y ⟩
Y ∙ (Z′ ∙ y) ≈⟨ congˡ Z′y≈Z ⟩
Y ∙ Z ≈⟨ YZ≈X ⟩
X ∎
in (S ∙ Y′ ∙ Z′ , [# 0 ] ⟨∙⟩ Y′∈⟨S,K,xs⟩ ⟨∙⟩ Z′∈⟨S,K,xs⟩ , SY′Z′y≈X)
module _ (x y : Bird) where
-- Example: y-eliminating the expression y should give I.
_ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 0 ]) ≈ I
_ = refl
-- Example: y-eliminating the expression x should give Kx.
_ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 1 ]) ≈ K ∙ x
_ = refl
-- Example: y-eliminating the expression xy should give x (Principle 3).
_ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 1 ] ⟨∙⟩ [# 0 ]) ≈ x
_ = refl
-- Example: y-eliminating the expression yx should give SI(Kx).
_ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 0 ] ⟨∙⟩ [# 1 ]) ≈ S ∙ I ∙ (K ∙ x)
_ = refl
-- Example: y-eliminating the expression yy should give SII.
_ : proj₁ (eliminate {y = y} {xs = x ∷ []} $ [# 0 ] ⟨∙⟩ [# 0 ]) ≈ S ∙ I ∙ I
_ = refl
strengthen-SK : ∀ {n X y} {xs : Vec Bird n} → X ∈ ⟨ S ∷ K ∷ y ∷ xs ⟩ → Maybe (X ∈ ⟨ S ∷ K ∷ xs ⟩)
strengthen-SK {y = y} {xs} X∈⟨S,K,y,xs⟩ = do
let X∈⟨y,xs,S,K⟩ = ++-comm (S ∷ K ∷ []) (y ∷ xs) X∈⟨S,K,y,xs⟩
X∈⟨xs,S,K⟩ ← strengthen X∈⟨y,xs,S,K⟩
let X∈⟨S,K,xs⟩ = ++-comm xs (S ∷ K ∷ []) X∈⟨xs,S,K⟩
just X∈⟨S,K,xs⟩
where
open import Data.Maybe.Categorical using (monad)
open import Category.Monad using (RawMonad)
open RawMonad (monad {b ⊔ ℓ})
-- TODO: formulate eliminate or eliminate-SK in terms of the other.
eliminate-SK : ∀ {n X y} {xs : Vec Bird n} → X ∈ ⟨ S ∷ K ∷ y ∷ xs ⟩ → ∃[ X′ ] (X′ ∈ ⟨ S ∷ K ∷ xs ⟩ × X′ ∙ y ≈ X)
eliminate-SK {X = X} {y} [ here X≈S ] = (K ∙ S , [# 1 ] ⟨∙⟩ [# 0 ] , trans (isKestrel S y) (sym X≈S))
eliminate-SK {X = X} {y} [ there (here X≈K) ] = (K ∙ K , [# 1 ] ⟨∙⟩ [# 1 ] , trans (isKestrel K y) (sym X≈K))
eliminate-SK {X = X} {y} [ there (there (here X≈y)) ] = (I , weaken-++ˡ I∈⟨S,K⟩ , trans (isIdentity y) (sym X≈y))
eliminate-SK {X = X} {y} [ there (there (there X∈xs)) ] = (K ∙ X , ([# 1 ] ⟨∙⟩ [ (++⁺ʳ (S ∷ K ∷ []) X∈xs) ]) , isKestrel X y)
eliminate-SK {X = X} {y} (_⟨∙⟩_∣_ {Y} {Z} Y∈⟨S,K,y,xs⟩ [ there (there (here Z≈y)) ] YZ≈X) with strengthen-SK Y∈⟨S,K,y,xs⟩
... | just Y∈⟨S,K,xs⟩ = (Y , Y∈⟨S,K,xs⟩ , trans (congˡ (sym Z≈y)) YZ≈X)
... | nothing =
let (Y′ , Y′∈⟨S,K,xs⟩ , Y′y≈Y) = eliminate-SK Y∈⟨S,K,y,xs⟩
SY′Iy≈X : S ∙ Y′ ∙ I ∙ y ≈ X
SY′Iy≈X = begin
S ∙ Y′ ∙ I ∙ y ≈⟨ isStarling Y′ I y ⟩
Y′ ∙ y ∙ (I ∙ y) ≈⟨ congʳ $ Y′y≈Y ⟩
Y ∙ (I ∙ y) ≈⟨ congˡ $ isIdentity y ⟩
Y ∙ y ≈˘⟨ congˡ Z≈y ⟩
Y ∙ Z ≈⟨ YZ≈X ⟩
X ∎
in (S ∙ Y′ ∙ I , [# 0 ] ⟨∙⟩ Y′∈⟨S,K,xs⟩ ⟨∙⟩ weaken-++ˡ I∈⟨S,K⟩ , SY′Iy≈X)
eliminate-SK {X = X} {y} (_⟨∙⟩_∣_ {Y} {Z} Y∈⟨S,K,y,xs⟩ Z∈⟨S,K,y,xs⟩ YZ≈X) =
let (Y′ , Y′∈⟨S,K,xs⟩ , Y′y≈Y) = eliminate-SK Y∈⟨S,K,y,xs⟩
(Z′ , Z′∈⟨S,K,xs⟩ , Z′y≈Z) = eliminate-SK Z∈⟨S,K,y,xs⟩
SY′Z′y≈X : S ∙ Y′ ∙ Z′ ∙ y ≈ X
SY′Z′y≈X = begin
S ∙ Y′ ∙ Z′ ∙ y ≈⟨ isStarling Y′ Z′ y ⟩
Y′ ∙ y ∙ (Z′ ∙ y) ≈⟨ congʳ Y′y≈Y ⟩
Y ∙ (Z′ ∙ y) ≈⟨ congˡ Z′y≈Z ⟩
Y ∙ Z ≈⟨ YZ≈X ⟩
X ∎
in (S ∙ Y′ ∙ Z′ , [# 0 ] ⟨∙⟩ Y′∈⟨S,K,xs⟩ ⟨∙⟩ Z′∈⟨S,K,xs⟩ , SY′Z′y≈X)
module _ (x y : Bird) where
-- Example: y-eliminating the expression y should give I.
_ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 2 ]) ≈ I
_ = refl
-- Example: y-eliminating the expression x should give Kx.
_ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 3 ]) ≈ K ∙ x
_ = refl
-- Example: y-eliminating the expression xy should give x (Principle 3).
_ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 3 ] ⟨∙⟩ [# 2 ]) ≈ x
_ = refl
-- Example: y-eliminating the expression yx should give SI(Kx).
_ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 2 ] ⟨∙⟩ [# 3 ]) ≈ S ∙ I ∙ (K ∙ x)
_ = refl
-- Example: y-eliminating the expression yy should give SII.
_ : proj₁ (eliminate-SK {y = y} {xs = x ∷ []} $ [# 2 ] ⟨∙⟩ [# 2 ]) ≈ S ∙ I ∙ I
_ = refl
infixl 6 _∙ⁿ_
_∙ⁿ_ : ∀ {n} → (A : Bird) (xs : Vec Bird n) → Bird
A ∙ⁿ [] = A
A ∙ⁿ (x ∷ xs) = A ∙ⁿ xs ∙ x
eliminateAll′ : ∀ {n X} {xs : Vec Bird n} → X ∈ ⟨ S ∷ K ∷ xs ⟩ → ∃[ X′ ] (X′ ∈ ⟨ S ∷ K ∷ [] ⟩ × X′ ∙ⁿ xs ≈ X)
eliminateAll′ {X = X} {[]} X∈⟨S,K⟩ = (X , X∈⟨S,K⟩ , refl)
eliminateAll′ {X = X} {x ∷ xs} X∈⟨S,K,x,xs⟩ =
let (X′ , X′∈⟨S,K,xs⟩ , X′x≈X) = eliminate-SK X∈⟨S,K,x,xs⟩
(X″ , X″∈⟨S,K⟩ , X″xs≈X′) = eliminateAll′ X′∈⟨S,K,xs⟩
X″∙ⁿxs∙x≈X : X″ ∙ⁿ xs ∙ x ≈ X
X″∙ⁿxs∙x≈X = begin
X″ ∙ⁿ xs ∙ x ≈⟨ congʳ X″xs≈X′ ⟩
X′ ∙ x ≈⟨ X′x≈X ⟩
X ∎
in (X″ , X″∈⟨S,K⟩ , X″∙ⁿxs∙x≈X)
-- TOOD: can we do this in some way without depending on xs : Vec Bird n?
eliminateAll : ∀ {n X} {xs : Vec Bird n} → X ∈ ⟨ xs ⟩ → ∃[ X′ ] (X′ ∈ ⟨ S ∷ K ∷ [] ⟩ × X′ ∙ⁿ xs ≈ X)
eliminateAll X∈⟨xs⟩ = eliminateAll′ $ weaken-++ʳ (S ∷ K ∷ []) X∈⟨xs⟩
|
algebraic-stack_agda0000_doc_4843 | -- Andreas, 2017-01-12, re #2386
-- Correct error message for wrong BUILTIN UNIT
data Bool : Set where
true false : Bool
{-# BUILTIN UNIT Bool #-}
-- Error WAS:
-- The builtin UNIT must be a datatype with 1 constructors
-- when checking the pragma BUILTIN UNIT Bool
-- Expected error:
-- Builtin UNIT must be a singleton record type
-- when checking the pragma BUILTIN UNIT Bool
|
algebraic-stack_agda0000_doc_4844 | open import FRP.JS.Bool using ( not )
open import FRP.JS.Nat using ( ) renaming ( _≟_ to _≟n_ )
open import FRP.JS.String using ( _≟_ ; _≤_ ; _<_ ; length )
open import FRP.JS.QUnit using ( TestSuite ; ok ; test ; _,_ )
module FRP.JS.Test.String where
tests : TestSuite
tests =
( test "≟"
( ok "abc ≟ abc" ("abc" ≟ "abc")
, ok "ε ≟ abc" (not ("" ≟ "abc"))
, ok "a ≟ abc" (not ("a" ≟ "abc"))
, ok "abc ≟ ABC" (not ("abc" ≟ "ABC")) )
, test "length"
( ok "length ε" (length "" ≟n 0)
, ok "length a" (length "a" ≟n 1)
, ok "length ab" (length "ab" ≟n 2)
, ok "length abc" (length "abc" ≟n 3)
, ok "length \"\\\"" (length "\"\\\"" ≟n 3)
, ok "length åäö⊢ξ∀" (length "åäö⊢ξ∀" ≟n 6)
, ok "length ⟨line-terminators⟩" (length "\r\n\x2028\x2029" ≟n 4) )
, test "≤"
( ok "abc ≤ abc" ("abc" ≤ "abc")
, ok "abc ≤ ε" (not ("abc" ≤ ""))
, ok "abc ≤ a" (not ("abc" ≤ "a"))
, ok "abc ≤ ab" (not ("abc" ≤ "a"))
, ok "abc ≤ ABC" (not ("abc" ≤ "ABC"))
, ok "ε ≤ abc" ("" ≤ "abc")
, ok "a ≤ abc" ("a" ≤ "abc")
, ok "ab ≤ abc" ("a" ≤ "abc")
, ok "ABC ≤ abc" ("ABC" ≤ "abc") )
, test "<"
( ok "abc < abc" (not ("abc" < "abc"))
, ok "abc < ε" (not ("abc" < ""))
, ok "abc < a" (not ("abc" < "a"))
, ok "abc < ab" (not ("abc" < "a"))
, ok "abc < ABC" (not ("abc" < "ABC"))
, ok "ε < abc" ("" < "abc")
, ok "a < abc" ("a" < "abc")
, ok "ab < abc" ("a" < "abc")
, ok "ABC < abc" ("ABC" < "abc") ) ) |
algebraic-stack_agda0000_doc_4845 | -- Andreas, 2017-11-06, issue #2840 reported by wenkokke
Id : (F : Set → Set) → Set → Set
Id F = F
data D (A : Set) : Set where
c : Id _ A
-- WAS: internal error in positivity checker
-- EXPECTED: success, or
-- The target of a constructor must be the datatype applied to its
-- parameters, _F_2 A isn't
-- when checking the constructor c in the declaration of D
|
algebraic-stack_agda0000_doc_4846 | ------------------------------------------------------------------------
-- This module proves that the context-sensitive language aⁿbⁿcⁿ can
-- be recognised
------------------------------------------------------------------------
-- This is obvious given the proof in
-- TotalRecognisers.LeftRecursion.ExpressiveStrength but the code
-- below provides a non-trivial example of the use of the parser
-- combinators.
module TotalRecognisers.LeftRecursion.NotOnlyContextFree where
open import Algebra
open import Codata.Musical.Notation
open import Data.Bool using (Bool; true; false; _∨_)
open import Function
open import Data.List as List using (List; []; _∷_; _++_; [_])
import Data.List.Properties
private
module ListMonoid {A : Set} =
Monoid (Data.List.Properties.++-monoid A)
open import Data.Nat as Nat using (ℕ; zero; suc; _+_)
import Data.Nat.Properties as NatProp
private
module NatCS = CommutativeSemiring NatProp.+-*-commutativeSemiring
import Data.Nat.Solver
open Data.Nat.Solver.+-*-Solver
open import Data.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open ≡-Reasoning
import TotalRecognisers.LeftRecursion
import TotalRecognisers.LeftRecursion.Lib as Lib
------------------------------------------------------------------------
-- The alphabet
data Tok : Set where
a b c : Tok
_≟_ : Decidable (_≡_ {A = Tok})
a ≟ a = yes refl
a ≟ b = no λ()
a ≟ c = no λ()
b ≟ a = no λ()
b ≟ b = yes refl
b ≟ c = no λ()
c ≟ a = no λ()
c ≟ b = no λ()
c ≟ c = yes refl
open TotalRecognisers.LeftRecursion Tok
open Lib Tok
private
open module TokTok = Lib.Tok Tok _≟_ using (tok)
------------------------------------------------------------------------
-- An auxiliary definition and a boring lemma
infixr 8 _^^_
_^^_ : Tok → ℕ → List Tok
_^^_ = flip List.replicate
private
shallow-comm : ∀ i n → i + suc n ≡ suc (i + n)
shallow-comm i n =
solve 2 (λ i n → i :+ (con 1 :+ n) := con 1 :+ i :+ n) refl i n
------------------------------------------------------------------------
-- Some lemmas relating _^^_, _^_ and tok
tok-^-complete : ∀ t i → t ^^ i ∈ tok t ^ i
tok-^-complete t zero = empty
tok-^-complete t (suc i) =
add-♭♯ ⟨ false ^ i ⟩-nullable TokTok.complete · tok-^-complete t i
tok-^-sound : ∀ t i {s} → s ∈ tok t ^ i → s ≡ t ^^ i
tok-^-sound t zero empty = refl
tok-^-sound t (suc i) (t∈ · s∈)
with TokTok.sound (drop-♭♯ ⟨ false ^ i ⟩-nullable t∈)
... | refl = cong (_∷_ t) (tok-^-sound t i s∈)
------------------------------------------------------------------------
-- aⁿbⁿcⁿ
-- The context-sensitive language { aⁿbⁿcⁿ | n ∈ ℕ } can be recognised
-- using the parser combinators defined in this development.
private
-- The two functions below are not actually mutually recursive, but
-- are placed in a mutual block to ensure that the constraints
-- generated by the second function can be used to instantiate the
-- underscore in the body of the first.
mutual
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index : ℕ → Bool
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index _ = _
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ : (i : ℕ) → P (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index i)
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ i = cast lem (♯? (tok a) · ♯ aⁿbⁱ⁺ⁿcⁱ⁺ⁿ (suc i))
∣ tok b ^ i ⊙ tok c ^ i
where lem = left-zero (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index (suc i))
aⁿbⁿcⁿ : P true
aⁿbⁿcⁿ = aⁿbⁱ⁺ⁿcⁱ⁺ⁿ 0
-- Let us prove that aⁿbⁿcⁿ is correctly defined.
aⁿbⁿcⁿ-string : ℕ → List Tok
aⁿbⁿcⁿ-string n = a ^^ n ++ b ^^ n ++ c ^^ n
private
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-string : ℕ → ℕ → List Tok
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-string n i = a ^^ n ++ b ^^ (i + n) ++ c ^^ (i + n)
aⁿbⁿcⁿ-complete : ∀ n → aⁿbⁿcⁿ-string n ∈ aⁿbⁿcⁿ
aⁿbⁿcⁿ-complete n = aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete n 0
where
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete : ∀ n i → aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-string n i ∈ aⁿbⁱ⁺ⁿcⁱ⁺ⁿ i
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete zero i with i + 0 | proj₂ NatCS.+-identity i
... | .i | refl = ∣-right {n₁ = false} (helper b · helper c)
where
helper = λ (t : Tok) →
add-♭♯ ⟨ false ^ i ⟩-nullable (tok-^-complete t i)
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete (suc n) i with i + suc n | shallow-comm i n
... | .(suc i + n) | refl =
∣-left $ cast {eq = lem} (
add-♭♯ (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index (suc i)) TokTok.complete ·
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-complete n (suc i))
where lem = left-zero (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index (suc i))
aⁿbⁿcⁿ-sound : ∀ {s} → s ∈ aⁿbⁿcⁿ → ∃ λ n → s ≡ aⁿbⁿcⁿ-string n
aⁿbⁿcⁿ-sound = aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound 0
where
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound : ∀ {s} i → s ∈ aⁿbⁱ⁺ⁿcⁱ⁺ⁿ i →
∃ λ n → s ≡ aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-string n i
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound i (∣-left (cast (t∈ · s∈)))
with TokTok.sound (drop-♭♯ (aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-index (suc i)) t∈)
... | refl with aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound (suc i) s∈
... | (n , refl) = suc n , (begin
a ^^ suc n ++ b ^^ (suc i + n) ++ c ^^ (suc i + n)
≡⟨ cong (λ i → a ^^ suc n ++ b ^^ i ++ c ^^ i)
(sym (shallow-comm i n)) ⟩
a ^^ suc n ++ b ^^ (i + suc n) ++ c ^^ (i + suc n)
∎)
aⁿbⁱ⁺ⁿcⁱ⁺ⁿ-sound i (∣-right (_·_ {s₁} {s₂} s₁∈ s₂∈)) = 0 , (begin
s₁ ++ s₂
≡⟨ cong₂ _++_ (tok-^-sound b i
(drop-♭♯ ⟨ false ^ i ⟩-nullable s₁∈))
(tok-^-sound c i
(drop-♭♯ ⟨ false ^ i ⟩-nullable s₂∈)) ⟩
b ^^ i ++ c ^^ i
≡⟨ cong (λ i → b ^^ i ++ c ^^ i)
(sym (proj₂ NatCS.+-identity i)) ⟩
b ^^ (i + 0) ++ c ^^ (i + 0)
∎)
|
algebraic-stack_agda0000_doc_4847 |
postulate
Nat : Set
Fin : Nat → Set
Finnat : Nat → Set
fortytwo : Nat
finnatic : Finnat fortytwo
_==_ : Finnat fortytwo → Finnat fortytwo → Set
record Fixer : Set where
field fix : ∀ {x} → Finnat x → Finnat fortytwo
open Fixer {{...}}
postulate
Fixidentity : {{_ : Fixer}} → Set
instance
fixidentity : {{fx : Fixer}} {{fxi : Fixidentity}} {f : Finnat fortytwo} → fix f == f
InstanceWrapper : Set
iwrap : InstanceWrapper
instance
IrrFixerInstance : .InstanceWrapper → Fixer
instance
FixerInstance : Fixer
FixerInstance = IrrFixerInstance iwrap
instance
postulate FixidentityInstance : Fixidentity
it : ∀ {a} {A : Set a} {{x : A}} → A
it {{x}} = x
fails : Fixer.fix FixerInstance finnatic == finnatic
fails = fixidentity
works : Fixer.fix FixerInstance finnatic == finnatic
works = fixidentity {{fx = it}}
works₂ : Fixer.fix FixerInstance finnatic == finnatic
works₂ = fixidentity {{fxi = it}}
|
algebraic-stack_agda0000_doc_13248 | module Categories.Setoids where
open import Library
open import Categories
record Setoid {a b} : Set (lsuc (a ⊔ b)) where
field set : Set a
eq : set → set → Set b
ref : {s : set} → eq s s
sym' : {s s' : set} → eq s s' → eq s' s
trn : {s s' s'' : set} →
eq s s' → eq s' s'' → eq s s''
open Setoid
record SetoidFun (S S' : Setoid) : Set where
constructor setoidfun
field fun : set S → set S'
feq : {s s' : set S} →
eq S s s' → eq S' (fun s) (fun s')
open SetoidFun
SetoidFunEq : {S S' : Setoid}{f g : SetoidFun S S'} →
fun f ≅ fun g →
(λ{s}{s'}(p : eq S s s') → feq f p)
≅
(λ{s}{s'}(p : eq S s s') → feq g p) →
f ≅ g
SetoidFunEq {f = setoidfun fun feq} {setoidfun .fun .feq} refl refl = refl
idFun : {S : Setoid} → SetoidFun S S
idFun = record {fun = id; feq = id}
compFun : {S S' S'' : Setoid} →
SetoidFun S' S'' → SetoidFun S S' → SetoidFun S S''
compFun f g = record {fun = fun f ∘ fun g; feq = feq f ∘ feq g}
idl : {X Y : Setoid} {f : SetoidFun X Y} → compFun idFun f ≅ f
idl {f = setoidfun _ _} = refl
idr : {X Y : Setoid} {f : SetoidFun X Y} → compFun f idFun ≅ f
idr {f = setoidfun _ _} = refl
Setoids : Cat
Setoids = record{
Obj = Setoid;
Hom = SetoidFun;
iden = idFun;
comp = compFun;
idl = idl;
idr = idr;
ass = refl}
-- -}
|
algebraic-stack_agda0000_doc_13249 | ------------------------------------------------------------------------
-- Divisibility and coprimality
------------------------------------------------------------------------
module Data.Integer.Divisibility where
open import Data.Function
open import Data.Integer
open import Data.Integer.Properties
import Data.Nat.Divisibility as ℕ
import Data.Nat.Coprimality as ℕ
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
-- Divisibility.
infix 4 _∣_
_∣_ : Rel ℤ
_∣_ = ℕ._∣_ on₁ ∣_∣
-- Coprimality.
