id
stringlengths 27
136
| text
stringlengths 4
1.05M
|
---|---|
algebraic-stack_agda0000_doc_17412 | {-# OPTIONS --cubical --safe #-}
module Data.List.Properties where
open import Data.List
open import Prelude
open import Data.Fin
map-length : (f : A → B) (xs : List A)
→ length xs ≡ length (map f xs)
map-length f [] _ = zero
map-length f (x ∷ xs) i = suc (map-length f xs i)
map-ind : (f : A → B) (xs : List A)
→ PathP (λ i → Fin (map-length f xs i) → B) (f ∘ (xs !_)) (map f xs !_)
map-ind f [] i ()
map-ind f (x ∷ xs) i f0 = f x
map-ind f (x ∷ xs) i (fs n) = map-ind f xs i n
tab-length : ∀ n (f : Fin n → A) → length (tabulate n f) ≡ n
tab-length zero f _ = zero
tab-length (suc n) f i = suc (tab-length n (f ∘ fs) i)
tab-distrib : ∀ n (f : Fin n → A) m → ∃[ i ] (f i ≡ tabulate n f ! m)
tab-distrib (suc n) f f0 = f0 , refl
tab-distrib (suc n) f (fs m) = let i , p = tab-distrib n (f ∘ fs) m in fs i , p
tab-id : ∀ n (f : Fin n → A) → PathP (λ i → Fin (tab-length n f i) → A) (_!_ (tabulate n f)) f
tab-id zero f _ ()
tab-id (suc n) f i f0 = f f0
tab-id (suc n) f i (fs m) = tab-id n (f ∘ fs) i m
|
algebraic-stack_agda0000_doc_17413 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
import LibraBFT.Impl.Types.CryptoProxies as CryptoProxies
import LibraBFT.Impl.Types.LedgerInfo as LedgerInfo
import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures
import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner
import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Consensus.Types.EpochIndep
open import Optics.All
open import Util.Prelude
module LibraBFT.Impl.OBM.Genesis where
------------------------------------------------------------------------------
obmMkLedgerInfoWithEpochState : ValidatorSet → Either ErrLog LedgerInfo
------------------------------------------------------------------------------
obmMkGenesisLedgerInfoWithSignatures
: List ValidatorSigner → ValidatorSet → Either ErrLog LedgerInfoWithSignatures
obmMkGenesisLedgerInfoWithSignatures vss0 vs0 = do
liwes ← obmMkLedgerInfoWithEpochState vs0
let sigs = fmap (λ vs → (vs ^∙ vsAuthor , ValidatorSigner.sign vs liwes)) vss0
pure $ foldl' (λ acc (a , sig) → CryptoProxies.addToLi a sig acc)
(LedgerInfoWithSignatures.obmNewNoSigs liwes)
sigs
obmMkLedgerInfoWithEpochState vs = do
li ← LedgerInfo.mockGenesis (just vs)
vv ← ValidatorVerifier.from-e-abs vs
pure (li
& liCommitInfo ∙ biNextEpochState
?~ EpochState∙new (li ^∙ liEpoch) vv)
|
algebraic-stack_agda0000_doc_17414 | module PreludeInt where
open import AlonzoPrelude
import RTP
int : Nat -> Int
int = RTP.primNatToInt
_+_ : Int -> Int -> Int
_+_ = RTP.primIntAdd
_-_ : Int -> Int -> Int
_-_ = RTP.primIntSub
_*_ : Int -> Int -> Int
_*_ = RTP.primIntMul
div : Int -> Int -> Int
div = RTP.primIntDiv
mod : Int -> Int -> Int
mod = RTP.primIntMod
|
algebraic-stack_agda0000_doc_17415 | ------------------------------------------------------------------------
-- Some theory of equivalences with erased "proofs", defined in terms
-- of partly erased contractible fibres, developed using Cubical Agda
------------------------------------------------------------------------
-- This module instantiates and reexports code from
-- Equivalence.Erased.Contractible-preimages.