Coprime : Rel ℤ
Coprime = ℕ.Coprime on₁ ∣_∣
-- If i divides jk and is coprime to j, then it divides k.
coprime-divisor : ∀ i j k → Coprime i j → i ∣ j * k → i ∣ k
coprime-divisor i j k c eq =
ℕ.coprime-divisor c (subst (ℕ._∣_ ∣ i ∣) (abs-*-commute j k) eq)
|
algebraic-stack_agda0000_doc_13250 | module Issue18 where
postulate
D : Set
data ∃ (A : D → Set) : Set where
_,_ : (witness : D) → A witness → ∃ A
|
algebraic-stack_agda0000_doc_13251 | {-# OPTIONS --cubical #-}
module Cubical.README where
------------------------------------------------------------------------
-- An experimental library for Cubical Agda
-----------------------------------------------------------------------
-- The library comes with a .agda-lib file, for use with the library
-- management system.
------------------------------------------------------------------------
-- Module hierarchy
------------------------------------------------------------------------
-- The core library for Cubical Agda.
-- It contains basic primitives, equivalences, glue types.
import Cubical.Core.Everything
-- The foundations for Cubical Agda.
-- The Prelude module is self-explanatory.
import Cubical.Foundations.Prelude
import Cubical.Foundations.Everything
-- Data types and properties
import Cubical.Data.Everything
-- Properties and proofs about relations
import Cubical.Relation.Everything
-- Higher-inductive types
import Cubical.HITs.Everything
-- Coinductive data types and properties
import Cubical.Codata.Everything
-- Various experiments using Cubical Agda
import Cubical.Experiments.Everything
|
algebraic-stack_agda0000_doc_13252 | module Lang.Function where
import Lvl
open import Data.Boolean
open import Data.List as List using (List)
open import Data.List.Functions.Positional as List
open import Data.Option
open import Data
open import Lang.Reflection
open import Syntax.Do
open import Type
-- A default value tactic for implicit arguments.
-- This implements a "default arguments" language feature.
-- It works by always unifying the hole with the specified value.
-- Essentially a constant function for holes.
-- Example:
-- test : ∀{@(tactic default 𝑇) x : Bool} → Bool
-- test{x} = x
-- Now, `test = 𝑇`, `test{𝑇} = 𝑇`, `test{𝐹} = 𝐹`.
default : ∀{ℓ}{T : Type{ℓ}} → T → Term → TC(Unit{Lvl.𝟎})
default x hole = quoteTC x >>= unify hole
-- A no inferrance tactic for implicit arguments.
-- This makes implicit arguments work like explicit arguments by throwing an error when the hole does not match perfectly while still maintaining its implicit visibility status.
-- It works by always selecting the last argument in the hole, and the last argument is the one closest to the value, which is the argument one expects it to choose.
-- Examples:
-- idᵢwith : ∀{T : TYPE} → {@(tactic no-infer) x : T} → T
-- idᵢwith {x = x} = x
--
-- idᵢwithout : ∀{T : TYPE} → {x : T} → T
-- idᵢwithout {x = x} = x
--
-- postulate test : ({_ : Bool} → Bool) → Bool
--
-- test1 : Bool
-- test1 = test idᵢwith
--
-- test2 : (Bool → Bool) → Bool
-- test2 _ = test idᵢwith
--
-- test3 : ∀{T : TYPE} → {_ : T} → T
-- test3 = idᵢwith
--
-- It is useful in these kinds of scenarios because idᵢwithout would require writing the implicit argument explicitly, while idᵢwith always uses the given argument in order like how explicit arguments work.
no-infer : Term → TC(Unit{Lvl.𝟎})
no-infer hole@(meta _ args) with List.last(args)
... | None = typeError (List.singleton (strErr "Expected a parameter with \"hidden\" visibility when using \"no-infer\", found none."))
... | Some (arg (arg-info hidden _) term) = unify hole term
{-# CATCHALL #-}
... | Some (arg (arg-info _ _) term) = typeError (List.singleton (strErr "Wrong visibility of argument. Expected \"hidden\" when using \"no-infer\"."))
{-# CATCHALL #-}
no-infer _ = typeError (List.singleton (strErr "TODO: In what situations is this error occurring?"))
-- TODO: Implement idᵢwith, rename it to idᵢ, and put it in Functional. Also, try to refactor Data.Boolean, Data.List and Data.Option so that they only contain the type definition and its constructors. This minimizes the amount of dependencies this module requires (which should help in case of circular dependencies when importing this module).
|
algebraic-stack_agda0000_doc_13253 |
postulate
T C D : Set
instance I : {{_ : C}} → D
d : {{_ : D}} → T
t : T
t = d
|
algebraic-stack_agda0000_doc_13254 | {-# OPTIONS --without-K --safe #-}
module Categories.Diagram.Cone.Properties where
open import Level
open import Categories.Category
open import Categories.Functor
open import Categories.Functor.Properties
open import Categories.NaturalTransformation
import Categories.Diagram.Cone as Con
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D J J′ : Category o ℓ e
module _ {F : Functor J C} (G : Functor C D) where
private
module C = Category C
module D = Category D
module F = Functor F
module G = Functor G
module CF = Con F
GF = G ∘F F
module CGF = Con GF
F-map-Coneˡ : CF.Cone → CGF.Cone
F-map-Coneˡ K = record
{ apex = record
{ ψ = λ X → G.F₁ (ψ X)
; commute = λ f → [ G ]-resp-∘ (commute f)
}
}
where open CF.Cone K
F-map-Cone⇒ˡ : ∀ {K K′} (f : CF.Cone⇒ K K′) → CGF.Cone⇒ (F-map-Coneˡ K) (F-map-Coneˡ K′)
F-map-Cone⇒ˡ f = record
{ arr = G.F₁ arr
; commute = [ G ]-resp-∘ commute
}
where open CF.Cone⇒ f
module _ {F : Functor J C} (G : Functor J′ J) where
private
module C = Category C
module J′ = Category J′
module F = Functor F
module G = Functor G
module CF = Con F
FG = F ∘F G
module CFG = Con FG
F-map-Coneʳ : CF.Cone → CFG.Cone
F-map-Coneʳ K = record
{ apex = record
{ ψ = λ j → ψ (G.F₀ j)
; commute = λ f → commute (G.F₁ f)
}
}
where open CF.Cone K
F-map-Cone⇒ʳ : ∀ {K K′} (f : CF.Cone⇒ K K′) → CFG.Cone⇒ (F-map-Coneʳ K) (F-map-Coneʳ K′)
F-map-Cone⇒ʳ f = record
{ arr = arr
; commute = commute
}
where open CF.Cone⇒ f
module _ {F G : Functor J C} (α : NaturalTransformation F G) where
private
module C = Category C
module J = Category J
module F = Functor F
module G = Functor G
module α = NaturalTransformation α
module CF = Con F
module CG = Con G
open C
open HomReasoning
open MR C
nat-map-Cone : CF.Cone → CG.Cone
nat-map-Cone K = record
{ apex = record
{ ψ = λ j → α.η j C.∘ ψ j
; commute = λ {X Y} f → begin
G.F₁ f ∘ α.η X ∘ ψ X ≈˘⟨ pushˡ (α.commute f) ⟩
(α.η Y ∘ F.F₁ f) ∘ ψ X ≈⟨ pullʳ (commute f) ⟩
α.η Y ∘ ψ Y ∎
}
}
where open CF.Cone K
nat-map-Cone⇒ : ∀ {K K′} (f : CF.Cone⇒ K K′) → CG.Cone⇒ (nat-map-Cone K) (nat-map-Cone K′)
nat-map-Cone⇒ {K} {K′} f = record
{ arr = arr
; commute = pullʳ commute
}
where open CF.Cone⇒ f
|
algebraic-stack_agda0000_doc_13255 | {-# OPTIONS --safe #-}
module Definition.Conversion.HelperDecidable where
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Conversion
open import Definition.Conversion.Whnf
open import Definition.Conversion.Soundness
open import Definition.Conversion.Symmetry
open import Definition.Conversion.Stability
open import Definition.Conversion.Conversion
open import Definition.Conversion.Lift
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Definition.Typed.Consequences.Injectivity
open import Definition.Typed.Consequences.Reduction
open import Definition.Typed.Consequences.Equality
open import Definition.Typed.Consequences.Inequality as IE
open import Definition.Typed.Consequences.NeTypeEq
open import Definition.Typed.Consequences.SucCong
open import Tools.Nat
open import Tools.Product
open import Tools.Empty
open import Tools.Nullary
import Tools.PropositionalEquality as PE
dec-relevance : ∀ (r r′ : Relevance) → Dec (r PE.≡ r′)
dec-relevance ! ! = yes PE.refl
dec-relevance ! % = no (λ ())
dec-relevance % ! = no (λ ())
dec-relevance % % = yes PE.refl
dec-level : ∀ (l l′ : Level) → Dec (l PE.≡ l′)
dec-level ⁰ ⁰ = yes PE.refl
dec-level ⁰ ¹ = no (λ ())
dec-level ¹ ⁰ = no (λ ())
dec-level ¹ ¹ = yes PE.refl
-- Algorithmic equality of variables infers propositional equality.
strongVarEq : ∀ {m n A Γ l} → Γ ⊢ var n ~ var m ↑! A ^ l → n PE.≡ m
strongVarEq (var-refl x x≡y) = x≡y
-- Helper function for decidability of applications.
dec~↑!-app : ∀ {k k₁ l l₁ F F₁ G G₁ rF B Γ Δ lF lG lΠ lK}
→ ⊢ Γ ≡ Δ
→ Γ ⊢ k ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ ! , ι lΠ ]
→ Δ ⊢ k₁ ∷ Π F₁ ^ rF ° lF ▹ G₁ ° lG ° lΠ ^ [ ! , ι lΠ ]
→ Γ ⊢ k ~ k₁ ↓! B ^ lK
→ Dec (Γ ⊢ l [genconv↑] l₁ ∷ F ^ [ rF , ι lF ])
→ Dec (∃ λ A → ∃ λ lA → Γ ⊢ k ∘ l ^ lΠ ~ k₁ ∘ l₁ ^ lΠ ↑! A ^ lA)
dec~↑!-app Γ≡Δ k k₁ k~k₁ (yes p) =
let
whnfA , neK , neL = ne~↓! k~k₁
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓! k~k₁)
l≡l , ΠFG₁≡A = neTypeEq neK k ⊢k
H , E , A≡ΠHE = Π≡A ΠFG₁≡A whnfA
F≡H , rF≡rH , lF≡lH , lG≡lE , G₁≡E = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x ^ _) A≡ΠHE ΠFG₁≡A)
in yes (E [ _ ] , _ , app-cong (PE.subst₂ (λ x y → _ ⊢ _ ~ _ ↓! x ^ y) A≡ΠHE (PE.sym l≡l) k~k₁) (convConvTerm%! p F≡H))
dec~↑!-app Γ≡Δ k k₁ k~k₁ (no ¬p) = no (λ { (_ , _ , app-cong k~k₁′ p) →
let
whnfA , neK , neL = ne~↓! k~k₁′
⊢A , ⊢k , ⊢l = syntacticEqTerm (soundness~↓! k~k₁′)
l≡l , Π≡Π = neTypeEq neK k ⊢k
F≡F , rF≡rF , lF≡lF , lG≡lG , G≡G = injectivity Π≡Π
in ¬p (convConvTerm%! (PE.subst₂ (λ x y → _ ⊢ _ [genconv↑] _ ∷ _ ^ [ x , ι y ]) (PE.sym rF≡rF) (PE.sym lF≡lF) p) (sym F≡F)) })
nonNeutralℕ : Neutral ℕ → ⊥
nonNeutralℕ ()
nonNeutralU : ∀ {r l} → Neutral (Univ r l) → ⊥
nonNeutralU ()
Idℕ-elim : ∀ {Γ l A B t u t' u'} → Neutral A → Γ ⊢ Id A t u ~ Id ℕ t' u' ↑! B ^ l → ⊥
Idℕ-elim neA (Id-cong x x₁ x₂) = let _ , _ , neℕ = ne~↓! x in ⊥-elim (nonNeutralℕ neℕ)
Idℕ-elim neA (Id-ℕ x x₁) = ⊥-elim (nonNeutralℕ neA)
Idℕ-elim neA (Id-ℕ0 x) = ⊥-elim (nonNeutralℕ neA)
Idℕ-elim neA (Id-ℕS x x₁) = ⊥-elim (nonNeutralℕ neA)
Idℕ-elim' : ∀ {Γ l A B t u t' u'} → Neutral A → Γ ⊢ Id ℕ t u ~ Id A t' u' ↑! B ^ l → ⊥
Idℕ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in Idℕ-elim neA e'
conv↑-inversion : ∀ {Γ l A t u} → Whnf A → Whnf t → Whnf u → Γ ⊢ t [conv↑] u ∷ A ^ l → Γ ⊢ t [conv↓] u ∷ A ^ l
conv↑-inversion whnfA whnft whnfu ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) =
let et = whnfRed*Term d whnft
eu = whnfRed*Term d′ whnfu
eA = whnfRed* D whnfA
in PE.subst₃ (λ A X Y → _ ⊢ X [conv↓] Y ∷ A ^ _) (PE.sym eA) (PE.sym et) (PE.sym eu) t<>u
Idℕ0-elim- : ∀ {Γ l t} → Neutral t → Γ ⊢ t [conv↓] zero ∷ ℕ ^ l → ⊥
Idℕ0-elim- net (ℕ-ins ())
Idℕ0-elim- net (ne-ins x x₁ x₂ ())
Idℕ0-elim- () (zero-refl x)
Idℕ0-elim : ∀ {Γ l A t u u'} → Neutral t → Γ ⊢ Id ℕ t u ~ Id ℕ zero u' ↑! A ^ l → ⊥
Idℕ0-elim net (Id-cong x y x₂) =
let e = conv↑-inversion ℕₙ (ne net) zeroₙ y in Idℕ0-elim- net e
Idℕ0-elim net (Id-ℕ () x₁)
Idℕ0-elim () (Id-ℕ0 x)
Idℕ0-elim' : ∀ {Γ l A t u u'} → Neutral t → Γ ⊢ Id ℕ zero u ~ Id ℕ t u' ↑! A ^ l → ⊥
Idℕ0-elim' net e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in Idℕ0-elim net e'
IdℕS-elim- : ∀ {Γ l t n} → Neutral t → Γ ⊢ t [conv↓] suc n ∷ ℕ ^ l → ⊥
IdℕS-elim- net (ℕ-ins ())
IdℕS-elim- net (ne-ins x x₁ x₂ ())
IdℕS-elim- () (suc-cong x)
IdℕS-elim : ∀ {Γ l A t u n u'} → Neutral t → Γ ⊢ Id ℕ t u ~ Id ℕ (suc n) u' ↑! A ^ l → ⊥
IdℕS-elim net (Id-cong x y x₂) =
let e = conv↑-inversion ℕₙ (ne net) sucₙ y in IdℕS-elim- net e
IdℕS-elim net (Id-ℕ () x₁)
IdℕS-elim () (Id-ℕS x _)
IdℕS-elim' : ∀ {Γ l A t u n u'} → Neutral t → Γ ⊢ Id ℕ (suc n) u ~ Id ℕ t u' ↑! A ^ l → ⊥
IdℕS-elim' net e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in IdℕS-elim net e'
Idℕ0S-elim- : ∀ {Γ l n} → Γ ⊢ zero [conv↓] suc n ∷ ℕ ^ l → ⊥
Idℕ0S-elim- (ℕ-ins ())
Idℕ0S-elim- (ne-ins x x₁ x₂ ())
Idℕ0S-elim : ∀ {Γ l A u u' n} → Γ ⊢ Id ℕ zero u ~ Id ℕ (suc n) u' ↑! A ^ l → ⊥
Idℕ0S-elim (Id-cong x y x₂) =
let e = conv↑-inversion ℕₙ zeroₙ sucₙ y in Idℕ0S-elim- e
Idℕ0S-elim (Id-ℕ () _)
Idℕ0S-elim' : ∀ {Γ l A u u' n} → Γ ⊢ Id ℕ (suc n) u ~ Id ℕ zero u' ↑! A ^ l → ⊥
Idℕ0S-elim' e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in Idℕ0S-elim e'
IdU-elim : ∀ {Γ l A B t u t' u' rU lU} → Neutral A → Γ ⊢ Id A t u ~ Id (Univ rU lU) t' u' ↑! B ^ l → ⊥
IdU-elim neA (Id-cong x x₁ x₂) = let _ , _ , neU = ne~↓! x in ⊥-elim (nonNeutralU neU)
IdU-elim neA (Id-U x x₁) = ⊥-elim (nonNeutralU neA)
IdU-elim neA (Id-Uℕ x) = ⊥-elim (nonNeutralU neA)
IdU-elim neA (Id-UΠ x x₁) = ⊥-elim (nonNeutralU neA)
IdU-elim' : ∀ {Γ l A B t u t' u' rU lU} → Neutral A → Γ ⊢ Id (Univ rU lU) t u ~ Id A t' u' ↑! B ^ l → ⊥
IdU-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in IdU-elim neA e'
IdUℕ-elim : ∀ {Γ l A t u t' u' rU lU} → Γ ⊢ Id (Univ rU lU) t u ~ Id ℕ t' u' ↑! A ^ l → ⊥
IdUℕ-elim (Id-cong () x₁ x₂)
IdℕU-elim : ∀ {Γ l A t u t' u' rU lU} → Γ ⊢ Id ℕ t u ~ Id (Univ rU lU) t' u' ↑! A ^ l → ⊥
IdℕU-elim (Id-cong () x₁ x₂)
IdUUℕ-elim : ∀ {Γ l A t u u'} → Neutral t → Γ ⊢ Id (U ⁰) t u ~ Id (U ⁰) ℕ u' ↑! A ^ l → ⊥
IdUUℕ-elim () (Id-Uℕ x)
IdUUℕ-elim' : ∀ {Γ l A t u u'} → Neutral t → Γ ⊢ Id (U ⁰) ℕ u ~ Id (U ⁰) t u' ↑! A ^ l → ⊥
IdUUℕ-elim' () (Id-Uℕ x)
IdUUΠ-elim- : ∀ {Γ l A rA B X t} → Neutral t → Γ ⊢ t [conv↓] Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ ∷ X ^ l → ⊥
IdUUΠ-elim- net (η-eq x x₁ x₂ x₃ x₄ x₅ (ne ()) x₇)
IdUUΠ-elim : ∀ {Γ l A rA B X t u u'} → Neutral t → Γ ⊢ Id (U ⁰) t u ~ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u' ↑! X ^ l → ⊥
IdUUΠ-elim net (Id-cong x y x₂) = let e = conv↑-inversion Uₙ (ne net) Πₙ y in IdUUΠ-elim- net e
IdUUΠ-elim net (Id-U () x₁)
IdUUΠ-elim () (Id-UΠ x x₁)
IdUUΠ-elim' : ∀ {Γ l A rA B X t u u'} → Neutral t → Γ ⊢ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u ~ Id (U ⁰) t u' ↑! X ^ l → ⊥
IdUUΠ-elim' net e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in IdUUΠ-elim net e'
IdUUΠℕ-elim- : ∀ {Γ l A rA B X} → Γ ⊢ Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ [conv↓] ℕ ∷ X ^ l → ⊥
IdUUΠℕ-elim- (η-eq x x₁ x₂ x₃ x₄ x₅ (ne ()) x₇)
IdUUΠℕ-elim : ∀ {Γ l A rA B X u u'} → Γ ⊢ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u ~ Id (U ⁰) ℕ u' ↑! X ^ l → ⊥
IdUUΠℕ-elim (Id-cong x y x₂) = let e = conv↑-inversion Uₙ Πₙ ℕₙ y in IdUUΠℕ-elim- e
IdUUΠℕ-elim (Id-U () x₁)
IdUUΠℕ-elim' : ∀ {Γ l A rA B X u u'} → Γ ⊢ Id (U ⁰) ℕ u ~ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) u' ↑! X ^ l → ⊥
IdUUΠℕ-elim' e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in IdUUΠℕ-elim e'
castℕ-elim : ∀ {Γ l A B B' X t e t' e'} → Neutral A → Γ ⊢ cast ⁰ A B e t ~ cast ⁰ ℕ B' e' t' ↑! X ^ l → ⊥
castℕ-elim neA (cast-cong () x₁ x₂ x₃ x₄)
castℕ-elim () (cast-ℕ x x₁ x₂ x₃)
castℕ-elim () (cast-ℕℕ x x₁ x₂)
castℕ-elim () (cast-ℕΠ x x₁ x₂ x₃)
castℕ-elim' : ∀ {Γ l A B B' X t e t' e'} → Neutral A → Γ ⊢ cast ⁰ ℕ B e t ~ cast ⁰ A B' e' t' ↑! X ^ l → ⊥
castℕ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castℕ-elim neA e'
castΠ-elim : ∀ {Γ l A B B' X t e t' e' r P Q} → Neutral A → Γ ⊢ cast ⁰ A B e t ~ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) B' e' t' ↑! X ^ l → ⊥
castΠ-elim neA (cast-cong () x₁ x₂ x₃ x₄)
castΠ-elim () (cast-Π x x₁ x₂ x₃ x₄)
castΠ-elim () (cast-Πℕ x x₁ x₂ x₃)
castΠ-elim () (cast-ΠΠ%! x x₁ x₂ x₃ x₄)
castΠ-elim () (cast-ΠΠ!% x x₁ x₂ x₃ x₄)
castΠ-elim' : ∀ {Γ l A B B' X t e t' e' r P Q} → Neutral A → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) B e t ~ cast ⁰ A B' e' t' ↑! X ^ l → ⊥
castΠ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castΠ-elim neA e'
castℕℕ-elim : ∀ {Γ l A X t e t' e'} → Neutral A → Γ ⊢ cast ⁰ ℕ A e t ~ cast ⁰ ℕ ℕ e' t' ↑! X ^ l → ⊥
castℕℕ-elim neA (cast-cong () x₁ x₂ x₃ x₄)
castℕℕ-elim (var n) (cast-ℕ () x₁ x₂ x₃)
castℕℕ-elim () (cast-ℕℕ x x₁ x₂)
castℕℕ-elim' : ∀ {Γ l A X t e t' e'} → Neutral A → Γ ⊢ cast ⁰ ℕ ℕ e t ~ cast ⁰ ℕ A e' t' ↑! X ^ l → ⊥
castℕℕ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castℕℕ-elim neA e'
castℕΠ-elim : ∀ {Γ l A A' X t e t' e' r P Q} → Γ ⊢ cast ⁰ ℕ A e t ~ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) A' e' t' ↑! X ^ l → ⊥
castℕΠ-elim (cast-cong () x₁ x₂ x₃ x₄)
castℕΠ-elim' : ∀ {Γ l A A' X t e t' e' r P Q} → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~ cast ⁰ ℕ A' e' t' ↑! X ^ l → ⊥
castℕΠ-elim' (cast-cong () x₁ x₂ x₃ x₄)
castℕneΠ-elim : ∀ {Γ l A X t e t' e' r P Q} → Neutral A → Γ ⊢ cast ⁰ ℕ A e t ~ cast ⁰ ℕ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) e' t' ↑! X ^ l → ⊥
castℕneΠ-elim neA (cast-cong () x₁ x₂ x₃ x₄)
castℕneΠ-elim neA (cast-ℕ () x₁ x₂ x₃)
castℕneΠ-elim () (cast-ℕΠ x x₁ x₂ x₃)
castℕneΠ-elim' : ∀ {Γ l A X t e t' e' r P Q} → Neutral A → Γ ⊢ cast ⁰ ℕ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ ℕ A e' t' ↑! X ^ l → ⊥
castℕneΠ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castℕneΠ-elim neA e'
castℕℕΠ-elim : ∀ {Γ l X t e t' e' r P Q} → Γ ⊢ cast ⁰ ℕ ℕ e t ~ cast ⁰ ℕ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) e' t' ↑! X ^ l → ⊥
castℕℕΠ-elim (cast-cong () x₁ x₂ x₃ x₄)
castℕℕΠ-elim (cast-ℕ () x₁ x₂ x₃)
castℕℕΠ-elim' : ∀ {Γ l X t e t' e' r P Q} → Γ ⊢ cast ⁰ ℕ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ ℕ ℕ e' t' ↑! X ^ l → ⊥
castℕℕΠ-elim' e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castℕℕΠ-elim e'
castΠneℕ-elim : ∀ {Γ l A X t e t' e' r P Q r' P' Q'} → Neutral A → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~
cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) ℕ e' t' ↑! X ^ l → ⊥
castΠneℕ-elim neA (cast-cong () x₁ x₂ x₃ x₄)
castΠneℕ-elim neA (cast-Π x () x₂ x₃ x₄)
castΠneℕ-elim () (cast-Πℕ x x₁ x₂ x₃)
castΠneℕ-elim' : ∀ {Γ l A X t e t' e' r P Q r' P' Q'} → Neutral A → Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) ℕ e t ~
cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) A e' t' ↑! X ^ l → ⊥
castΠneℕ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castΠneℕ-elim neA e'
castΠneΠ-elim : ∀ {Γ l A X t e t' e' r P Q r' P' Q' r'' P'' Q''} → Neutral A →
Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) (Π P'' ^ r'' ° ⁰ ▹ Q'' ° ⁰ ° ⁰) e' t' ↑! X ^ l → ⊥
castΠneΠ-elim neA (cast-cong () x₁ x₂ x₃ x₄)
castΠneΠ-elim neA (cast-Π x () x₂ x₃ x₄)
castΠneΠ-elim () (cast-ΠΠ%! x x₁ x₂ x₃ x₄)
castΠneΠ-elim () (cast-ΠΠ!% x x₁ x₂ x₃ x₄)
castΠneΠ-elim' : ∀ {Γ l A X t e t' e' r P Q r' P' Q' r'' P'' Q''} → Neutral A →
Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) (Π P'' ^ r'' ° ⁰ ▹ Q'' ° ⁰ ° ⁰) e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) A e' t' ↑! X ^ l → ⊥
castΠneΠ-elim' neA e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castΠneΠ-elim neA e'
castΠΠℕ-elim : ∀ {Γ l X t e t' e' r P Q r' P' Q' r'' P'' Q''} →
Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) ℕ e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) (Π P'' ^ r'' ° ⁰ ▹ Q'' ° ⁰ ° ⁰) e' t' ↑! X ^ l → ⊥
castΠΠℕ-elim (cast-cong () x₁ x₂ x₃ x₄)
castΠΠℕ-elim (cast-Π x () x₂ x₃ x₄)
castΠΠℕ-elim' : ∀ {Γ l X t e t' e' r P Q r' P' Q' r'' P'' Q''} →
Γ ⊢ cast ⁰ (Π P ^ r ° ⁰ ▹ Q ° ⁰ ° ⁰) (Π P'' ^ r'' ° ⁰ ▹ Q'' ° ⁰ ° ⁰) e t ~ cast ⁰ (Π P' ^ r' ° ⁰ ▹ Q' ° ⁰ ° ⁰) ℕ e' t' ↑! X ^ l → ⊥
castΠΠℕ-elim' e = let _ , _ , e' = sym~↑! (reflConEq (wfEqTerm (soundness~↑! e))) e in castΠΠℕ-elim e'
castΠΠ!%-elim : ∀ {Γ l A A' X t e t' e' P Q P' Q'} → Γ ⊢ cast ⁰ (Π P ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~
cast ⁰ (Π P' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰) A' e' t' ↑! X ^ l → ⊥
castΠΠ!%-elim (cast-cong () x₁ x₂ x₃ x₄)
castΠΠ%!-elim : ∀ {Γ l A A' X t e t' e' P Q P' Q'} → Γ ⊢ cast ⁰ (Π P ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰) A e t ~
cast ⁰ (Π P' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰) A' e' t' ↑! X ^ l → ⊥
castΠΠ%!-elim (cast-cong () x₁ x₂ x₃ x₄)
-- Helper functions for decidability for neutrals
decConv↓Term-ℕ-ins : ∀ {t u Γ l}
→ Γ ⊢ t [conv↓] u ∷ ℕ ^ l
→ Γ ⊢ t ~ t ↓! ℕ ^ l
→ Γ ⊢ t ~ u ↓! ℕ ^ l
decConv↓Term-ℕ-ins (ℕ-ins x) t~t = x
decConv↓Term-ℕ-ins (ne-ins x x₁ () x₃) t~t
decConv↓Term-ℕ-ins (zero-refl x) ([~] A D whnfB ())
decConv↓Term-ℕ-ins (suc-cong x) ([~] A D whnfB ())
decConv↓Term-U-ins : ∀ {t u Γ r lU l}
→ Γ ⊢ t [conv↓] u ∷ Univ r lU ^ l
→ Γ ⊢ t ~ t ↓! Univ r lU ^ l
→ Γ ⊢ t ~ u ↓! Univ r lU ^ l
decConv↓Term-U-ins (ne x) t~r = x
decConv↓Term-ne-ins : ∀ {t u A Γ l}
→ Neutral A
→ Γ ⊢ t [conv↓] u ∷ A ^ l
→ ∃ λ B → ∃ λ lB → Γ ⊢ t ~ u ↓! B ^ lB
decConv↓Term-ne-ins neA (ne-ins x x₁ x₂ x₃) = _ , _ , x₃
-- Helper function for decidability for impossibility of terms not being equal
-- as neutrals when they are equal as terms and the first is a neutral.
decConv↓Term-ℕ : ∀ {t u Γ l}
→ Γ ⊢ t [conv↓] u ∷ ℕ ^ l
→ Γ ⊢ t ~ t ↓! ℕ ^ l
→ ¬ (Γ ⊢ t ~ u ↓! ℕ ^ l)
→ ⊥
decConv↓Term-ℕ (ℕ-ins x) t~t ¬u~u = ¬u~u x
decConv↓Term-ℕ (ne-ins x x₁ () x₃) t~t ¬u~u
decConv↓Term-ℕ (zero-refl x) ([~] A D whnfB ()) ¬u~u
decConv↓Term-ℕ (suc-cong x) ([~] A D whnfB ()) ¬u~u
decConv↓Term-U : ∀ {t u Γ r lU l}
→ Γ ⊢ t [conv↓] u ∷ Univ r lU ^ l
→ Γ ⊢ t ~ t ↓! Univ r lU ^ l
→ ¬ (Γ ⊢ t ~ u ↓! Univ r lU ^ l)
→ ⊥
decConv↓Term-U (ne x) t~t ¬u~u = ¬u~u x
|
algebraic-stack_agda0000_doc_13256 | record R (X : Set) : Set₁ where
field
P : X → Set
f : ∀ {x : X} → P x → P x
open R {{…}}
test : ∀ {X} {{r : R X}} {x : X} → P x → P x
test p = f p
-- WAS: instance search fails with several candidates left
-- SHOULD: succeed
|
algebraic-stack_agda0000_doc_13257 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Heterogeneous equality
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Relation.Binary.HeterogeneousEquality where
import Axiom.Extensionality.Heterogeneous as Ext
open import Data.Product
open import Data.Unit.NonEta
open import Function
open import Function.Inverse using (Inverse)
open import Level
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Consequences
open import Relation.Binary.Indexed.Heterogeneous
using (IndexedSetoid)
open import Relation.Binary.Indexed.Heterogeneous.Construct.At
using (_atₛ_)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
import Relation.Binary.HeterogeneousEquality.Core as Core
------------------------------------------------------------------------
-- Heterogeneous equality
infix 4 _≇_
open Core public using (_≅_; refl)
-- Nonequality.
_≇_ : ∀ {ℓ} {A : Set ℓ} → A → {B : Set ℓ} → B → Set ℓ
x ≇ y = ¬ x ≅ y
------------------------------------------------------------------------
-- Conversion
open Core public using (≅-to-≡; ≡-to-≅)
≅-to-type-≡ : ∀ {a} {A B : Set a} {x : A} {y : B} →
x ≅ y → A ≡ B
≅-to-type-≡ refl = refl
≅-to-subst-≡ : ∀ {a} {A B : Set a} {x : A} {y : B} → (p : x ≅ y) →
P.subst (λ x → x) (≅-to-type-≡ p) x ≡ y
≅-to-subst-≡ refl = refl
------------------------------------------------------------------------
-- Some properties
reflexive : ∀ {a} {A : Set a} → _⇒_ {A = A} _≡_ (λ x y → x ≅ y)
reflexive refl = refl
sym : ∀ {ℓ} {A B : Set ℓ} {x : A} {y : B} → x ≅ y → y ≅ x
sym refl = refl
trans : ∀ {ℓ} {A B C : Set ℓ} {x : A} {y : B} {z : C} →
x ≅ y → y ≅ z → x ≅ z
trans refl eq = eq
subst : ∀ {a} {A : Set a} {p} → Substitutive {A = A} (λ x y → x ≅ y) p
subst P refl p = p
subst₂ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) →
∀ {x₁ x₂ y₁ y₂} → x₁ ≅ x₂ → y₁ ≅ y₂ → P x₁ y₁ → P x₂ y₂
subst₂ P refl refl p = p
subst-removable : ∀ {a p} {A : Set a}
(P : A → Set p) {x y} (eq : x ≅ y) z →
subst P eq z ≅ z
subst-removable P refl z = refl
≡-subst-removable : ∀ {a p} {A : Set a}
(P : A → Set p) {x y} (eq : x ≡ y) z →
P.subst P eq z ≅ z
≡-subst-removable P refl z = refl
cong : ∀ {a b} {A : Set a} {B : A → Set b} {x y}
(f : (x : A) → B x) → x ≅ y → f x ≅ f y
cong f refl = refl
cong-app : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
f ≅ g → (x : A) → f x ≅ g x
cong-app refl x = refl
cong₂ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c}
{x y u v}
(f : (x : A) (y : B x) → C x y) → x ≅ y → u ≅ v → f x u ≅ f y v
cong₂ f refl refl = refl
resp₂ : ∀ {a ℓ} {A : Set a} (∼ : Rel A ℓ) → ∼ Respects₂ (λ x y → x ≅ y)
resp₂ _∼_ = subst⟶resp₂ _∼_ subst
icong : ∀ {a b ℓ} {I : Set ℓ}
(A : I → Set a) {B : {k : I} → A k → Set b}
{i j : I} {x : A i} {y : A j} →
i ≡ j →
(f : {k : I} → (z : A k) → B z) →
x ≅ y →
f x ≅ f y
icong _ refl _ refl = refl
icong₂ : ∀ {a b c ℓ} {I : Set ℓ}
(A : I → Set a)
{B : {k : I} → A k → Set b}
{C : {k : I} → (a : A k) → B a → Set c}
{i j : I} {x : A i} {y : A j} {u : B x} {v : B y} →
i ≡ j →
(f : {k : I} → (z : A k) → (w : B z) → C z w) →
x ≅ y → u ≅ v →
f x u ≅ f y v
icong₂ _ refl _ refl refl = refl
icong-subst-removable : ∀ {a b ℓ}
{I : Set ℓ}
(A : I → Set a) {B : {k : I} → A k → Set b}
{i j : I} (eq : i ≅ j)
(f : {k : I} → (z : A k) → B z)
(x : A i) →
f (subst A eq x) ≅ f x
icong-subst-removable _ refl _ _ = refl
icong-≡-subst-removable : ∀ {a b ℓ}
{I : Set ℓ}
(A : I → Set a) {B : {k : I} → A k → Set b}
{i j : I} (eq : i ≡ j)
(f : {k : I} → (z : A k) → B z)
(x : A i) →
f (P.subst A eq x) ≅ f x
icong-≡-subst-removable _ refl _ _ = refl
------------------------------------------------------------------------
--Proof irrelevance
≅-irrelevant : ∀ {ℓ} {A B : Set ℓ} → Irrelevant ((A → B → Set ℓ) ∋ λ a → a ≅_)
≅-irrelevant refl refl = refl
module _ {ℓ} {A₁ A₂ A₃ A₄ : Set ℓ} {a₁ : A₁} {a₂ : A₂} {a₃ : A₃} {a₄ : A₄} where
≅-heterogeneous-irrelevant : (p : a₁ ≅ a₂) (q : a₃ ≅ a₄) → a₂ ≅ a₃ → p ≅ q
≅-heterogeneous-irrelevant refl refl refl = refl
≅-heterogeneous-irrelevantˡ : (p : a₁ ≅ a₂) (q : a₃ ≅ a₄) → a₁ ≅ a₃ → p ≅ q
≅-heterogeneous-irrelevantˡ refl refl refl = refl
≅-heterogeneous-irrelevantʳ : (p : a₁ ≅ a₂) (q : a₃ ≅ a₄) → a₂ ≅ a₄ → p ≅ q
≅-heterogeneous-irrelevantʳ refl refl refl = refl
------------------------------------------------------------------------
-- Structures
isEquivalence : ∀ {a} {A : Set a} →
IsEquivalence {A = A} (λ x y → x ≅ y)
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
setoid : ∀ {a} → Set a → Setoid _ _
setoid A = record
{ Carrier = A
; _≈_ = λ x y → x ≅ y
; isEquivalence = isEquivalence
}
indexedSetoid : ∀ {a b} {A : Set a} → (A → Set b) → IndexedSetoid A _ _
indexedSetoid B = record
{ Carrier = B
; _≈_ = λ x y → x ≅ y
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
≡↔≅ : ∀ {a b} {A : Set a} (B : A → Set b) {x : A} →
Inverse (P.setoid (B x)) ((indexedSetoid B) atₛ x)
≡↔≅ B = record
{ to = record { _⟨$⟩_ = id; cong = ≡-to-≅ }
; from = record { _⟨$⟩_ = id; cong = ≅-to-≡ }
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
decSetoid : ∀ {a} {A : Set a} →
Decidable {A = A} {B = A} (λ x y → x ≅ y) →
DecSetoid _ _
decSetoid dec = record
{ _≈_ = λ x y → x ≅ y
; isDecEquivalence = record
{ isEquivalence = isEquivalence
; _≟_ = dec
}
}
isPreorder : ∀ {a} {A : Set a} →
IsPreorder {A = A} (λ x y → x ≅ y) (λ x y → x ≅ y)
isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = id
; trans = trans
}
isPreorder-≡ : ∀ {a} {A : Set a} →
IsPreorder {A = A} _≡_ (λ x y → x ≅ y)
isPreorder-≡ = record
{ isEquivalence = P.isEquivalence
; reflexive = reflexive
; trans = trans
}
preorder : ∀ {a} → Set a → Preorder _ _ _
preorder A = record
{ Carrier = A
; _≈_ = _≡_
; _∼_ = λ x y → x ≅ y
; isPreorder = isPreorder-≡
}
------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
module ≅-Reasoning where
-- The code in `Relation.Binary.Reasoning.Setoid` cannot handle
-- heterogeneous equalities, hence the code duplication here.
infix 4 _IsRelatedTo_
infix 3 _∎
infixr 2 _≅⟨_⟩_ _≅˘⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_
infix 1 begin_
data _IsRelatedTo_ {ℓ} {A : Set ℓ} (x : A) {B : Set ℓ} (y : B) :
Set ℓ where
relTo : (x≅y : x ≅ y) → x IsRelatedTo y
begin_ : ∀ {ℓ} {A : Set ℓ} {x : A} {B} {y : B} →
x IsRelatedTo y → x ≅ y
begin relTo x≅y = x≅y
_≅⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} {C} {z : C} →
x ≅ y → y IsRelatedTo z → x IsRelatedTo z
_ ≅⟨ x≅y ⟩ relTo y≅z = relTo (trans x≅y y≅z)
_≅˘⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} {C} {z : C} →
y ≅ x → y IsRelatedTo z → x IsRelatedTo z
_ ≅˘⟨ y≅x ⟩ relTo y≅z = relTo (trans (sym y≅x) y≅z)
_≡⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {y C} {z : C} →
x ≡ y → y IsRelatedTo z → x IsRelatedTo z
_ ≡⟨ x≡y ⟩ relTo y≅z = relTo (trans (reflexive x≡y) y≅z)
_≡˘⟨_⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {y C} {z : C} →
y ≡ x → y IsRelatedTo z → x IsRelatedTo z
_ ≡˘⟨ y≡x ⟩ relTo y≅z = relTo (trans (sym (reflexive y≡x)) y≅z)
_≡⟨⟩_ : ∀ {ℓ} {A : Set ℓ} (x : A) {B} {y : B} →
x IsRelatedTo y → x IsRelatedTo y
_ ≡⟨⟩ x≅y = x≅y
_∎ : ∀ {a} {A : Set a} (x : A) → x IsRelatedTo x
_∎ _ = relTo refl
------------------------------------------------------------------------
-- Inspect
-- Inspect can be used when you want to pattern match on the result r
-- of some expression e, and you also need to "remember" that r ≡ e.
record Reveal_·_is_ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) (y : B x) :
Set (a ⊔ b) where
constructor [_]
field eq : f x ≅ y
inspect : ∀ {a b} {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal f · x is f x
inspect f x = [ refl ]
-- Example usage:
-- f x y with g x | inspect g x
-- f x y | c z | [ eq ] = ...
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
proof-irrelevance = ≅-irrelevant
{-# WARNING_ON_USAGE proof-irrelevance
"Warning: proof-irrelevance was deprecated in v0.15.
Please use ≅-irrelevant instead."
#-}
-- Version 1.0
≅-irrelevance = ≅-irrelevant
{-# WARNING_ON_USAGE ≅-irrelevance
"Warning: ≅-irrelevance was deprecated in v1.0.
Please use ≅-irrelevant instead."
#-}
≅-heterogeneous-irrelevance = ≅-heterogeneous-irrelevant
{-# WARNING_ON_USAGE ≅-heterogeneous-irrelevance
"Warning: ≅-heterogeneous-irrelevance was deprecated in v1.0.
Please use ≅-heterogeneous-irrelevant instead."
#-}
≅-heterogeneous-irrelevanceˡ = ≅-heterogeneous-irrelevantˡ
{-# WARNING_ON_USAGE ≅-heterogeneous-irrelevanceˡ
"Warning: ≅-heterogeneous-irrelevanceˡ was deprecated in v1.0.
Please use ≅-heterogeneous-irrelevantˡ instead."