{-# OPTIONS --erased-cubical --safe #-}
import Equality.Path as P
module Equivalence.Erased.Contractible-preimages.Cubical
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Erased.Cubical eq
import Equivalence.Erased.Contractible-preimages
open Equivalence.Erased.Contractible-preimages equality-with-J public
hiding (module []-cong)
open Equivalence.Erased.Contractible-preimages.[]-cong
equality-with-J instance-of-[]-cong-axiomatisation
public
|
algebraic-stack_agda0000_doc_17416 | module Integer.Difference where
open import Data.Product as Σ
open import Data.Product.Relation.Pointwise.NonDependent
open import Data.Unit
open import Equality
open import Natural as ℕ
open import Quotient as /
open import Relation.Binary
open import Syntax
infixl 6 _–_
pattern _–_ a b = _,_ a b
⟦ℤ⟧ = ℕ × ℕ
⟦ℤ²⟧ = ⟦ℤ⟧ × ⟦ℤ⟧
_≈_ : ⟦ℤ⟧ → ⟦ℤ⟧ → Set
(a – b) ≈ (c – d) = a + d ≡ c + b
≈-refl : ∀ {x} → x ≈ x
≈-refl = refl
ℤ = ⟦ℤ⟧ / _≈_
ℤ² = ⟦ℤ²⟧ / Pointwise _≈_ _≈_
instance
⟦ℤ⟧-Number : Number ⟦ℤ⟧
⟦ℤ⟧-Number = record { Constraint = λ _ → ⊤ ; fromNat = λ x → x – 0 }
ℤ-Number : Number ℤ
ℤ-Number = record { Constraint = λ _ → ⊤ ; fromNat = λ x → ⟦ fromNat x ⟧ }
⟦ℤ⟧-Negative : Negative ⟦ℤ⟧
⟦ℤ⟧-Negative = record { Constraint = λ _ → ⊤ ; fromNeg = λ x → 0 – x }
ℤ-Negative : Negative ℤ
ℤ-Negative = record { Constraint = λ _ → ⊤ ; fromNeg = λ x → ⟦ fromNeg x ⟧ }
suc–suc-injective : ∀ a b → Path ℤ ⟦ suc a – suc b ⟧ ⟦ a – b ⟧
suc–suc-injective a b = equiv (suc a – suc b) (a – b) (sym (+-suc a b ))
⟦negate⟧ : ⟦ℤ⟧ → ⟦ℤ⟧
⟦negate⟧ (a – b) = b – a
negate : ℤ → ℤ
negate =
⟦negate⟧ // λ where
(a – b) (c – d) p →
⟨ +-comm b c ⟩ ≫ sym p ≫ ⟨ +-comm a d ⟩
⟦plus⟧ : ⟦ℤ²⟧ → ⟦ℤ⟧
⟦plus⟧ ((a – b) , (c – d)) = (a + c) – (d + b)
plus : ℤ² → ℤ
plus =
⟦plus⟧ // λ where
((a – b) , (c – d)) ((e – f) , (g – h)) (p , q) →
(a + c) + (h + f)
≡⟨ sym (ℕ.+-assoc a _ _) ⟩
a + (c + (h + f))
≡⟨ cong (a +_) (ℕ.+-assoc c _ _) ⟩
a + ((c + h) + f)
≡⟨ cong (λ z → a + (z + f)) q ⟩
a + ((g + d) + f)
≡⟨ cong (a +_) ⟨ ℕ.+-comm (g + d) _ ⟩ ⟩
a + (f + (g + d))
≡⟨ ℕ.+-assoc a _ _ ⟩
(a + f) + (g + d)
≡⟨ cong (_+ (g + d)) p ⟩
(e + b) + (g + d)
≡⟨ ℕ.+-cross e _ _ _ ⟩
(e + g) + (b + d)
≡⟨ cong ((e + g) +_) ⟨ ℕ.+-comm b _ ⟩ ⟩
(e + g) + (d + b)
∎
instance
⟦ℤ⟧-plus-syntax : plus-syntax-simple ⟦ℤ⟧ ⟦ℤ⟧ ⟦ℤ⟧
⟦ℤ⟧-plus-syntax = λ where ._+_ x y → ⟦plus⟧ (x , y)
⟦ℤ⟧-minus-syntax : minus-syntax-simple ⟦ℤ⟧ ⟦ℤ⟧ ⟦ℤ⟧
⟦ℤ⟧-minus-syntax = λ where ._-_ x y → ⟦plus⟧ (x , ⟦negate⟧ y)
ℕ-⟦ℤ⟧-minus-syntax : minus-syntax-simple ℕ ℕ ⟦ℤ⟧
ℕ-⟦ℤ⟧-minus-syntax = λ where ._-_ → _–_
ℤ-plus-syntax : plus-syntax-simple ℤ ℤ ℤ
ℤ-plus-syntax = λ where ._+_ → /.uncurry refl refl plus
ℤ-minus-syntax : minus-syntax-simple ℤ ℤ ℤ
ℤ-minus-syntax = λ where ._-_ x y → x + negate y