#-}
≅-heterogeneous-irrelevanceʳ = ≅-heterogeneous-irrelevantʳ
{-# WARNING_ON_USAGE ≅-heterogeneous-irrelevanceʳ
"Warning: ≅-heterogeneous-irrelevanceʳ was deprecated in v1.0.
Please use ≅-heterogeneous-irrelevantʳ instead."
#-}
Extensionality = Ext.Extensionality
{-# WARNING_ON_USAGE Extensionality
"Warning: Extensionality was deprecated in v1.0.
Please use Extensionality from `Axiom.Extensionality.Heterogeneous` instead."
#-}
≡-ext-to-≅-ext = Ext.≡-ext⇒≅-ext
{-# WARNING_ON_USAGE ≡-ext-to-≅-ext
"Warning: ≡-ext-to-≅-ext was deprecated in v1.0.
Please use ≡-ext⇒≅-ext from `Axiom.Extensionality.Heterogeneous` instead."
#-}
|
algebraic-stack_agda0000_doc_13258 | {-# OPTIONS --without-K #-}
module Data.Word8.Primitive where
open import Agda.Builtin.Bool using (Bool)
open import Agda.Builtin.Nat using (Nat)
{-# FOREIGN GHC import qualified Data.Word #-}
{-# FOREIGN GHC import qualified Data.Bits #-}
postulate
Word8 : Set
_==_ : Word8 → Word8 → Bool
_/=_ : Word8 → Word8 → Bool
_xor_ : Word8 → Word8 → Word8
_and_ : Word8 → Word8 → Word8
_or_ : Word8 → Word8 → Word8
{-# COMPILE GHC Word8 = type Data.Word.Word8 #-}
{-# COMPILE GHC _==_ = (Prelude.==) #-}
{-# COMPILE GHC _/=_ = (Prelude./=) #-}
{-# COMPILE GHC _xor_ = (Data.Bits.xor) #-}
{-# COMPILE GHC _and_ = (Data.Bits..&.) #-}
{-# COMPILE GHC _or_ = (Data.Bits..|.) #-}
postulate
primWord8fromNat : Nat → Word8
primWord8toNat : Word8 → Nat
{-# COMPILE GHC primWord8fromNat = (\n -> Prelude.fromIntegral n) #-}
{-# COMPILE GHC primWord8toNat = (\w -> Prelude.fromIntegral w) #-}
|
algebraic-stack_agda0000_doc_13259 | ------------------------------------------------------------------------------
-- Testing the --schematic-propositional-symbols option
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Fails because requires the above option.
module RequiredOption.SchematicPropositionalSymbols where
postulate D : Set
postulate id : (P : Set) → P → P
{-# ATP prove id #-}
|
algebraic-stack_agda0000_doc_13260 | module Formalization.ClassicalPropositionalLogic.NaturalDeduction.Consistency where
import Lvl
open import Formalization.ClassicalPropositionalLogic.NaturalDeduction
open import Formalization.ClassicalPropositionalLogic.NaturalDeduction.Proofs
open import Formalization.ClassicalPropositionalLogic.Syntax
open import Functional
open import Logic.Propositional as Logic using (_←_)
open import Logic.Propositional.Theorems as Logic using ()
open import Relator.Equals.Proofs.Equiv
open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to singleton ; _≡_ to _≡ₛ_)
open import Type
private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable P : Type{ℓₚ}
private variable Γ Γ₁ Γ₂ : Formulas(P){ℓ}
private variable φ ψ : Formula(P)
Inconsistent : Formulas(P){ℓ} → Type
Inconsistent(Γ) = Γ ⊢ ⊥
Consistent : Formulas(P){ℓ} → Type
Consistent(Γ) = Γ ⊬ ⊥
consistency-of-[∪]ₗ : Consistent(Γ₁ ∪ Γ₂) → Consistent(Γ₁)
consistency-of-[∪]ₗ con z = con (weaken-union z)
[⊢]-derivability-inconsistency : (Γ ⊢ φ) Logic.↔ Inconsistent(Γ ∪ singleton(¬ φ))
[⊢]-derivability-inconsistency = Logic.[↔]-intro [¬]-elim ([¬]-intro-converse ∘ [¬¬]-intro)
[⊢]-derivability-consistencyᵣ : Consistent(Γ) → ((Γ ⊢ φ) → Consistent(Γ ∪ singleton(φ)))
[⊢]-derivability-consistencyᵣ con Γφ Γφ⊥ = con([⊥]-intro Γφ ([¬]-intro Γφ⊥))
[⊢]-explosion-inconsistency : (∀{φ} → (Γ ⊢ φ)) Logic.↔ Inconsistent(Γ)
[⊢]-explosion-inconsistency {Γ} = Logic.[↔]-intro (λ z → [⊥]-elim z) (λ z → z)
[⊢]-compose-inconsistency : (Γ ⊢ φ) → Inconsistent(Γ ∪ singleton(φ)) → Inconsistent(Γ)
[⊢]-compose-inconsistency Γφ Γφ⊥ = [⊥]-intro Γφ ([¬]-intro Γφ⊥)
[⊢]-compose-consistency : (Γ ⊢ φ) → Consistent(Γ) → Consistent(Γ ∪ singleton(φ))
[⊢]-compose-consistency Γφ = Logic.contrapositiveᵣ ([⊢]-compose-inconsistency Γφ)
[⊢]-subset-consistency : (Γ₁ ⊆ Γ₂) → (Consistent(Γ₂) → Consistent(Γ₁))
[⊢]-subset-consistency sub con = con ∘ weaken sub
[⊢]-subset-inconsistency : (Γ₁ ⊆ Γ₂) → (Inconsistent(Γ₁) → Inconsistent(Γ₂))
[⊢]-subset-inconsistency sub = weaken sub
[⊬]-negation-consistency : (Γ ⊬ (¬ φ)) → Consistent(Γ ∪ singleton(φ))
[⊬]-negation-consistency = _∘ [¬]-intro
[⊢]-consistent-noncontradicting-membership : Consistent(Γ) → ((¬ φ) ∈ Γ) → (φ ∈ Γ) → Logic.⊥
[⊢]-consistent-noncontradicting-membership con Γ¬φ Γφ = con([⊥]-intro (direct Γφ) (direct Γ¬φ))
|
algebraic-stack_agda0000_doc_13261 | open import Structure.Operator.Field
open import Structure.Setoid
open import Type
-- Operators for matrices over a field.
module Numeral.Matrix.OverField {ℓ ℓₑ}{T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ {_+ₛ_ _⋅ₛ_ : T → T → T} ⦃ field-structure : Field(_+ₛ_)(_⋅ₛ_) ⦄ where
open Field(field-structure) renaming (_−_ to _−ₛ_ ; −_ to −ₛ_ ; 𝟎 to 𝟎ₛ ; 𝟏 to 𝟏ₛ)
open import Data.Tuple as Tuple using (_,_)
open import Logic.Predicate
open import Numeral.Matrix
open import Numeral.Matrix.Proofs
open import Structure.Operator.Properties
𝟎 : ∀{s} → Matrix(s)(T)
𝟎 = fill(𝟎ₛ)
𝟏 : ∀{n} → Matrix(n , n)(T)
𝟏 = SquareMatrix.scalarMat(𝟎ₛ)(𝟏ₛ)
_+_ : ∀{s} → Matrix(s)(T) → Matrix(s)(T) → Matrix(s)(T)
_+_ = map₂(_+ₛ_)
infixr 1000 _+_
_−_ : ∀{s} → Matrix(s)(T) → Matrix(s)(T) → Matrix(s)(T)
_−_ = map₂(_−ₛ_)
infixr 1000 _−_
−_ : ∀{s} → Matrix(s)(T) → Matrix(s)(T)
−_ = map(−ₛ_)
infixr 1000 −_
_⨯_ : ∀{x y z} → Matrix(y , z)(T) → Matrix(x , y)(T) → Matrix(x , z)(T)
_⨯_ = multPattern(_+ₛ_)(_⋅ₛ_)(𝟎ₛ)
infixr 1000 _⨯_
_⁻¹ : ∀{n} → (M : Matrix(n , n)(T)) ⦃ inver : InvertibleElement(_⨯_) ⦃ [∃]-intro 𝟏 ⦃ {!matrix-multPattern-identity!} ⦄ ⦄ (M) ⦄ → Matrix(n , n)(T)
_⁻¹ _ ⦃ inver ⦄ = [∃]-witness inver
|
algebraic-stack_agda0000_doc_13262 | module Five where
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
import Data.Nat as ℕ
import Data.Nat.Properties as ℕₚ
import Data.List as List
import Data.List.Properties as Listₚ
import Data.Product as Product
open List using (List; []; _∷_; _++_)
open ℕ using (ℕ; zero; suc; _+_)
open Product using (Σ; _,_)
-- Our language consists of constants and addition
data Expr : Set where
const : ℕ → Expr
plus : Expr → Expr → Expr
-- Straightforward semantics
eval-expr : Expr → ℕ
eval-expr (const n) = n
eval-expr (plus e1 e2) = eval-expr e1 + eval-expr e2
data Instr : Set where
push : ℕ → Instr
add : Instr
Prog = List Instr
Stack = List ℕ
run : Prog → Stack → Stack
run [] s = s
run (push n ∷ p) s = run p (n ∷ s)
run (add ∷ p) (a1 ∷ a2 ∷ s) = run p (a1 + a2 ∷ s)
run (add ∷ p) s = run p s
compile : Expr → Prog
compile (const n) = push n ∷ []
compile (plus e1 e2) = compile e1 ++ compile e2 ++ add ∷ []
-- Task 2. Prove that you get the expected result when you compile and run the program.
compile-correct-split : ∀ p q s → run (p ++ q) s ≡ run q (run p s)
compile-correct-split = {!!}
compile-correct-exist : ∀ e s → Σ ℕ (λ m → run (compile e) s ≡ m ∷ s)
compile-correct-exist = {!!}
compile-correct-gen : ∀ e s → run (compile e) s ≡ run (compile e) [] ++ s
compile-correct-gen = {!!}
compile-correct : ∀ e → run (compile e) [] ≡ eval-expr e ∷ []
compile-correct = {!!}
|
algebraic-stack_agda0000_doc_13263 | open import Prelude renaming (lift to finlift) hiding (id; subst)
module Implicits.Substitutions.Lemmas.LNMetaType where
open import Implicits.Syntax.LNMetaType
open import Implicits.Substitutions.LNMetaType
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Vec.Properties
open import Data.Star using (Star; ε; _◅_)
open import Data.Nat.Properties
open import Data.Nat as Nat
open import Extensions.Substitution
open import Relation.Binary using (module DecTotalOrder)
open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans)
open import Relation.Binary.HeterogeneousEquality as H using ()
module HR = H.≅-Reasoning
typeLemmas : TermLemmas MetaType
typeLemmas = record { termSubst = typeSubst; app-var = refl ; /✶-↑✶ = Lemma./✶-↑✶ }
where
module Lemma {T₁ T₂} {lift₁ : Lift T₁ MetaType} {lift₂ : Lift T₂ MetaType} where
open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_)
open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_)
/✶-↑✶ : ∀ {m n} (σs₁ : Subs T₁ m n) (σs₂ : Subs T₂ m n) →
(∀ k x → (simpl (mvar x)) /✶₁ σs₁ ↑✶₁ k ≡ (simpl (mvar x)) /✶₂ σs₂ ↑✶₂ k) →
∀ k t → t /✶₁ σs₁ ↑✶₁ k ≡ t /✶₂ σs₂ ↑✶₂ k
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (mvar x)) = hyp k x
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tvar x)) = begin
simpl (tvar x) /✶₁ ρs₁ ↑✶₁ k
≡⟨ MetaTypeApp.tvar-/✶-↑✶ _ k ρs₁ ⟩
simpl (tvar x)
≡⟨ sym $ MetaTypeApp.tvar-/✶-↑✶ _ k ρs₂ ⟩
simpl (tvar x) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tc c)) = begin
(simpl (tc c)) /✶₁ ρs₁ ↑✶₁ k
≡⟨ MetaTypeApp.tc-/✶-↑✶ _ k ρs₁ ⟩
(simpl (tc c))
≡⟨ sym $ MetaTypeApp.tc-/✶-↑✶ _ k ρs₂ ⟩
(simpl (tc c)) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (a →' b)) = begin
(simpl (a →' b)) /✶₁ ρs₁ ↑✶₁ k
≡⟨ MetaTypeApp.→'-/✶-↑✶ _ k ρs₁ ⟩
simpl ((a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k))
≡⟨ cong₂ (λ a b → simpl (a →' b)) (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩
simpl ((a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k))
≡⟨ sym (MetaTypeApp.→'-/✶-↑✶ _ k ρs₂) ⟩
(simpl (a →' b)) /✶₂ ρs₂ ↑✶₂ k
∎
/✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin
(a ⇒ b) /✶₁ ρs₁ ↑✶₁ k
≡⟨ MetaTypeApp.⇒-/✶-↑✶ _ k ρs₁ ⟩ --
(a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k)
≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩
(a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k)
≡⟨ sym (MetaTypeApp.⇒-/✶-↑✶ _ k ρs₂) ⟩
(a ⇒ b) /✶₂ ρs₂ ↑✶₂ k
∎
/✶-↑✶ ρs₁ ρs₂ hyp k (∀' a) = begin
(∀' a) /✶₁ ρs₁ ↑✶₁ k
≡⟨ MetaTypeApp.∀'-/✶-↑✶ _ k ρs₁ ⟩
∀' (a /✶₁ ρs₁ ↑✶₁ k)
≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp k a) ⟩
∀' (a /✶₂ ρs₂ ↑✶₂ k)
≡⟨ sym (MetaTypeApp.∀'-/✶-↑✶ _ k ρs₂) ⟩
(∀' a) /✶₂ ρs₂ ↑✶₂ k
∎
open TermLemmas typeLemmas public hiding (var; id; _/_; _↑⋆_; wk; weaken; sub)
open AdditionalLemmas typeLemmas public
-- The above lemma /✶-↑✶ specialized to single substitutions
/-↑⋆ : ∀ {T₁ T₂} {lift₁ : Lift T₁ MetaType} {lift₂ : Lift T₂ MetaType} →
let open Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/₁_)
open Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/₂_)
in
∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) →
(∀ i x → (simpl (mvar x)) /₁ ρ₁ ↑⋆₁ i ≡ (simpl (mvar x)) /₂ ρ₂ ↑⋆₂ i) →
∀ i a → a /₁ ρ₁ ↑⋆₁ i ≡ a /₂ ρ₂ ↑⋆₂ i
/-↑⋆ ρ₁ ρ₂ hyp i a = /✶-↑✶ (ρ₁ ◅ ε) (ρ₂ ◅ ε) hyp i a
-- weakening a simple type gives a simple type
simpl-wk : ∀ {ν} k (τ : MetaSType (k N+ ν)) → ∃ λ τ' → (simpl τ) / wk ↑⋆ k ≡ simpl τ'
simpl-wk k (tc x) = , refl
simpl-wk k (mvar n) = , var-/-wk-↑⋆ k n
simpl-wk k (tvar n) = , refl
simpl-wk k (x →' x₁) = , refl
tclosed-wk : ∀ {ν m} {a : MetaType m} → TClosed ν a → TClosed (suc ν) a
tclosed-wk (a ⇒ b) = tclosed-wk a ⇒ tclosed-wk b
tclosed-wk (∀' x) = ∀' (tclosed-wk x)
tclosed-wk (simpl x) = simpl $ tclosed-wks x
where
tclosed-wks : ∀ {ν m} {τ : MetaSType m} → TClosedS ν τ → TClosedS (suc ν) τ
tclosed-wks (tvar p) = tvar (≤-steps 1 p)
tclosed-wks mvar = mvar
tclosed-wks (a →' b) = (tclosed-wk a) →' (tclosed-wk b)
tclosed-wks tc = tc
-- proper substitution doesn't affect the number of tvars
tclosed-/ : ∀ {m m' n} (a : MetaType m) {σ : Sub MetaType m m'} → TClosed n a →
(∀ i → TClosed n (lookup i σ)) → TClosed n (a / σ)
tclosed-/ (a ⇒ b) (ca ⇒ cb) f = tclosed-/ a ca f ⇒ tclosed-/ b cb f
tclosed-/ (∀' a) (∀' x) f = ∀' (tclosed-/ a x (λ p → tclosed-wk (f p)))
tclosed-/ (simpl x) (simpl y) f = tclosed-/s x y f
where
tclosed-/s : ∀ {m m' n} (a : MetaSType m) {σ : Sub MetaType m m'} → TClosedS n a →
(∀ i → TClosed n (lookup i σ)) → TClosed n (a simple/ σ)
tclosed-/s (tvar _) (tvar p) f = simpl (tvar p)
tclosed-/s (mvar i) _ f = f i
tclosed-/s (a →' b) (ca →' cb) f = simpl (tclosed-/ a ca f →' tclosed-/ b cb f)
tclosed-/s (tc c) _ _ = simpl tc
-- opening any free tvar will reduce the number of free tvars
tclosed-open : ∀ {m ν} {a : MetaType m} k → k N< (suc ν) → TClosed (suc ν) a →
TClosed ν (open-meta k a)
tclosed-open k k<ν (a ⇒ b) = (tclosed-open k k<ν a) ⇒ (tclosed-open k k<ν b)
tclosed-open k k<ν (∀' a) = ∀' (tclosed-open (suc k) (s≤s k<ν) a)
tclosed-open k k<ν (simpl (tvar {x = x} p)) with Nat.compare x k
tclosed-open .(suc (k' N+ k)) (s≤s k<ν) (simpl (tvar p)) | less k' k =
simpl (tvar (≤-trans (m≤m+n (suc k') k) k<ν))
tclosed-open x k<ν (simpl (tvar x₁)) | equal .x = simpl mvar
tclosed-open m k<ν (simpl (tvar (s≤s p))) | greater .m k = simpl (tvar p)
tclosed-open k k<ν (simpl mvar) = simpl mvar
tclosed-open k k<ν (simpl (x →' x₁)) = simpl (tclosed-open k k<ν x →' tclosed-open k k<ν x₁)
tclosed-open k k<ν (simpl tc) = simpl tc
open-meta-◁m₁ : ∀ {m k} (a : MetaType m) → (open-meta k a) ◁m₁ ≡ a ◁m₁
open-meta-◁m₁ (a ⇒ b) = open-meta-◁m₁ b
open-meta-◁m₁ (∀' a) = cong suc (open-meta-◁m₁ a)
open-meta-◁m₁ (simpl x) = refl
lem : ∀ {m} n k (a : MetaType m) → open-meta n (open-meta (n N+ suc k) a) H.≅
open-meta (n N+ k) (open-meta n a)
lem n k (a ⇒ b) = H.cong₂ _⇒_ (lem n k a) (lem n k b)
lem n k (∀' a) = H.cong ∀' (lem _ _ a)
lem n k (simpl (tvar x)) with Nat.compare x (n N+ (suc k))
lem n k (simpl (tvar x)) | z = {!z!}
lem n k (simpl (mvar x)) = H.refl
lem n k (simpl (a →' b)) = H.cong₂ (λ u v → simpl (u →' v)) (lem n k a) (lem n k b)
lem n k (simpl (tc x)) = H.refl
open-meta-◁m : ∀ {m} k (a : MetaType m) →
((open-meta k a) ◁m) H.≅ open-meta k (a ◁m)
open-meta-◁m k (a ⇒ b) = open-meta-◁m k b
open-meta-◁m k (∀' a) = HR.begin
open-meta zero ((open-meta (suc k)) a ◁m)
HR.≅⟨ {!!} ⟩
open-meta zero (open-meta (suc k) (a ◁m))
HR.≅⟨ lem zero k (a ◁m) ⟩
open-meta k (open-meta zero (a ◁m)) HR.∎
open-meta-◁m k (simpl x) = H.refl
open import Implicits.Syntax.Type
open import Implicits.Substitutions.Type as TS using ()
lem₁ : ∀ {ν} k (a : Type (k N+ suc ν)) (b : Type ν) →
(to-meta (a TS./ (TS.sub b) TS.↑⋆ k)) ≡
(open-meta k (to-meta a) / sub (to-meta b))
lem₁ k (simpl (tc x)) b = refl
lem₁ k (simpl (tvar n)) b with Nat.compare (toℕ n) k
lem₁ k (simpl (tvar n)) b | z = {!!}
lem₁ k (simpl (a →' b)) c = cong₂ (λ u v → simpl (u →' v)) (lem₁ k a c) (lem₁ k b c)
lem₁ k (a ⇒ b) c = cong₂ _⇒_ (lem₁ k a c) (lem₁ k b c)
lem₁ k (∀' a) b = cong ∀' (lem₁ (suc k) a b)
|
algebraic-stack_agda0000_doc_14048 | {-# OPTIONS --universe-polymorphism #-}
module Categories.Enriched where
open import Categories.Category
open import Categories.Monoidal
-- moar |
algebraic-stack_agda0000_doc_14049 | {-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.cubical.Square
open import lib.types.Bool
open import lib.types.Coproduct
open import lib.types.FunctionSeq
open import lib.types.Paths
open import lib.types.Pointed
open import lib.types.Span
open import lib.types.Pushout
open import lib.types.Sigma
module lib.types.Smash where
module _ {i j} (X : Ptd i) (Y : Ptd j) where
⊙∧-span : ⊙Span
⊙∧-span = ⊙span (X ⊙× Y) ⊙Bool (X ⊙⊔ Y)
(⊔-rec (_, pt Y) (pt X ,_) , idp)
(⊙⊔-fmap {Y = Y} ⊙cst ⊙cst)
∧-span : Span
∧-span = ⊙Span-to-Span ⊙∧-span
abstract
_∧_ : Type (lmax i j)
_∧_ = Pushout ∧-span
Smash = _∧_
module _ {i j} {X : Ptd i} {Y : Ptd j} where
abstract
smin : de⊙ X → de⊙ Y → Smash X Y
smin x y = left (x , y)
module _ {i j} (X : Ptd i) (Y : Ptd j) where
_⊙∧_ = ptd (X ∧ Y) (smin (pt X) (pt Y))
⊙Smash = _⊙∧_
module _ {i j} {X : Ptd i} {Y : Ptd j} where
abstract
smbasel : Smash X Y
smbasel = right true
smbaser : Smash X Y
smbaser = right false
smgluel : (x : de⊙ X) → smin x (pt Y) == smbasel
smgluel x = glue (inl x)
smgluer : (y : de⊙ Y) → smin (pt X) y == smbaser
smgluer y = glue (inr y)
∧-norm-l-seq : (x : de⊙ X) → smin x (pt Y) =-= smin (pt X) (pt Y)
∧-norm-l-seq x = smgluel x ◃∙ ! (smgluel (pt X)) ◃∎
∧-norm-l : (x : de⊙ X) → smin x (pt Y) == smin (pt X) (pt Y)
∧-norm-l x = ↯ (∧-norm-l-seq x)
∧-norm-r-seq : (y : de⊙ Y) → smin (pt X) y =-= smin (pt X) (pt Y)
∧-norm-r-seq y = smgluer y ◃∙ ! (smgluer (pt Y)) ◃∎
∧-norm-r : (y : de⊙ Y) → smin (pt X) y == smin (pt X) (pt Y)
∧-norm-r y = ↯ (∧-norm-r-seq y)
∧-⊙inl : de⊙ Y → X ⊙→ ⊙Smash X Y
∧-⊙inl y = (λ x → smin x y) , smgluer y ∙ ! (smgluer (pt Y))
∧-⊙inr : de⊙ X → Y ⊙→ ⊙Smash X Y
∧-⊙inr x = (λ y → smin x y) , smgluel x ∙ ! (smgluel (pt X))
∧-glue-lr : smbasel == smbaser
∧-glue-lr = ! (smgluel (pt X)) ∙ smgluer (pt Y)
ap-smin-l : {a b : de⊙ X} (p : a == b)
→ ap (λ x → smin x (pt Y)) p == smgluel a ∙ ! (smgluel b)
ap-smin-l = ap-null-homotopic (λ x → smin x (pt Y)) smgluel
ap-smin-r : {a b : de⊙ Y} (p : a == b)
→ ap (smin (pt X)) p == smgluer a ∙ ! (smgluer b)
ap-smin-r = ap-null-homotopic (λ y → smin (pt X) y) smgluer
module _ {i j} {X : Ptd i} {Y : Ptd j} where
module SmashElim {k} {P : Smash X Y → Type k}
(smin* : (x : de⊙ X) (y : de⊙ Y) → P (smin x y))
(smbasel* : P smbasel) (smbaser* : P smbaser)
(smgluel* : (x : de⊙ X) → smin* x (pt Y) == smbasel* [ P ↓ smgluel x ])
(smgluer* : (y : de⊙ Y) → smin* (pt X) y == smbaser* [ P ↓ smgluer y ]) where
-- It would be better to encapsulate the repetition in the following definitions in a
-- private module as follows. Unfortunately, this is not possible when the smash
-- datatype is declared abstract.
{-private
module M = PushoutElim
(uncurry smin*)
(Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*))
(Coprod-elim smgluel* smgluer*)-}
abstract
f : (s : X ∧ Y) → P s
f = PushoutElim.f (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*)
smin-β : ∀ x y → f (smin x y) ↦ smin* x y
smin-β x y = PushoutElim.left-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) (x , y)
{-# REWRITE smin-β #-}
smbasel-β : f smbasel ↦ smbasel*
smbasel-β = PushoutElim.right-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) true
{-# REWRITE smbasel-β #-}
smbaser-β : f smbaser ↦ smbaser*
smbaser-β = PushoutElim.right-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) false
{-# REWRITE smbaser-β #-}
smgluel-β : ∀ (x : de⊙ X) → apd f (smgluel x) == smgluel* x
smgluel-β = PushoutElim.glue-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) ∘ inl
smgluer-β : ∀ (y : de⊙ Y) → apd f (smgluer y) == smgluer* y
smgluer-β = PushoutElim.glue-β (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) ∘ inr
Smash-elim = SmashElim.f
module SmashRec {k} {C : Type k}
(smin* : (x : de⊙ X) (y : de⊙ Y) → C)
(smbasel* smbaser* : C)
(smgluel* : (x : de⊙ X) → smin* x (pt Y) == smbasel*)
(smgluer* : (y : de⊙ Y) → smin* (pt X) y == smbaser*) where
-- It would be better to encapsulate the repetition in the following definitions in a
-- private module as follows. Unfortunately, this is not possible when the smash
-- datatype is declared abstract.
{-private
module M = PushoutRec {d = ∧-span X Y}
(uncurry smin*)
(Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*))
(Coprod-elim smgluel* smgluer*)-}
abstract
f : X ∧ Y → C
f = PushoutRec.f (uncurry smin*) (Coprod-elim (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*)
smin-β : ∀ x y → f (smin x y) ↦ smin* x y
smin-β x y = PushoutRec.left-β {d = ∧-span X Y} (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) (x , y)
{-# REWRITE smin-β #-}
smbasel-β : f smbasel ↦ smbasel*
smbasel-β = PushoutRec.right-β {d = ∧-span X Y} (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) true
{-# REWRITE smbasel-β #-}
smbaser-β : f smbaser ↦ smbaser*
smbaser-β = PushoutRec.right-β {d = ∧-span X Y} (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) false
{-# REWRITE smbaser-β #-}
smgluel-β : ∀ (x : de⊙ X) → ap f (smgluel x) == smgluel* x
smgluel-β = PushoutRec.glue-β (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) ∘ inl
smgluer-β : ∀ (y : de⊙ Y) → ap f (smgluer y) == smgluer* y
smgluer-β = PushoutRec.glue-β (uncurry smin*) (Coprod-rec (λ _ → smbasel*) (λ _ → smbaser*)) (Coprod-elim smgluel* smgluer*) ∘ inr
∧-norm-l-β : ∀ (x : de⊙ X) → ap f (∧-norm-l x) == smgluel* x ∙ ! (smgluel* (pt X))
∧-norm-l-β x =
ap f (∧-norm-l x)
=⟨ ap-∙ f (smgluel x) (! (smgluel (pt X))) ⟩
ap f (smgluel x) ∙ ap f (! (smgluel (pt X)))
=⟨ ap2 _∙_ (smgluel-β x)
(ap-! f (smgluel (pt X)) ∙
ap ! (smgluel-β (pt X))) ⟩
smgluel* x ∙ ! (smgluel* (pt X)) =∎
∧-norm-r-β : ∀ (y : de⊙ Y) → ap f (∧-norm-r y) == smgluer* y ∙ ! (smgluer* (pt Y))
∧-norm-r-β y =
ap f (∧-norm-r y)
=⟨ ap-∙ f (smgluer y) (! (smgluer (pt Y))) ⟩
ap f (smgluer y) ∙ ap f (! (smgluer (pt Y)))
=⟨ ap2 _∙_ (smgluer-β y)
(ap-! f (smgluer (pt Y)) ∙
ap ! (smgluer-β (pt Y))) ⟩
smgluer* y ∙ ! (smgluer* (pt Y)) =∎
Smash-rec = SmashRec.f
module SmashPathOverElim {k} {P : Smash X Y → Type k}
(g₁ g₂ : (xy : Smash X Y) → P xy)
(smin* : (x : de⊙ X) (y : de⊙ Y) → g₁ (smin x y) == g₂ (smin x y))
(smbasel* : g₁ smbasel == g₂ smbasel)
(smbaser* : g₁ smbaser == g₂ smbaser)
(smgluel* : (x : de⊙ X) →
smin* x (pt Y) ◃ apd g₂ (smgluel x) ==
apd g₁ (smgluel x) ▹ smbasel*)
(smgluer* : (y : de⊙ Y) →
smin* (pt X) y ◃ apd g₂ (smgluer y) ==
apd g₁ (smgluer y) ▹ smbaser*)
where
f : g₁ ∼ g₂
f =
Smash-elim
{P = λ xy → g₁ xy == g₂ xy}
smin*
smbasel*
smbaser*
(λ x → ↓-=-in (smgluel* x))
(λ y → ↓-=-in (smgluer* y))
Smash-PathOver-elim = SmashPathOverElim.f
module SmashPathElim {k} {C : Type k}
(g₁ g₂ : Smash X Y → C)
(smin* : (x : de⊙ X) (y : de⊙ Y) → g₁ (smin x y) == g₂ (smin x y))
(smbasel* : g₁ smbasel == g₂ smbasel)
(smbaser* : g₁ smbaser == g₂ smbaser)
(smgluel* : (x : de⊙ X) →
Square (smin* x (pt Y)) (ap g₁ (smgluel x))
(ap g₂ (smgluel x)) smbasel*)
(smgluer* : (y : de⊙ Y) →
Square (smin* (pt X) y) (ap g₁ (smgluer y))
(ap g₂ (smgluer y)) smbaser*)
where
f : g₁ ∼ g₂
f =
Smash-elim
{P = λ xy → g₁ xy == g₂ xy}
smin*
smbasel*
smbaser*
(λ x → ↓-='-from-square (smgluel* x))
(λ y → ↓-='-from-square (smgluer* y))
Smash-Path-elim = SmashPathElim.f
module _ {i j k l} {X : Ptd i} {Y : Ptd j} {X' : Ptd k} {Y' : Ptd l} (f : X ⊙→ X') (g : Y ⊙→ Y') where
private
module M = SmashRec
{C = X' ∧ Y'}
(λ x y → smin (fst f x) (fst g y))
(smin (pt X') (pt Y'))
(smin (pt X') (pt Y'))
(λ x → ap (λ y' → smin (fst f x) y') (snd g) ∙ ∧-norm-l (fst f x))
(λ y → ap (λ x' → smin x' (fst g y)) (snd f) ∙ ∧-norm-r (fst g y))
abstract
∧-fmap : X ∧ Y → X' ∧ Y'
∧-fmap = M.f
∧-fmap-smin-β : ∀ x y → ∧-fmap (smin x y) ↦ smin (fst f x) (fst g y)
∧-fmap-smin-β = M.smin-β
{-# REWRITE ∧-fmap-smin-β #-}
∧-fmap-smbasel-β : ∧-fmap smbasel ↦ smin (pt X') (pt Y')
∧-fmap-smbasel-β = M.smbasel-β
{-# REWRITE ∧-fmap-smbasel-β #-}
∧-fmap-smbaser-β : ∧-fmap smbaser ↦ smin (pt X') (pt Y')
∧-fmap-smbaser-β = M.smbaser-β
{-# REWRITE ∧-fmap-smbaser-β #-}
∧-fmap-smgluel-β' : ∀ x →
ap ∧-fmap (smgluel x)
==
ap (λ y' → smin (fst f x) y') (snd g) ∙
∧-norm-l (fst f x)
∧-fmap-smgluel-β' x = M.smgluel-β x
∧-fmap-smgluer-β' : ∀ y →
ap ∧-fmap (smgluer y)
==
ap (λ x' → smin x' (fst g y)) (snd f) ∙
∧-norm-r (fst g y)
∧-fmap-smgluer-β' = M.smgluer-β
∧-fmap-smgluel-β : ∀ x →
ap ∧-fmap (smgluel x) ◃∎
=ₛ
ap (λ y' → smin (fst f x) y') (snd g) ◃∙
∧-norm-l (fst f x) ◃∎
∧-fmap-smgluel-β x = =ₛ-in (∧-fmap-smgluel-β' x)
∧-fmap-smgluer-β : ∀ y →
ap ∧-fmap (smgluer y) ◃∎
=ₛ
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
∧-norm-r (fst g y) ◃∎
∧-fmap-smgluer-β y = =ₛ-in (∧-fmap-smgluer-β' y)
⊙∧-fmap : X ⊙∧ Y ⊙→ X' ⊙∧ Y'
⊙∧-fmap = ∧-fmap , ap2 smin (snd f) (snd g)
∧-fmap-norm-l : ∀ x →
ap ∧-fmap (∧-norm-l x) ◃∎
=ₛ
ap (λ y' → smin (fst f x) y') (snd g) ◃∙
smgluel (fst f x) ◃∙
! (smgluel (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎
∧-fmap-norm-l x =
ap ∧-fmap (∧-norm-l x) ◃∎
=ₛ⟨ ap-seq-∙ ∧-fmap (∧-norm-l-seq x) ⟩
ap ∧-fmap (smgluel x) ◃∙
ap ∧-fmap (! (smgluel (pt X))) ◃∎
=ₛ₁⟨ 1 & 1 & ap-! ∧-fmap (smgluel (pt X)) ⟩
ap ∧-fmap (smgluel x) ◃∙
! (ap ∧-fmap (smgluel (pt X))) ◃∎
=ₛ⟨ 0 & 1 & ∧-fmap-smgluel-β x ⟩
ap (smin (fst f x)) (snd g) ◃∙
∧-norm-l (fst f x) ◃∙
! (ap ∧-fmap (smgluel (pt X))) ◃∎
=ₛ⟨ 2 & 1 & !-=ₛ (∧-fmap-smgluel-β (pt X)) ⟩
ap (smin (fst f x)) (snd g) ◃∙
∧-norm-l (fst f x) ◃∙
! (∧-norm-l (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎
=ₛ⟨ 2 & 1 & !-=ₛ (expand (∧-norm-l-seq (fst f (pt X)))) ⟩
ap (smin (fst f x)) (snd g) ◃∙
∧-norm-l (fst f x) ◃∙
! (! (smgluel (pt X'))) ◃∙
! (smgluel (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎
=ₛ⟨ 1 & 1 & expand (∧-norm-l-seq (fst f x)) ⟩
ap (smin (fst f x)) (snd g) ◃∙
smgluel (fst f x) ◃∙
! (smgluel (pt X')) ◃∙
! (! (smgluel (pt X'))) ◃∙
! (smgluel (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎
=ₛ⟨ 2 & 2 & seq-!-inv-r (! (smgluel (pt X')) ◃∎) ⟩
ap (smin (fst f x)) (snd g) ◃∙
smgluel (fst f x) ◃∙
! (smgluel (fst f (pt X))) ◃∙
! (ap (smin (fst f (pt X))) (snd g)) ◃∎ ∎ₛ
∧-fmap-norm-r : ∀ y →
ap ∧-fmap (∧-norm-r y) ◃∎
=ₛ
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
smgluer (fst g y) ◃∙
! (smgluer (fst g (pt Y))) ◃∙
! (ap (λ x' → smin x' (fst g (pt Y))) (snd f)) ◃∎
∧-fmap-norm-r y =
ap ∧-fmap (∧-norm-r y) ◃∎
=ₛ⟨ ap-seq-∙ ∧-fmap (∧-norm-r-seq y) ⟩
ap ∧-fmap (smgluer y) ◃∙
ap ∧-fmap (! (smgluer (pt Y))) ◃∎
=ₛ₁⟨ 1 & 1 & ap-! ∧-fmap (smgluer (pt Y)) ⟩
ap ∧-fmap (smgluer y) ◃∙
! (ap ∧-fmap (smgluer (pt Y))) ◃∎
=ₛ⟨ 0 & 1 & ∧-fmap-smgluer-β y ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
∧-norm-r (fst g y) ◃∙
! (ap ∧-fmap (smgluer (pt Y))) ◃∎
=ₛ⟨ 2 & 1 & !-=ₛ (∧-fmap-smgluer-β (pt Y)) ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
∧-norm-r (fst g y) ◃∙
! (∧-norm-r (fst g (pt Y))) ◃∙
! (ap (λ x' → smin x' (fst g (pt Y))) (snd f)) ◃∎
=ₛ⟨ 2 & 1 & !-=ₛ (expand (∧-norm-r-seq (fst g (pt Y)))) ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
∧-norm-r (fst g y) ◃∙
! (! (smgluer (pt Y'))) ◃∙
! (smgluer (fst g (pt Y))) ◃∙
! (ap (λ x' → smin x' (fst g (pt Y))) (snd f)) ◃∎
=ₛ⟨ 1 & 1 & expand (∧-norm-r-seq (fst g y)) ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
smgluer (fst g y) ◃∙
! (smgluer (pt Y')) ◃∙
! (! (smgluer (pt Y'))) ◃∙
! (smgluer (fst g (pt Y))) ◃∙
! (ap (λ x → smin x (fst g (pt Y))) (snd f)) ◃∎
=ₛ⟨ 2 & 2 & seq-!-inv-r (! (smgluer (pt Y')) ◃∎) ⟩
ap (λ x' → smin x' (fst g y)) (snd f) ◃∙
smgluer (fst g y) ◃∙
! (smgluer (fst g (pt Y))) ◃∙
! (ap (λ x' → smin x' (fst g (pt Y))) (snd f)) ◃∎ ∎ₛ
module _ {i i' i'' j j' j''}
{X : Ptd i} {X' : Ptd i'} {X'' : Ptd i''} (f : X ⊙→ X') (f' : X' ⊙→ X'')
{Y : Ptd j} {Y' : Ptd j'} {Y'' : Ptd j''} (g : Y ⊙→ Y') (g' : Y' ⊙→ Y'') where
∧-fmap-comp : ∀ xy →
∧-fmap (f' ⊙∘ f) (g' ⊙∘ g) xy == ∧-fmap f' g' (∧-fmap f g xy)
∧-fmap-comp =
Smash-elim {X = X} {Y = Y}
{P = λ xy → ∧-fmap (f' ⊙∘ f) (g' ⊙∘ g) xy == ∧-fmap f' g' (∧-fmap f g xy)}
(λ x y → idp)
(! (ap2 smin (snd f') (snd g')))
(! (ap2 smin (snd f') (snd g')))
(λ x → ↓-='-in-=ₛ $
idp ◃∙
ap (∧-fmap f' g' ∘ ∧-fmap f g) (smgluel x) ◃∎
=ₛ⟨ 0 & 1 & expand [] ⟩
ap (∧-fmap f' g' ∘ ∧-fmap f g) (smgluel x) ◃∎
=ₛ₁⟨ ap-∘ (∧-fmap f' g') (∧-fmap f g) (smgluel x) ⟩
ap (∧-fmap f' g') (ap (∧-fmap f g) (smgluel x)) ◃∎
=ₛ⟨ ap-seq-=ₛ (∧-fmap f' g') (∧-fmap-smgluel-β f g x) ⟩
ap (∧-fmap f' g') (ap (smin (fst f x)) (snd g)) ◃∙
ap (∧-fmap f' g') (∧-norm-l (fst f x)) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-fmap f' g') (smin (fst f x)) (snd g) ⟩
ap (smin (fst (f' ⊙∘ f) x) ∘ fst g') (snd g) ◃∙
ap (∧-fmap f' g') (∧-norm-l (fst f x)) ◃∎
=ₛ⟨ 1 & 1 & ∧-fmap-norm-l f' g' (fst f x) ⟩
ap (smin (fst (f' ⊙∘ f) x) ∘ fst g') (snd g) ◃∙
ap (smin (fst (f' ⊙∘ f) x)) (snd g') ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
! (ap (smin (fst f' (pt X'))) (snd g')) ◃∎
=ₛ₁⟨ 0 & 1 & ap-∘ (smin (fst (f' ⊙∘ f) x)) (fst g') (snd g) ⟩
ap (smin (fst (f' ⊙∘ f) x)) (ap (fst g') (snd g)) ◃∙
ap (smin (fst (f' ⊙∘ f) x)) (snd g') ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
! (ap (smin (fst f' (pt X'))) (snd g')) ◃∎
=ₛ⟨ 0 & 2 & ∙-ap-seq (smin (fst (f' ⊙∘ f) x)) (ap (fst g') (snd g) ◃∙ snd g' ◃∎) ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
! (ap (smin (fst f' (pt X'))) (snd g')) ◃∎
=ₛ⟨ 3 & 0 & !ₛ (seq-!-inv-r (ap (λ x'' → smin x'' (pt Y'')) (snd f') ◃∎)) ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
ap (λ x'' → smin x'' (pt Y'')) (snd f') ◃∙
! (ap (λ x'' → smin x'' (pt Y'')) (snd f')) ◃∙
! (ap (smin (fst f' (pt X'))) (snd g')) ◃∎
=ₛ⟨ 4 & 2 & !ₛ $ !-=ₛ $ ap2-out' smin (snd f') (snd g') ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
ap (λ x'' → smin x'' (pt Y'')) (snd f') ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 3 & 1 &
=ₛ-in {t = smgluel (fst f' (pt X')) ◃∙ ! (smgluel (pt X'')) ◃∎} $
ap-null-homotopic (λ x'' → smin x'' (pt Y'')) smgluel (snd f') ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (fst f' (pt X'))) ◃∙
smgluel (fst f' (pt X')) ◃∙
! (smgluel (pt X'')) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 2 & 2 & seq-!-inv-l (smgluel (fst f' (pt X')) ◃∎) ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
smgluel (fst (f' ⊙∘ f) x) ◃∙
! (smgluel (pt X'')) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 1 & 2 & contract ⟩
ap (smin (fst f' (fst f x))) (snd (g' ⊙∘ g)) ◃∙
∧-norm-l (fst (f' ⊙∘ f) x) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 0 & 2 & !ₛ (∧-fmap-smgluel-β (f' ⊙∘ f) (g' ⊙∘ g) x) ⟩
ap (∧-fmap (f' ⊙∘ f) (g' ⊙∘ g)) (smgluel x) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎ ∎ₛ)
(λ y → ↓-='-in-=ₛ $
idp ◃∙
ap (∧-fmap f' g' ∘ ∧-fmap f g) (smgluer y) ◃∎
=ₛ⟨ 0 & 1 & expand [] ⟩
ap (∧-fmap f' g' ∘ ∧-fmap f g) (smgluer y) ◃∎
=ₛ₁⟨ ap-∘ (∧-fmap f' g') (∧-fmap f g) (smgluer y) ⟩
ap (∧-fmap f' g') (ap (∧-fmap f g) (smgluer y)) ◃∎
=ₛ⟨ ap-seq-=ₛ (∧-fmap f' g') (∧-fmap-smgluer-β f g y) ⟩
ap (∧-fmap f' g') (ap (λ x' → smin x' (fst g y)) (snd f)) ◃∙
ap (∧-fmap f' g') (∧-norm-r (fst g y)) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-fmap f' g') (λ x' → smin x' (fst g y)) (snd f) ⟩
ap (λ x' → smin (fst f' x') (fst (g' ⊙∘ g) y)) (snd f) ◃∙
ap (∧-fmap f' g') (∧-norm-r (fst g y)) ◃∎
=ₛ⟨ 1 & 1 & ∧-fmap-norm-r f' g' (fst g y) ⟩
ap (λ x' → smin (fst f' x') (fst (g' ⊙∘ g) y)) (snd f) ◃∙
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd f') ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
! (ap (λ x' → smin x' (fst g' (pt Y'))) (snd f')) ◃∎
=ₛ₁⟨ 0 & 1 & ap-∘ (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (fst f') (snd f) ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (ap (fst f') (snd f)) ◃∙
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd f') ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
! (ap (λ x' → smin x' (fst g' (pt Y'))) (snd f')) ◃∎
=ₛ⟨ 0 & 2 & ∙-ap-seq (λ x'' → smin x'' (fst (g' ⊙∘ g) y))
(ap (fst f') (snd f) ◃∙ snd f' ◃∎) ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
! (ap (λ x' → smin x' (fst g' (pt Y'))) (snd f')) ◃∎
=ₛ⟨ 3 & 0 & !ₛ (seq-!-inv-r (ap (smin (pt X'')) (snd g') ◃∎)) ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
ap (smin (pt X'')) (snd g') ◃∙
! (ap (smin (pt X'')) (snd g')) ◃∙
! (ap (λ x' → smin x' (fst g' (pt Y'))) (snd f')) ◃∎
=ₛ⟨ 4 & 2 & !ₛ $ !-=ₛ $ ap2-out smin (snd f') (snd g') ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
ap (smin (pt X'')) (snd g') ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 3 & 1 &
=ₛ-in {t = smgluer (fst g' (pt Y')) ◃∙ ! (smgluer (pt Y'')) ◃∎} $
ap-null-homotopic (smin (pt X'')) smgluer (snd g') ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (fst g' (pt Y'))) ◃∙
smgluer (fst g' (pt Y')) ◃∙
! (smgluer (pt Y'')) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 2 & 2 & seq-!-inv-l (smgluer (fst g' (pt Y')) ◃∎) ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
smgluer (fst (g' ⊙∘ g) y) ◃∙
! (smgluer (pt Y'')) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 1 & 2 & contract ⟩
ap (λ x'' → smin x'' (fst (g' ⊙∘ g) y)) (snd (f' ⊙∘ f)) ◃∙
∧-norm-r (fst (g' ⊙∘ g) y) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎
=ₛ⟨ 0 & 2 & !ₛ (∧-fmap-smgluer-β (f' ⊙∘ f) (g' ⊙∘ g) y) ⟩
ap (∧-fmap (f' ⊙∘ f) (g' ⊙∘ g)) (smgluer y) ◃∙
! (ap2 smin (snd f') (snd g')) ◃∎ ∎ₛ)
module _ {i j} {X : Ptd i} {Y : Ptd j} where
×-to-∧ : de⊙ X × de⊙ Y → X ∧ Y
×-to-∧ (x , y) = smin x y
×-⊙to-∧ : X ⊙× Y ⊙→ X ⊙∧ Y
×-⊙to-∧ = ×-to-∧ , idp
module _ {i j} (X : Ptd i) (Y : Ptd j) where
module SmashSwap =
SmashRec {X = X} {Y = Y}
{C = Y ∧ X}
(λ x y → smin y x)
(smin (pt Y) (pt X))
(smin (pt Y) (pt X))
∧-norm-r
∧-norm-l
∧-swap : X ∧ Y → Y ∧ X
∧-swap = SmashSwap.f
⊙∧-swap : X ⊙∧ Y ⊙→ Y ⊙∧ X
⊙∧-swap = ∧-swap , idp
∧-swap-norm-l-β : ∀ x →
ap ∧-swap (∧-norm-l x) == ∧-norm-r x
∧-swap-norm-l-β x =
ap ∧-swap (∧-norm-l x)
=⟨ SmashSwap.∧-norm-l-β x ⟩
∧-norm-r x ∙ ! (∧-norm-r (pt X))
=⟨ ap (λ u → ∧-norm-r x ∙ ! u) (!-inv-r (smgluer (pt X))) ⟩
∧-norm-r x ∙ idp
=⟨ ∙-unit-r (∧-norm-r x) ⟩
∧-norm-r x =∎
∧-swap-norm-r-β : ∀ y →
ap ∧-swap (∧-norm-r y) == ∧-norm-l y
∧-swap-norm-r-β y =
ap ∧-swap (∧-norm-r y)
=⟨ SmashSwap.∧-norm-r-β y ⟩
∧-norm-l y ∙ ! (∧-norm-l (pt Y))
=⟨ ap (λ u → ∧-norm-l y ∙ ! u) (!-inv-r (smgluel (pt Y))) ⟩
∧-norm-l y ∙ idp
=⟨ ∙-unit-r (∧-norm-l y) ⟩
∧-norm-l y =∎
×-to-∧-swap : ∧-swap ∘ ×-to-∧ ∼ ×-to-∧ ∘ ×-swap
×-to-∧-swap (x , y) = idp
×-⊙to-∧-swap :
⊙∧-swap ◃⊙∘ ×-⊙to-∧ ◃⊙idf
=⊙∘
×-⊙to-∧ ◃⊙∘ ⊙×-swap ◃⊙idf
×-⊙to-∧-swap = =⊙∘-in $
⊙λ=' ×-to-∧-swap idp
module _ {i j} (X : Ptd i) (Y : Ptd j) where
module SmashSwapInvolutive =
SmashElim {X = X} {Y = Y}
{P = λ xy → ∧-swap Y X (∧-swap X Y xy) == xy}
(λ x y → idp)
(smgluel (pt X))
(smgluer (pt Y))
(λ x → ↓-app=idf-in $ ! $
ap (∧-swap Y X ∘ ∧-swap X Y) (smgluel x) ∙ smgluel (pt X)
=⟨ ap (_∙ smgluel (pt X)) $
ap-∘ (∧-swap Y X) (∧-swap X Y) (smgluel x) ⟩
ap (∧-swap Y X) (ap (∧-swap X Y) (smgluel x)) ∙ smgluel (pt X)
=⟨ ap (λ p → ap (∧-swap Y X) p ∙ smgluel (pt X)) $
SmashSwap.smgluel-β X Y x ⟩
ap (∧-swap Y X) (∧-norm-r x) ∙ smgluel (pt X)
=⟨ ap (_∙ smgluel (pt X)) (∧-swap-norm-r-β Y X x) ⟩
∧-norm-l x ∙ smgluel (pt X)
=⟨ ∙-assoc (smgluel x) (! (smgluel (pt X))) (smgluel (pt X))⟩
smgluel x ∙ ! (smgluel (pt X)) ∙ smgluel (pt X)
=⟨ ap (smgluel x ∙_) (!-inv-l (smgluel (pt X))) ⟩
smgluel x ∙ idp
=⟨ ∙-unit-r (smgluel x) ⟩
smgluel x
=⟨ ! (∙'-unit-l (smgluel x)) ⟩
idp ∙' smgluel x =∎)
(λ y → ↓-app=idf-in $ ! $
ap (∧-swap Y X ∘ ∧-swap X Y) (smgluer y) ∙ smgluer (pt Y)
=⟨ ap (_∙ smgluer (pt Y)) $
ap-∘ (∧-swap Y X) (∧-swap X Y) (smgluer y) ⟩
ap (∧-swap Y X) (ap (∧-swap X Y) (smgluer y)) ∙ smgluer (pt Y)
=⟨ ap (λ p → ap (∧-swap Y X) p ∙ smgluer (pt Y)) $
SmashSwap.smgluer-β X Y y ⟩
ap (∧-swap Y X) (∧-norm-l y) ∙ smgluer (pt Y)
=⟨ ap (_∙ smgluer (pt Y)) (∧-swap-norm-l-β Y X y) ⟩
∧-norm-r y ∙ smgluer (pt Y)
=⟨ ∙-assoc (smgluer y) (! (smgluer (pt Y))) (smgluer (pt Y)) ⟩
smgluer y ∙ ! (smgluer (pt Y)) ∙ smgluer (pt Y)
=⟨ ap (smgluer y ∙_) (!-inv-l (smgluer (pt Y))) ⟩
smgluer y ∙ idp
=⟨ ∙-unit-r (smgluer y) ⟩
smgluer y
=⟨ ! (∙'-unit-l (smgluer y)) ⟩
idp ∙' smgluer y =∎)
∧-swap-inv : ∀ xy → ∧-swap Y X (∧-swap X Y xy) == xy
∧-swap-inv = SmashSwapInvolutive.f
⊙∧-swap-inv : ⊙∧-swap Y X ◃⊙∘ ⊙∧-swap X Y ◃⊙idf =⊙∘ ⊙idf-seq
⊙∧-swap-inv = =⊙∘-in (⊙λ=' ∧-swap-inv idp)
module _ {i j} (X : Ptd i) (Y : Ptd j) where
∧-swap-is-equiv : is-equiv (∧-swap X Y)
∧-swap-is-equiv = is-eq _ (∧-swap Y X) (∧-swap-inv Y X) (∧-swap-inv X Y)
∧-swap-equiv : (X ∧ Y) ≃ (Y ∧ X)
∧-swap-equiv = ∧-swap X Y , ∧-swap-is-equiv
module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'}
(f : X ⊙→ X') (g : Y ⊙→ Y') where
∧-swap-naturality : ∀ xy →
∧-fmap g f (∧-swap X Y xy) == ∧-swap X' Y' (∧-fmap f g xy)
∧-swap-naturality =
Smash-elim {X = X} {Y = Y}
{P = λ xy → ∧-fmap g f (∧-swap X Y xy) == ∧-swap X' Y' (∧-fmap f g xy)}
(λ x y → idp)
(ap2 smin (snd g) (snd f))
(ap2 smin (snd g) (snd f))
(λ x → ↓-='-in-=ₛ $
idp ◃∙
ap (∧-swap X' Y' ∘ ∧-fmap f g) (smgluel x) ◃∎
=ₛ⟨ 0 & 1 & expand [] ⟩
ap (∧-swap X' Y' ∘ ∧-fmap f g) (smgluel x) ◃∎
=ₛ₁⟨ ap-∘ (∧-swap X' Y') (∧-fmap f g) (smgluel x) ⟩
ap (∧-swap X' Y') (ap (∧-fmap f g) (smgluel x)) ◃∎
=ₛ⟨ ap-seq-=ₛ (∧-swap X' Y') (∧-fmap-smgluel-β f g x) ⟩
ap (∧-swap X' Y') (ap (smin (fst f x)) (snd g)) ◃∙
ap (∧-swap X' Y') (∧-norm-l (fst f x)) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-swap X' Y') (smin (fst f x)) (snd g) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
ap (∧-swap X' Y') (∧-norm-l (fst f x)) ◃∎
=ₛ₁⟨ 1 & 1 & ∧-swap-norm-l-β X' Y' (fst f x) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
∧-norm-r (fst f x) ◃∎
=ₛ⟨ 1 & 1 & expand (∧-norm-r-seq (fst f x)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (pt X')) ◃∎
=ₛ⟨ 2 & 0 & !ₛ (seq-!-inv-l (smgluer (fst f (pt X)) ◃∎)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (fst f (pt X))) ◃∙
smgluer (fst f (pt X)) ◃∙
! (smgluer (pt X')) ◃∎
=ₛ₁⟨ 3 & 2 & ! (ap-null-homotopic (smin (pt Y')) smgluer (snd f)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (fst f (pt X))) ◃∙
ap (smin (pt Y')) (snd f) ◃∎
=ₛ⟨ 3 & 0 & !ₛ (seq-!-inv-l (ap (λ y' → smin y' (fst f (pt X))) (snd g) ◃∎)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (fst f (pt X))) ◃∙
! (ap (λ y' → smin y' (fst f (pt X))) (snd g)) ◃∙
ap (λ y' → smin y' (fst f (pt X))) (snd g) ◃∙
ap (smin (pt Y')) (snd f) ◃∎
=ₛ⟨ 4 & 2 & !ₛ (ap2-out smin (snd g) (snd f)) ⟩
ap (λ y' → smin y' (fst f x)) (snd g) ◃∙
smgluer (fst f x) ◃∙
! (smgluer (fst f (pt X))) ◃∙
! (ap (λ y' → smin y' (fst f (pt X))) (snd g)) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ⟨ 0 & 4 & !ₛ (∧-fmap-norm-r g f x) ⟩
ap (∧-fmap g f) (∧-norm-r x) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ₁⟨ 0 & 1 & ! (ap (ap (∧-fmap g f)) (SmashSwap.smgluel-β X Y x)) ⟩
ap (∧-fmap g f) (ap (∧-swap X Y) (smgluel x)) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-fmap g f) (∧-swap X Y) (smgluel x) ⟩
ap (∧-fmap g f ∘ ∧-swap X Y) (smgluel x) ◃∙
ap2 smin (snd g) (snd f) ◃∎ ∎ₛ)
(λ y → ↓-='-in-=ₛ $
idp ◃∙
ap (∧-swap X' Y' ∘ ∧-fmap f g) (smgluer y) ◃∎
=ₛ⟨ 0 & 1 & expand [] ⟩
ap (∧-swap X' Y' ∘ ∧-fmap f g) (smgluer y) ◃∎
=ₛ₁⟨ ap-∘ (∧-swap X' Y') (∧-fmap f g) (smgluer y) ⟩
ap (∧-swap X' Y') (ap (∧-fmap f g) (smgluer y)) ◃∎
=ₛ⟨ ap-seq-=ₛ (∧-swap X' Y') (∧-fmap-smgluer-β f g y) ⟩
ap (∧-swap X' Y') (ap (λ x' → smin x' (fst g y)) (snd f)) ◃∙
ap (∧-swap X' Y') (∧-norm-r (fst g y)) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-swap X' Y') (λ x' → smin x' (fst g y)) (snd f) ⟩
ap (smin (fst g y)) (snd f) ◃∙
ap (∧-swap X' Y') (∧-norm-r (fst g y)) ◃∎
=ₛ₁⟨ 1 & 1 & ∧-swap-norm-r-β X' Y' (fst g y) ⟩
ap (smin (fst g y)) (snd f) ◃∙
∧-norm-l (fst g y) ◃∎
=ₛ⟨ 1 & 1 & expand (∧-norm-l-seq (fst g y)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (pt Y')) ◃∎
=ₛ⟨ 2 & 0 & !ₛ (seq-!-inv-l (smgluel (fst g (pt Y)) ◃∎)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (fst g (pt Y))) ◃∙
smgluel (fst g (pt Y)) ◃∙
! (smgluel (pt Y')) ◃∎
=ₛ₁⟨ 3 & 2 & ! (ap-null-homotopic (λ y' → smin y' (pt X')) smgluel (snd g)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (fst g (pt Y))) ◃∙
ap (λ y' → smin y' (pt X')) (snd g) ◃∎
=ₛ⟨ 3 & 0 & !ₛ (seq-!-inv-l (ap (smin (fst g (pt Y))) (snd f) ◃∎)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (fst g (pt Y))) ◃∙
! (ap (smin (fst g (pt Y))) (snd f)) ◃∙
ap (smin (fst g (pt Y))) (snd f) ◃∙
ap (λ y' → smin y' (pt X')) (snd g) ◃∎
=ₛ⟨ 4 & 2 & !ₛ (ap2-out' smin (snd g) (snd f)) ⟩
ap (smin (fst g y)) (snd f) ◃∙
smgluel (fst g y) ◃∙
! (smgluel (fst g (pt Y))) ◃∙
! (ap (smin (fst g (pt Y))) (snd f)) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ⟨ 0 & 4 & !ₛ (∧-fmap-norm-l g f y) ⟩
ap (∧-fmap g f) (∧-norm-l y) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ₁⟨ 0 & 1 & ! (ap (ap (∧-fmap g f)) (SmashSwap.smgluer-β X Y y)) ⟩
ap (∧-fmap g f) (ap (∧-swap X Y) (smgluer y)) ◃∙
ap2 smin (snd g) (snd f) ◃∎
=ₛ₁⟨ 0 & 1 & ∘-ap (∧-fmap g f) (∧-swap X Y) (smgluer y) ⟩
ap (∧-fmap g f ∘ ∧-swap X Y) (smgluer y) ◃∙
ap2 smin (snd g) (snd f) ◃∎ ∎ₛ)
⊙∧-swap-naturality : ⊙∧-fmap g f ⊙∘ ⊙∧-swap X Y ==
⊙∧-swap X' Y' ⊙∘ ⊙∧-fmap f g
⊙∧-swap-naturality =
⊙λ=' ∧-swap-naturality $ =ₛ-out $
ap2 smin (snd g) (snd f) ◃∎
=ₛ⟨ ap2-out smin (snd g) (snd f) ⟩
ap (λ u → smin u (fst f (pt X))) (snd g) ◃∙
ap (smin (pt Y')) (snd f) ◃∎
=ₛ⟨ !ₛ $ ap2-out' (λ x y → smin y x) (snd f) (snd g) ⟩
ap2 (λ x y → smin y x) (snd f) (snd g) ◃∎
=ₛ₁⟨ ! $ ap-ap2 (∧-swap X' Y') smin (snd f) (snd g) ⟩
ap (∧-swap X' Y') (ap2 smin (snd f) (snd g)) ◃∎
=ₛ⟨ 1 & 0 & contract ⟩
ap (∧-swap X' Y') (ap2 smin (snd f) (snd g)) ◃∙ idp ◃∎ ∎ₛ
∧-swap-fmap : ∀ xy →
∧-swap Y' X' (∧-fmap g f (∧-swap X Y xy)) == ∧-fmap f g xy
∧-swap-fmap xy =
∧-swap Y' X' (∧-fmap g f (∧-swap X Y xy))
=⟨ ap (∧-swap Y' X') (∧-swap-naturality xy) ⟩
∧-swap Y' X' (∧-swap X' Y' (∧-fmap f g xy))
=⟨ ∧-swap-inv X' Y' (∧-fmap f g xy) ⟩
∧-fmap f g xy =∎
|
algebraic-stack_agda0000_doc_14050 | -- Testing parameterised records in parameterised modules
module Exist (X : Set) where
data [_] (a : Set) : Set where
[] : [ a ]
_∷_ : a -> [ a ] -> [ a ]
map : forall {a b} -> (a -> b) -> [ a ] -> [ b ]
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
record ∃ (a : Set) (P : a -> Set) : Set where
field
witness : a
proof : P witness
ListP : (a : Set) -> (a -> Set) -> Set
ListP a P = [ ∃ a P ]
mapP : forall {a b P Q}
-> (f : a -> b) -> (forall {x} -> P x -> Q (f x))
-> ListP a P -> ListP b Q
mapP {a} {b} {P} {Q} f pres xs = map helper xs
where
helper : ∃ a P -> ∃ b Q
helper r = record { witness = f (∃.witness r)
; proof = pres (∃.proof r)
}
|
algebraic-stack_agda0000_doc_14051 | {-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
module Structures
{a ℓ} {A : Set a} -- The underlying set
(_≈_ : Rel A ℓ) -- The underlying equality relation
where
open import Algebra.Core
open import Level using (_⊔_)
open import Data.Product using (_,_; proj₁; proj₂)
open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_
open import Definitions _≈_
------------------------------------------------------------------------
-- Structures with 1 binary operation
------------------------------------------------------------------------
record IsLatinQuasigroup (∙ : Op₂ A ) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
latinSquare : LatinSquare ∙
open IsMagma isMagma public
latinSquare₁ : LatinSquare₁ ∙
latinSquare₁ = proj₁ latinSquare
latinSquare₂ : LatinSquare₂ ∙
latinSquare₂ = proj₂ latinSquare
record IsIdempotentMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
idem : Idempotent ∙
open IsMagma isMagma public
record IsAlternateMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
alter : Alternative ∙
open IsMagma isMagma public
record IsFlexibleMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
flex : Flexible ∙
open IsMagma isMagma public
record IsMedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
medial : Medial ∙
open IsMagma isMagma public
record IsSemimedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
semiMedial : Semimedial ∙
open IsMagma isMagma public
record IsInverseSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isSemigroup : IsSemigroup ∙
pseudoInverse : PseudoInverse ∙
open IsSemigroup isSemigroup public
------------------------------------------------------------------------
-- Structures with 1 binary operation and 1 element
------------------------------------------------------------------------
record IsLeftUnitalMagma (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
identity : LeftIdentity ε ∙
open IsMagma isMagma public
record IsRightUnitalMagma (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
identity : RightIdentity ε ∙
open IsMagma isMagma public
------------------------------------------------------------------------
-- Structures with 2 binary operations, 1 unary operation & 1 element
------------------------------------------------------------------------
record IsNonAssociativeRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-cong : Congruent₂ *
identity : Identity 1# *
distrib : * DistributesOver +
zero : Zero 0# *
open IsAbelianGroup +-isAbelianGroup public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; inverse to -‿inverse
; inverseˡ to -‿inverseˡ
; inverseʳ to -‿inverseʳ
; ⁻¹-cong to -‿cong
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isUnitalMagma to +-isUnitalMagma
; isCommutativeMagma to +-isCommutativeMagma
; isCommutativeMonoid to +-isCommutativeMonoid
; isCommutativeSemigroup to +-isCommutativeSemigroup
; isInvertibleMagma to +-isInvertibleMagma
; isInvertibleUnitalMagma to +-isInvertibleUnitalMagma
; isGroup to +-isGroup
)
*-isMagma : IsMagma *
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = *-cong
}
*-identityˡ : LeftIdentity 1# *
*-identityˡ = proj₁ identity
*-identityʳ : RightIdentity 1# *
*-identityʳ = proj₂ identity
------------------------------------------------------------------------
-- Structures with 3 binary operation and 1 element
------------------------------------------------------------------------
record IsLeftBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isLoop : IsLoop ∙ \\ // ε
leftBol : LeftBol ∙
open IsLoop isLoop public
record IsRightBolLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isLoop : IsLoop ∙ \\ // ε
rightBol : RightBol ∙
open IsLoop isLoop public
record IsMoufangLoop (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isLoop : IsLoop ∙ \\ // ε
moufangIdentity : MoufangIdentity₁ ∙
moufangIdentity₂ : MoufangIdentity₂ ∙
moufangIdentity₃ : MoufangIdentity₃ ∙
moufangIdentity₄ : MoufangIdentity₄ ∙
open IsLoop isLoop public
record IsPique (∙ \\ // : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isQuasigroup : IsQuasigroup ∙ \\ //
idem : Idempotent ∙
open IsQuasigroup isQuasigroup public
|
algebraic-stack_agda0000_doc_14052 | -- Andreas, 2016-10-04, issue #2236
-- Result splitting should not insert hidden arguments visibly
-- {-# OPTIONS -v interaction.case:100 #-}
-- {-# OPTIONS -v tc.cover:100 #-}
-- {-# OPTIONS -v reify.clause:100 #-}
-- {-# OPTIONS -v reify.implicit:100 #-}
splitMe : (A : Set) {B : Set} → Set
splitMe = {!!} -- C-c C-c RET inserts hidden {B}
splitMe' : (A : Set) {B : Set} (C : Set) {D : Set} → Set
splitMe' = {!!} -- C-c C-c RET inserts hidden {B} and {D}
splitMe'' : {B : Set} (C : Set) {D : Set} → Set
splitMe'' = {!!} -- C-c C-c RET inserts hidden {D}
postulate
N : Set
P : N → Set
test : (A : Set) → ∀ {n} → P n → Set
test = {!!} -- C-c C-c RET inserts hidden {n}
-- Correct is:
-- No hidden arguments inserted on lhs.
|
algebraic-stack_agda0000_doc_14053 | {-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Algebra.Signature
module Fragment.Algebra.Free.Base (Σ : Signature) where
open import Fragment.Algebra.Algebra Σ
open import Fragment.Algebra.Free.Atoms public
open import Level using (Level; _⊔_)
open import Function using (_∘_)
open import Data.Empty using (⊥)
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Vec.Relation.Binary.Pointwise.Inductive
using (Pointwise; []; _∷_)
open import Relation.Binary using (Setoid; IsEquivalence)
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
private
variable
a ℓ : Level
module _ (A : Set a) where
data Term : Set a where
atom : A → Term
term : ∀ {arity} → (f : ops Σ arity) → Vec Term arity → Term
module _ (S : Setoid a ℓ) where
open Setoid S renaming (Carrier to A)
data _~_ : Term A → Term A → Set (a ⊔ ℓ) where
atom : ∀ {x y} → x ≈ y → atom x ~ atom y
term : ∀ {arity xs ys} {f : ops Σ arity}
→ Pointwise _~_ xs ys
→ term f xs ~ term f ys
private
mutual
map-~-refl : ∀ {n} {xs : Vec _ n} → Pointwise _~_ xs xs
map-~-refl {xs = []} = []
map-~-refl {xs = x ∷ xs} = ~-refl ∷ map-~-refl
~-refl : ∀ {x} → x ~ x
~-refl {atom _} = atom refl
~-refl {term _ _} = term map-~-refl
mutual
map-~-sym : ∀ {n} {xs ys : Vec _ n}
→ Pointwise _~_ xs ys
→ Pointwise _~_ ys xs
map-~-sym [] = []
map-~-sym (x≈y ∷ xs≈ys) =
~-sym x≈y ∷ map-~-sym xs≈ys
~-sym : ∀ {x y} → x ~ y → y ~ x
~-sym (atom x≈y) = atom (sym x≈y)
~-sym (term xs≈ys) = term (map-~-sym xs≈ys)
mutual
map-~-trans : ∀ {n} {xs ys zs : Vec _ n}
→ Pointwise _~_ xs ys
→ Pointwise _~_ ys zs
→ Pointwise _~_ xs zs
map-~-trans [] [] = []
map-~-trans (x≈y ∷ xs≈ys) (y≈z ∷ ys≈zs) =
~-trans x≈y y≈z ∷ map-~-trans xs≈ys ys≈zs
~-trans : ∀ {x y z} → x ~ y → y ~ z → x ~ z
~-trans (atom x≈y) (atom y≈z) =
atom (trans x≈y y≈z)
~-trans (term xs≈ys) (term ys≈zs) =
term (map-~-trans xs≈ys ys≈zs)
~-isEquivalence : IsEquivalence _~_
~-isEquivalence = record { refl = ~-refl
; sym = ~-sym
; trans = ~-trans
}
Herbrand : Setoid _ _
Herbrand = record { Carrier = Term A
; _≈_ = _~_
; isEquivalence = ~-isEquivalence
}
Free : Algebra
Free = record { ∥_∥/≈ = Herbrand
; ∥_∥/≈-isAlgebra = Free-isAlgebra
}
where term-cong : Congruence Herbrand term
term-cong f p = term p
Free-isAlgebra : IsAlgebra Herbrand
Free-isAlgebra = record { ⟦_⟧ = term
; ⟦⟧-cong = term-cong
}
F : ℕ → Algebra
F = Free ∘ Atoms (PE.setoid ⊥)
|
algebraic-stack_agda0000_doc_14054 | -- 2011-09-14 posted by Nisse
-- Andreas: this failed since SubstHH for Telescopes was wrong.
-- {-# OPTIONS --show-implicit -v tc.lhs.unify:15 #-}
module Issue292-14 where
data D : Set where
d : D
postulate T : D → D → Set
data T′ (x y : D) : Set where
c : T x y → T′ x y
F : D → D → Set
F x d = T′ x d -- blocking unfolding of F x y
record [F] : Set where
field
x y : D
f : F x y -- T′ x y works
data _≡_ (x : [F]) : [F] → Set where
refl : x ≡ x
Foo : ∀ {x} {t₁ t₂ : T x d} →
record { f = c t₁ } ≡ record { f = c t₂ } → Set₁
Foo refl = Set
|
algebraic-stack_agda0000_doc_14055 | {-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
{-# OPTIONS --type-in-type #-}
-- Note: Using this module is discouraged unless absolutely necessary.
-- Use `Data.Product` or `Data.Both` instead.
module Light.Indexed where
open import Light.Level using (Level)
postulate ℓ : Level
record Indexed {aℓ} (𝕒 : Set aℓ) {aℓf : 𝕒 → Level} (𝕓 : ∀ a → Set (aℓf a)) : Set ℓ where
constructor indexed
field index : 𝕒
field thing : 𝕓 index
open Indexed public
|
algebraic-stack_agda0000_doc_14056 | {-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group.Action where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Morphism
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Notation
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Structures.LeftAction
open import Cubical.Structures.Axioms
open import Cubical.Structures.Macro
open import Cubical.Structures.Auto
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' : Level
record IsGroupAction (G : Group {ℓ = ℓ})
(H : Group {ℓ = ℓ'})
(_α_ : LeftActionStructure ⟨ G ⟩ ⟨ H ⟩) : Type (ℓ-max ℓ ℓ') where
constructor isgroupaction
open GroupNotationG G
field
isHom : (g : ⟨ G ⟩) → isGroupHom H H (g α_)
identity : (h : ⟨ H ⟩) → 0ᴳ α h ≡ h
assoc : (g g' : ⟨ G ⟩) → (h : ⟨ H ⟩) → (g +ᴳ g') α h ≡ g α (g' α h)
record GroupAction (G : Group {ℓ}) (H : Group {ℓ'}): Type (ℓ-suc (ℓ-max ℓ ℓ')) where
constructor groupaction
field
_α_ : LeftActionStructure ⟨ G ⟩ ⟨ H ⟩
isGroupAction : IsGroupAction G H _α_
module ActionΣTheory {ℓ ℓ' : Level} where
module _ (G : Group {ℓ}) (H : Group {ℓ'}) (_α_ : LeftActionStructure ⟨ G ⟩ ⟨ H ⟩) where
open GroupNotationG G
IsGroupActionΣ : Type (ℓ-max ℓ ℓ')
IsGroupActionΣ = ((g : ⟨ G ⟩) → isGroupHom H H (g α_))
× ((h : ⟨ H ⟩) → 0ᴳ α h ≡ h)
× ((g g' : ⟨ G ⟩) → (h : ⟨ H ⟩) → (g +ᴳ g') α h ≡ g α (g' α h))
isPropIsGroupActionΣ : isProp IsGroupActionΣ
isPropIsGroupActionΣ = isPropΣ isPropIsHom λ _ → isPropΣ isPropIdentity λ _ → isPropAssoc
where
isPropIsHom = isPropΠ (λ g → isPropIsGroupHom H H)
isPropIdentity = isPropΠ (λ h → GroupStr.is-set (snd H) (0ᴳ α h) h)
isPropAssoc = isPropΠ3 (λ g g' h → GroupStr.is-set (snd H) ((g +ᴳ g') α h) (g α (g' α h)))
IsGroupAction→IsGroupActionΣ : IsGroupAction G H _α_ → IsGroupActionΣ
IsGroupAction→IsGroupActionΣ (isgroupaction isHom identity assoc) = isHom , identity , assoc
IsGroupActionΣ→IsGroupAction : IsGroupActionΣ → IsGroupAction G H _α_
IsGroupActionΣ→IsGroupAction (isHom , identity , assoc) = isgroupaction isHom identity assoc
IsGroupActionΣIso : Iso (IsGroupAction G H _α_) IsGroupActionΣ
Iso.fun IsGroupActionΣIso = IsGroupAction→IsGroupActionΣ
Iso.inv IsGroupActionΣIso = IsGroupActionΣ→IsGroupAction
Iso.rightInv IsGroupActionΣIso = λ _ → refl
Iso.leftInv IsGroupActionΣIso = λ _ → refl
open ActionΣTheory
isPropIsGroupAction : {ℓ ℓ' : Level }
(G : Group {ℓ}) (H : Group {ℓ'})
(_α_ : LeftActionStructure ⟨ G ⟩ ⟨ H ⟩)
→ isProp (IsGroupAction G H _α_)
isPropIsGroupAction G H _α_ = isOfHLevelRespectEquiv 1
(invEquiv (isoToEquiv (IsGroupActionΣIso G H _α_)))
(isPropIsGroupActionΣ G H _α_)
module ActionNotationα {N : Group {ℓ}} {H : Group {ℓ'}} (Act : GroupAction H N) where
_α_ = GroupAction._α_ Act
private
isGroupAction = GroupAction.isGroupAction Act
α-id = IsGroupAction.identity isGroupAction
α-hom = IsGroupAction.isHom isGroupAction
α-assoc = IsGroupAction.assoc isGroupAction
module ActionLemmas {G : Group {ℓ}} {H : Group {ℓ'}} (Act : GroupAction G H) where
open ActionNotationα {N = H} {H = G} Act
open GroupNotationᴴ H
open GroupNotationG G
open MorphismLemmas {G = H} {H = H}
open GroupLemmas
abstract
actOnUnit : (g : ⟨ G ⟩) → g α 0ᴴ ≡ 0ᴴ
actOnUnit g = mapId (grouphom (g α_) (α-hom g))
actOn-Unit : (g : ⟨ G ⟩) → g α (-ᴴ 0ᴴ) ≡ 0ᴴ
actOn-Unit g = (cong (g α_) (invId H)) ∙ actOnUnit g
actOn- : (g : ⟨ G ⟩) (h : ⟨ H ⟩) → g α (-ᴴ h) ≡ -ᴴ (g α h)
actOn- g h = mapInv (grouphom (g α_) (α-hom g)) h
-idAct : (h : ⟨ H ⟩) → (-ᴳ 0ᴳ) α h ≡ h
-idAct h = (cong (_α h) (invId G)) ∙ (α-id h)
-- Examples
-- left adjoint action of a group on a normal subgroup
|
algebraic-stack_agda0000_doc_14057 | {-
This file contains:
- Properties of set truncations
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.SetTruncation.Properties where
open import Cubical.HITs.SetTruncation.Base
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
private
variable
ℓ : Level
A : Type ℓ
-- lemma 6.9.1 in HoTT book
elim : {B : ∥ A ∥₀ → Type ℓ} →
(Bset : (x : ∥ A ∥₀) → isSet (B x)) →
(g : (a : A) → B (∣ a ∣₀)) →
(x : ∥ A ∥₀) → B x
elim Bset g ∣ a ∣₀ = g a
elim {A = A} {B = B} Bset g (squash₀ x y p q i j) =
isOfHLevel→isOfHLevelDep 2 Bset _ _
(cong (elim Bset g) p) (cong (elim Bset g) q) (squash₀ x y p q) i j
setTruncUniversal : {B : Type ℓ} → (isSet B) → (∥ A ∥₀ → B) ≃ (A → B)
setTruncUniversal Bset = isoToEquiv (iso intro out leftInv rightInv)
where
intro = (λ h a → h ∣ a ∣₀)
out = elim (λ x → Bset)
leftInv : ∀ g → intro (out g) ≡ g
leftInv g = refl
rightInv : ∀ h → out (intro h) ≡ h
rightInv h i x =
elim (λ x → isProp→isSet (Bset (out (intro h) x) (h x))) (λ a → refl) x i
elim2 : {B : ∥ A ∥₀ → ∥ A ∥₀ → Type ℓ}
(Bset : ((x y : ∥ A ∥₀) → isSet (B x y)))
(g : (a b : A) → B ∣ a ∣₀ ∣ b ∣₀)
(x y : ∥ A ∥₀) → B x y
elim2 Bset g =
elim (λ _ → isOfHLevelPi 2 (λ _ → Bset _ _))
(λ a → elim (λ _ → Bset _ _) (λ b → g a b))
elim3 : {B : (x y z : ∥ A ∥₀) → Type ℓ}
(Bset : ((x y z : ∥ A ∥₀) → isSet (B x y z)))
(g : (a b c : A) → B ∣ a ∣₀ ∣ b ∣₀ ∣ c ∣₀)
(x y z : ∥ A ∥₀) → B x y z
elim3 Bset g =
elim2 (λ _ _ → isOfHLevelPi 2 λ _ → Bset _ _ _)
(λ a b → elim (λ _ → Bset _ _ _) (λ c → g a b c))
setTruncIsSet : isSet ∥ A ∥₀
setTruncIsSet a b p q = squash₀ a b p q
setId : isSet A → ∥ A ∥₀ ≡ A
setId {A = A} isset =
isoToPath (iso (elim {A = A} (λ _ → isset) (λ x → x)) (λ x → ∣ x ∣₀) (λ b → refl) (λ b → idLemma b))
where
idLemma : ∀ (b : ∥ A ∥₀) → ∣ elim (λ x → isset) (λ x → x) b ∣₀ ≡ b
idLemma b =
elim {B = (λ x → ∣ elim (λ _ → isset) (λ x → x) x ∣₀ ≡ x)}
(λ x → isOfHLevelSuc 2 (setTruncIsSet {A = A}) ∣ elim (λ _ → isset) (λ x₁ → x₁) x ∣₀ x)
(λ _ → refl)
b
|
algebraic-stack_agda0000_doc_14058 | {-# OPTIONS --without-K #-}
open import Base
open import Homotopy.TruncatedHIT
open import Spaces.Spheres
open import Integers
module Sets.Quotient {i j} (A : Set i) ⦃ p : is-set A ⦄
(R : A → A → Set j) ⦃ q : (x y : A) → is-prop (R x y) ⦄ where
private
data _#/_ : Set (max i j) where
#proj : A → _#/_
#top : (f : hSⁿ ⟨0⟩ → _#/_) → _#/_
_/_ : Set (max i j)
_/_ = _#/_
proj : A → _/_
proj = #proj
postulate -- HIT
eq : (x y : A) (p : R x y) → proj x ≡ proj y
top : (f : hSⁿ ⟨0⟩ → _/_) → _/_
top = #top
postulate -- HIT
rays : (f : hSⁿ ⟨0⟩ → _/_) (x : hSⁿ ⟨0⟩) → top f ≡ f x
#/-rec : ∀ {k} (P : _/_ → Set k)
(proj* : (x : A) → P (proj x))
(eq* : (x y : A) (p : R x y) → transport P (eq x y p) (proj* x) ≡ proj* y)
(top* : (f : hSⁿ ⟨0⟩ → _/_) (p : (x : hSⁿ ⟨0⟩) → P (f x)) → P (top f))
(rays* : (f : hSⁿ ⟨0⟩ → _/_) (p : (x : hSⁿ ⟨0⟩) → P (f x)) (x : hSⁿ ⟨0⟩)
→ transport P (rays f x) (top* f p) ≡ p x)
→ ((t : _/_) → P t)
#/-rec P proj* eq* top* rays* (#proj x) = proj* x
#/-rec P proj* eq* top* rays* (#top f) =
top* f (λ x → #/-rec P proj* eq* top* rays* (f x))
#/-rec-nondep : ∀ {k} (B : Set k)
(proj* : A → B)
(eq* : (x y : A) (p : R x y) → proj* x ≡ proj* y)
(top* : (f : hSⁿ ⟨0⟩ → _/_) (p : hSⁿ ⟨0⟩ → B) → B)
(rays* : (f : hSⁿ ⟨0⟩ → _/_) (p : hSⁿ ⟨0⟩ → B) (x : hSⁿ ⟨0⟩) → top* f p ≡ p x)
→ (_/_ → B)
#/-rec-nondep B proj* eq* top* rays* (#proj x) = proj* x
#/-rec-nondep B proj* eq* top* rays* (#top f) =
top* f (λ x → #/-rec-nondep B proj* eq* top* rays* (f x))
/-rec : ∀ {k} (P : _/_ → Set k)
(proj* : (x : A) → P (proj x))
(eq* : (x y : A) (p : R x y) → transport P (eq x y p) (proj* x) ≡ proj* y)
(trunc : (x : _/_) → is-set (P x))
→ ((t : _/_) → P t)
/-rec P proj* eq* trunc = #/-rec P proj* eq*
(λ f p₁ → π₁ (u f p₁))
(λ f p₁ → π₂ (u f p₁)) where
u : _
u = truncated-has-filling-dep _/_ P ⟨0⟩ (λ ()) (λ f → (top f , rays f))
/-rec-nondep : ∀ {k} (B : Set k)
(proj* : A → B)
(eq* : (x y : A) (p : R x y) → proj* x ≡ proj* y)
(trunc : is-set B)
→ (_/_ → B)
/-rec-nondep B proj* eq* trunc = #/-rec-nondep B proj* eq*
(λ _ p → π₁ (u p))
(λ _ p → π₂ (u p)) where
u : _
u = truncated-has-spheres-filled ⟨0⟩ _ trunc
-- Reduction rules for paths are not needed
|
algebraic-stack_agda0000_doc_14059 | {-# OPTIONS --allow-unsolved-metas #-}
-- When instantiating metas, we can't ignore variables occurring in
-- irrelevant terms. If we do the irrelevant terms will become illformed
-- (and we get __IMPOSSIBLE__s)
-- For instance
-- _42 := DontCare (Just (Var 0 []))
-- is a bad thing to do. In the example below we hit the __IMPOSSIBLE__ in
-- the rename function in TypeChecking.MetaVars.assign.
module DontIgnoreIrrelevantVars where
import Common.Level
import Common.Irrelevance
record Category : Set₁ where
field
.Arr : Set
postulate C : Category
_∙_ : ∀ {A : Set} {B : A → Set} {C : Set} →
(∀ {x} → B x → C) → (g : ∀ x → B x) → A → C
f ∙ g = λ x → f (g x)
Exp : (I : Set) → Category
Exp I = record { Arr = I → Category.Arr C }
postulate
Functor : Category → Set
postulate
flattenP : ∀ D → Functor D → Functor D
flattenHʳ : ∀ J → Functor (Exp J) → Functor (Exp J)
flattenH : ∀ I → Functor (Exp I) → Functor (Exp I)
flattenH I = flattenHʳ _ ∙ flattenP _
|
algebraic-stack_agda0000_doc_14060 | module Categories.Support.Experimental where
open import Relation.Binary.PropositionalEquality.TrustMe
open import Categories.Support.PropositionalEquality
≣-relevant : ∀ {l} {A : Set l} {X Y : A} -> .(X ≣ Y) -> X ≣ Y
≣-relevant _ = trustMe
private
≣-coe : ∀ {a} {A B : Set a} → (A ≣ B) -> A -> B
≣-coe ≣-refl a = a
≣-subst′ : ∀ {a p} {A : Set a} → (P : A -> Set p) -> {x y : A} -> .(x ≣ y) -> P x -> P y
≣-subst′ P eq Px = ≣-coe (≣-relevant (≣-cong P eq)) Px
|
algebraic-stack_agda0000_doc_14061 | {-# OPTIONS --without-K --safe #-}
open import Polynomial.Parameters
module Polynomial.NormalForm.Construction
{a ℓ}
(coeffs : RawCoeff a ℓ)
where
open import Relation.Nullary using (Dec; yes; no)
open import Level using (lift; lower; _⊔_)
open import Data.Unit using (tt)
open import Data.List using (_∷_; []; List; foldr)
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Data.Nat.Properties using (z≤′n)
open import Data.Product using (_×_; _,_; map₁; curry; uncurry)
open import Data.Maybe using (just; nothing)
open import Data.Bool using (if_then_else_; true; false)
open import Function
open import Polynomial.NormalForm.InjectionIndex
open import Polynomial.NormalForm.Definition coeffs
open RawCoeff coeffs
----------------------------------------------------------------------
-- Construction
--
-- Because the polynomial is stored in a canonical form, we use a
-- normalising cons operator to construct the coefficient lists.
----------------------------------------------------------------------
-- Decision procedure for Zero
zero? : ∀ {n} → (p : Poly n) → Dec (Zero p)
zero? (Σ _ Π _) = no (λ z → z)
zero? (Κ x Π _) with Zero-C x
... | true = yes tt
... | false = no (λ z → z)
{-# INLINE zero? #-}
-- Exponentiate the first variable of a polynomial
infixr 8 _⍓*_ _⍓+_
_⍓*_ : ∀ {n} → Coeff n * → ℕ → Coeff n *
_⍓+_ : ∀ {n} → Coeff n + → ℕ → Coeff n +
[] ⍓* _ = []
(∹ xs) ⍓* i = ∹ xs ⍓+ i
coeff (head (xs ⍓+ i)) = coeff (head xs)
pow (head (xs ⍓+ i)) = pow (head xs) ℕ.+ i
tail (xs ⍓+ i) = tail xs
infixr 5 _∷↓_
_∷↓_ : ∀ {n} → PowInd (Poly n) → Coeff n * → Coeff n *
x Δ i ∷↓ xs = case zero? x of
λ { (yes p) → xs ⍓* suc i
; (no ¬p) → ∹ _≠0 x {¬p} Δ i & xs
}
{-# INLINE _∷↓_ #-}
-- Inject a polynomial into a larger polynomoial with more variables
_Π↑_ : ∀ {n m} → Poly n → (suc n ≤′ m) → Poly m
(xs Π i≤n) Π↑ n≤m = xs Π (≤′-step i≤n ⟨ ≤′-trans ⟩ n≤m)
{-# INLINE _Π↑_ #-}
infixr 4 _Π↓_
_Π↓_ : ∀ {i n} → Coeff i * → suc i ≤′ n → Poly n
[] Π↓ i≤n = Κ 0# Π z≤′n
(∹ x ≠0 Δ zero & [] ) Π↓ i≤n = x Π↑ i≤n
(∹ x Δ zero & ∹ xs) Π↓ i≤n = Σ (x Δ zero & ∹ xs) Π i≤n
(∹ x Δ suc j & xs ) Π↓ i≤n = Σ (x Δ suc j & xs) Π i≤n
{-# INLINE _Π↓_ #-}
--------------------------------------------------------------------------------
-- These folds allow us to abstract over the proofs later: we try to avoid
-- using ∷↓ and Π↓ directly anywhere except here, so if we prove that this fold
-- acts the same on a normalised or non-normalised polynomial, we can prove th
-- same about any operation which uses it.
PolyF : ℕ → Set a
PolyF i = Poly i × Coeff i *
Fold : ℕ → Set a
Fold i = PolyF i → PolyF i
para : ∀ {i} → Fold i → Coeff i + → Coeff i *
para f (x ≠0 Δ i & []) = case f (x , []) of λ { (y , ys) → y Δ i ∷↓ ys }
para f (x ≠0 Δ i & ∹ xs) = case f (x , para f xs) of λ { (y , ys) → y Δ i ∷↓ ys }
poly-map : ∀ {i} → (Poly i → Poly i) → Coeff i + → Coeff i *
poly-map f = para (λ { (x , y) → (f x , y)})
{-# INLINE poly-map #-}
|
algebraic-stack_agda0000_doc_14062 | -- Andreas, 2011-04-14
module UnificationUndecidedForNonStronglyRigidOccurrence where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
i : (f : Nat -> Nat)(n : Nat) -> n ≡ f n -> Nat
i f n ()
-- this should fail, since n ≡ f n is not always empty, only in case of f=suc
-- thus, an occurrence does not always mean no match, only strict occurrences
-- mean that.
|
algebraic-stack_agda0000_doc_14063 | {-# OPTIONS --safe #-}
module JVM.Compiler where
open import JVM.Types
open import JVM.Syntax.Instructions
module _ 𝑭 where
open import JVM.Compiler.Monad StackTy ⟨ 𝑭 ∣_↝_⟩ noop using (Compiler) public
module _ {𝑭} where
open import JVM.Compiler.Monad StackTy ⟨ 𝑭 ∣_↝_⟩ noop hiding (Compiler) public
|
algebraic-stack_agda0000_doc_13648 | -- The purpose of this universe construction is to get some definitional
-- equalities in the model. Specifically, if we define ⟦σ⟧ : ⟦Δ⟧ → ⟦Ω⟧
-- (a functor) for the "canonical" notion of subsitution, then we have
-- ⟦Wk⟧ (δ , m) ≡ δ propositionally, but *not* definitionally. This then
-- complicates proofs involving ⟦Wk⟧, and similar for the other substitutions.
{-# OPTIONS --without-K --safe #-}
module Source.Size.Substitution.Universe where
open import Relation.Binary using (IsEquivalence ; Setoid)
open import Source.Size
open import Source.Size.Substitution.Canonical as Can using (Sub⊢)
open import Util.Prelude
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
infix 4 _≈_
infixl 5 _>>_
data Sub : (Δ Ω : Ctx) → Set where
Id : Sub Δ Δ
_>>_ : (σ : Sub Δ Δ′) (τ : Sub Δ′ Ω) → Sub Δ Ω
Wk : Sub (Δ ∙ n) Δ
Lift : (σ : Sub Δ Ω) → Sub (Δ ∙ m) (Ω ∙ n)
Sing : (n : Size Δ) → Sub Δ (Δ ∙ m)
Skip : Sub (Δ ∙ n ∙ v0) (Δ ∙ n)
⟨_⟩ : Sub Δ Ω → Can.Sub Δ Ω
⟨ Id ⟩ = Can.Id
⟨ σ >> τ ⟩ = ⟨ σ ⟩ Can.>> ⟨ τ ⟩
⟨ Wk ⟩ = Can.Wk
⟨ Lift σ ⟩ = Can.Lift ⟨ σ ⟩
⟨ Sing n ⟩ = Can.Sing n
⟨ Skip ⟩ = Can.Skip
subV : (σ : Sub Δ Ω) (x : Var Ω) → Size Δ
subV σ = Can.subV ⟨ σ ⟩
sub : (σ : Sub Δ Ω) (n : Size Ω) → Size Δ
sub σ = Can.sub ⟨ σ ⟩
pattern Lift′ σ ⊢n = Lift σ ⊢n refl
variable σ τ ι : Sub Δ Ω
data Sub⊢ᵤ : ∀ Δ Ω → Sub Δ Ω → Set where
Id : Sub⊢ᵤ Δ Δ Id
comp : (⊢σ : Sub⊢ᵤ Δ Δ′ σ) (⊢τ : Sub⊢ᵤ Δ′ Δ″ τ) → Sub⊢ᵤ Δ Δ″ (σ >> τ)
Wk : Sub⊢ᵤ (Δ ∙ n) Δ Wk
Lift : (⊢σ : Sub⊢ᵤ Δ Ω σ) (m≡n[σ] : m ≡ sub σ n)
→ Sub⊢ᵤ (Δ ∙ m) (Ω ∙ n) (Lift σ)
Sing : (n<m : n < m) → Sub⊢ᵤ Δ (Δ ∙ m) (Sing n)
Skip : Sub⊢ᵤ (Δ ∙ n ∙ v0) (Δ ∙ n) Skip
syntax Sub⊢ᵤ Δ Ω σ = σ ∶ Δ ⇒ᵤ Ω
⟨⟩-resp-⊢ : σ ∶ Δ ⇒ᵤ Ω → ⟨ σ ⟩ ∶ Δ ⇒ Ω
⟨⟩-resp-⊢ Id = Can.Id⊢
⟨⟩-resp-⊢ (comp ⊢σ ⊢τ) = Can.>>⊢ (⟨⟩-resp-⊢ ⊢σ) (⟨⟩-resp-⊢ ⊢τ)
⟨⟩-resp-⊢ Wk = Can.Wk⊢
⟨⟩-resp-⊢ (Lift ⊢σ m≡n[σ]) = Can.Lift⊢ (⟨⟩-resp-⊢ ⊢σ) m≡n[σ]
⟨⟩-resp-⊢ (Sing n<m) = Can.Sing⊢ n<m
⟨⟩-resp-⊢ Skip = Can.Skip⊢
record _≈_ (σ τ : Sub Δ Ω) : Set where
constructor ≈⁺
field ≈⁻ : ⟨ σ ⟩ ≡ ⟨ τ ⟩
open _≈_ public
≈-refl : σ ≈ σ
≈-refl = ≈⁺ refl
≈-sym : σ ≈ τ → τ ≈ σ
≈-sym (≈⁺ p) = ≈⁺ (sym p)
≈-trans : σ ≈ τ → τ ≈ ι → σ ≈ ι
≈-trans (≈⁺ p) (≈⁺ q) = ≈⁺ (trans p q)
≈-isEquivalence : IsEquivalence (_≈_ {Δ} {Ω})
≈-isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans }
Sub-setoid : (Δ Ω : Ctx) → Setoid 0ℓ 0ℓ
Sub-setoid Δ Ω = record
{ Carrier = Sub Δ Ω
; _≈_ = _≈_
; isEquivalence = ≈-isEquivalence
}
module ≈-Reasoning {Δ} {Ω} = SetoidReasoning (Sub-setoid Δ Ω)
abstract
>>-resp-≈ : {σ σ′ : Sub Δ Δ′} {τ τ′ : Sub Δ′ Δ″}
→ σ ≈ σ′ → τ ≈ τ′ → σ >> τ ≈ σ′ >> τ′
>>-resp-≈ (≈⁺ p) (≈⁺ q) = ≈⁺ (cong₂ Can._>>_ p q)
Lift-resp-≈ : σ ≈ τ → Lift {m = m} {n} σ ≈ Lift τ
Lift-resp-≈ (≈⁺ p) = ≈⁺ (cong Can.Lift p)
sub-resp-< : σ ∶ Δ ⇒ᵤ Ω → n < m → sub σ n < sub σ m
sub-resp-< ⊢σ = Can.sub-resp-< (⟨⟩-resp-⊢ ⊢σ)
mutual
subV′ : Sub Δ Ω → Var Ω → Size Δ
subV′ Id x = var x
subV′ (σ >> τ) x = sub′ σ (subV′ τ x)
subV′ Wk x = var (suc x)
subV′ (Lift σ) zero = var zero
subV′ (Lift σ) (suc x) = wk (subV′ σ x)
subV′ (Sing n) zero = n
subV′ (Sing n) (suc x) = var x
subV′ Skip zero = var zero
subV′ Skip (suc x) = var (suc (suc x))
sub′ : Sub Δ Ω → Size Ω → Size Δ
sub′ σ (var x) = subV′ σ x
sub′ σ ∞ = ∞
sub′ σ zero = zero
sub′ σ (suc n) = suc (sub′ σ n)
abstract
subV′≡subV : ∀ (σ : Sub Δ Ω) x → subV′ σ x ≡ subV σ x
subV′≡subV Id x = sym (Can.subV-Id x)
subV′≡subV (σ >> τ) x
= trans (sub′≡sub σ (subV′ τ x))
(trans (cong (sub σ) (subV′≡subV τ x))
(sym (Can.subV->> ⟨ σ ⟩ ⟨ τ ⟩ x)))
subV′≡subV Wk x = sym (Can.sub-Wk (var x))
subV′≡subV (Lift σ) zero = refl
subV′≡subV (Lift σ) (suc x)
= trans (cong wk (subV′≡subV σ x)) (sym (Can.subV-Weaken ⟨ σ ⟩ x))
subV′≡subV (Sing n) zero = refl
subV′≡subV (Sing n) (suc x) = sym (Can.subV-Id x)
subV′≡subV Skip zero = refl
subV′≡subV Skip (suc x) = sym
(trans (Can.subV-Weaken (Can.Weaken Can.Id) x) (cong wk (Can.sub-Wk (var x))))
sub′≡sub : ∀ (σ : Sub Δ Ω) n → sub′ σ n ≡ sub σ n
sub′≡sub σ (var x) = subV′≡subV σ x
sub′≡sub σ ∞ = refl
sub′≡sub σ zero = refl
sub′≡sub σ (suc n) = cong suc (sub′≡sub σ n)
|
algebraic-stack_agda0000_doc_13649 | {-# OPTIONS --safe #-}
module Cubical.Algebra.DirectSum.DirectSumHIT.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Sigma
open import Cubical.Relation.Nullary
open import Cubical.Algebra.Group
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
private variable
ℓ ℓ' : Level
module AbGroupProperties
(Idx : Type ℓ)
(P : Idx → Type ℓ')
(AGP : (r : Idx) → AbGroupStr (P r))
where
inv : ⊕HIT Idx P AGP → ⊕HIT Idx P AGP
inv = DS-Rec-Set.f Idx P AGP (⊕HIT Idx P AGP) trunc
-- elements
neutral
(λ r a → base r (AbGroupStr.-_ (AGP r) a))
(λ xs ys → xs add ys)
-- eq group
(λ xs ys zs → addAssoc xs ys zs)
(λ xs → addRid xs)
(λ xs ys → addComm xs ys)
-- eq base
(λ r → let open AbGroupStr (AGP r) in
let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in
(cong (base r) inv1g) ∙ (base-neutral r))
(λ r a b → let open AbGroupStr (AGP r) in
let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in
((base r (- a) add base r (- b)) ≡⟨ (base-add r (- a) (- b)) ⟩
base r ((- a) + (- b)) ≡⟨ (cong (base r) (sym (invDistr b a))) ⟩
base r (- (b + a)) ≡⟨ cong (base r) (cong (-_) (+Comm b a)) ⟩
base r (- (a + b)) ∎))
rinv : (z : ⊕HIT Idx P AGP) → z add (inv z) ≡ neutral
rinv = DS-Ind-Prop.f Idx P AGP (λ z → z add (inv z) ≡ neutral) (λ _ → trunc _ _)
-- elements
(addRid neutral)
(λ r a → let open AbGroupStr (AGP r) in
((base r a add base r (- a)) ≡⟨ base-add r a (- a) ⟩
base r (a + - a) ≡⟨ cong (base r) (+InvR a) ⟩
base r 0g ≡⟨ base-neutral r ⟩
neutral ∎))
(λ {x} {y} p q →
(((x add y) add ((inv x) add (inv y))) ≡⟨ cong (λ X → X add ((inv x) add (inv y))) (addComm x y) ⟩
((y add x) add (inv x add inv y)) ≡⟨ sym (addAssoc y x (inv x add inv y)) ⟩
(y add (x add (inv x add inv y))) ≡⟨ cong (λ X → y add X) (addAssoc x (inv x) (inv y)) ⟩
(y add ((x add inv x) add inv y)) ≡⟨ cong (λ X → y add (X add (inv y))) (p) ⟩
(y add (neutral add inv y)) ≡⟨ cong (λ X → y add X) (addComm neutral (inv y)) ⟩
(y add (inv y add neutral)) ≡⟨ cong (λ X → y add X) (addRid (inv y)) ⟩
(y add inv y) ≡⟨ q ⟩
neutral ∎))
module SubstLemma
(Idx : Type ℓ)
(G : Idx → Type ℓ')
(Gstr : (r : Idx) → AbGroupStr (G r))
where
open AbGroupStr
subst0g : {l k : Idx} → (p : l ≡ k) → subst G p (0g (Gstr l)) ≡ 0g (Gstr k)
subst0g {l} {k} p = J (λ k p → subst G p (0g (Gstr l)) ≡ 0g (Gstr k)) (transportRefl _) p
subst+ : {l : Idx} → (a b : G l) → {k : Idx} → (p : l ≡ k) →
Gstr k ._+_ (subst G p a) (subst G p b) ≡ subst G p (Gstr l ._+_ a b)
subst+ {l} a b {k} p = J (λ k p → Gstr k ._+_ (subst G p a) (subst G p b) ≡ subst G p (Gstr l ._+_ a b))
(cong₂ (Gstr l ._+_) (transportRefl _) (transportRefl _) ∙ sym (transportRefl _))
p
module DecIndec-BaseProperties
(Idx : Type ℓ)
(decIdx : Discrete Idx)
(G : Idx → Type ℓ')
(Gstr : (r : Idx) → AbGroupStr (G r))
where
open AbGroupStr
open SubstLemma Idx G Gstr
πₖ : (k : Idx) → ⊕HIT Idx G Gstr → G k
πₖ k = DS-Rec-Set.f _ _ _ _ (is-set (Gstr k))
(0g (Gstr k))
base-trad
(_+_ (Gstr k))
(+Assoc (Gstr k))
(+IdR (Gstr k))
(+Comm (Gstr k))
base-neutral-eq
base-add-eq
where
base-trad : (l : Idx) → (a : G l) → G k
base-trad l a with decIdx l k
... | yes p = subst G p a
... | no ¬p = 0g (Gstr k)
base-neutral-eq : _
base-neutral-eq l with decIdx l k
... | yes p = subst0g p
... | no ¬p = refl
base-add-eq : _
base-add-eq l a b with decIdx l k
... | yes p = subst+ a b p
... | no ¬p = +IdR (Gstr k) _
πₖ-id : {k : Idx} → (a : G k) → πₖ k (base k a) ≡ a
πₖ-id {k} a with decIdx k k
... | yes p = cong (λ X → subst G X a) (Discrete→isSet decIdx _ _ _ _) ∙ transportRefl _
... | no ¬p = rec (¬p refl)
πₖ-0g : {k l : Idx} → (a : G l) → (p : k ≡ l → ⊥) → πₖ k (base l a) ≡ 0g (Gstr k)
πₖ-0g {k} {l} a ¬q with decIdx l k
... | yes p = rec (¬q (sym p))
... | no ¬p = refl
base-inj : {k : Idx} → {a b : G k} → base {AGP = Gstr} k a ≡ base k b → a ≡ b
base-inj {k} {a} {b} p = sym (πₖ-id a) ∙ cong (πₖ k) p ∙ πₖ-id b
base-≢ : {k : Idx} → {a : G k} → {l : Idx} → {b : G l} → (p : k ≡ l → ⊥) →
base {AGP = Gstr} k a ≡ base {AGP = Gstr} l b → (a ≡ 0g (Gstr k)) × (b ≡ 0g (Gstr l))
base-≢ {k} {a} {l} {b} ¬p q = helper1 , helper2
where
helper1 : a ≡ 0g (Gstr k)
helper1 = sym (πₖ-id a) ∙ cong (πₖ k) q ∙ πₖ-0g b ¬p
helper2 : b ≡ 0g (Gstr l)
helper2 = sym (πₖ-id b) ∙ cong (πₖ l) (sym q) ∙ πₖ-0g a (λ x → ¬p (sym x))
|
algebraic-stack_agda0000_doc_13650 | -- Check that unquoted functions are termination checked.
module _ where
open import Common.Prelude hiding (_>>=_)
open import Common.Reflection
`⊥ : Type
`⊥ = def (quote ⊥) []
{-
Generate
aux : ⊥
aux = aux
loop : ⊥
loop = aux
-}
makeLoop : QName → TC ⊤
makeLoop loop =
freshName "aux" >>= λ aux →
declareDef (vArg aux) `⊥ >>= λ _ →
defineFun aux (clause [] (def aux []) ∷ []) >>= λ _ →
declareDef (vArg loop) `⊥ >>= λ _ →
defineFun loop (clause [] (def aux []) ∷ [])
unquoteDecl loop = makeLoop loop
|
algebraic-stack_agda0000_doc_13651 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions for types of functions that only require an equality
-- relation over the domain.
------------------------------------------------------------------------
-- The contents of this file should usually be accessed from `Function`.
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Function.Definitions.Core1
{a ℓ₁} {A : Set a} (_≈₁_ : Rel A ℓ₁)
where
open import Level using (_⊔_)
------------------------------------------------------------------------
-- Definitions
-- (Note the name `RightInverse` is used for the bundle)
Inverseʳ : ∀ {b} {B : Set b} → (A → B) → (B → A) → Set (a ⊔ ℓ₁)
Inverseʳ f g = ∀ x → g (f x) ≈₁ x
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.