ℕ-ℤ-minus-syntax : minus-syntax-simple ℕ ℕ ℤ
ℕ-ℤ-minus-syntax = λ where ._-_ x y → ⟦ x – y ⟧
|
algebraic-stack_agda0000_doc_17417 |
module MissingTypeSignature where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
pred zero = zero
pred (suc n) = n
|
algebraic-stack_agda0000_doc_17418 | module ProofUtilities where
-- open import Data.Nat hiding (_>_)
open import StdLibStuff
open import Syntax
open import FSC
mutual
hn-left-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t α) (F : Form Γ-t β) (G : Form Γ-t α) → Γ ⊢ α ∋ S (headNorm m F) ↔ G → Γ ⊢ α ∋ S F ↔ G
hn-left-i m S (app F H) G p = hn-left-i m (λ x → S (app x H)) F G (hn-left-i' m S (headNorm m F) H G p)
hn-left-i _ _ (var _ _) _ p = p
hn-left-i _ _ N _ p = p
hn-left-i _ _ A _ p = p
hn-left-i _ _ Π _ p = p
hn-left-i _ _ i _ p = p
hn-left-i _ _ (lam _ _) _ p = p
hn-left-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t α) (F : Form Γ-t (γ > β)) (H : Form Γ-t γ) (G : Form Γ-t α) → Γ ⊢ α ∋ S (headNorm' m F H) ↔ G → Γ ⊢ α ∋ S (app F H) ↔ G
hn-left-i' (suc m) S (lam _ F) H G p with hn-left-i m S (sub H F) G p
hn-left-i' (suc _) S (lam _ _) _ _ _ | p' = reduce-l {_} {_} {_} {_} {_} {_} {S} p'
hn-left-i' 0 _ (lam _ _) _ _ p = p
hn-left-i' zero _ (var _ _) _ _ p = p
hn-left-i' (suc _) _ (var _ _) _ _ p = p
hn-left-i' zero _ N _ _ p = p
hn-left-i' (suc _) _ N _ _ p = p
hn-left-i' zero _ A _ _ p = p
hn-left-i' (suc _) _ A _ _ p = p
hn-left-i' zero _ Π _ _ p = p
hn-left-i' (suc _) _ Π _ _ p = p
hn-left-i' zero _ i _ _ p = p
hn-left-i' (suc _) _ i _ _ p = p
hn-left-i' zero _ (app _ _) _ _ p = p
hn-left-i' (suc _) _ (app _ _) _ _ p = p
hn-left : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α : Type n} (m : ℕ) (F : Form Γ-t α) (G : Form Γ-t α) → Γ ⊢ α ∋ headNorm m F ↔ G → Γ ⊢ α ∋ F ↔ G
hn-left m F G p = hn-left-i m (λ x → x) F G p
mutual
hn-right-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t α) (F : Form Γ-t β) (G : Form Γ-t α) → Γ ⊢ α ∋ G ↔ S (headNorm m F) → Γ ⊢ α ∋ G ↔ S F
hn-right-i m S (app F H) G p = hn-right-i m (λ x → S (app x H)) F G (hn-right-i' m S (headNorm m F) H G p)
hn-right-i _ _ (var _ _) _ p = p
hn-right-i _ _ N _ p = p
hn-right-i _ _ A _ p = p
hn-right-i _ _ Π _ p = p
hn-right-i _ _ i _ p = p
hn-right-i _ _ (lam _ _) _ p = p
hn-right-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t α) (F : Form Γ-t (γ > β)) (H : Form Γ-t γ) (G : Form Γ-t α) → Γ ⊢ α ∋ G ↔ S (headNorm' m F H) → Γ ⊢ α ∋ G ↔ S (app F H)
hn-right-i' (suc m) S (lam _ F) H G p with hn-right-i m S (sub H F) G p
hn-right-i' (suc _) S (lam _ _) _ _ _ | p' = reduce-r {_} {_} {_} {_} {_} {_} {S} p'
hn-right-i' 0 _ (lam _ _) _ _ p = p
hn-right-i' zero _ (var _ _) _ _ p = p
hn-right-i' (suc _) _ (var _ _) _ _ p = p
hn-right-i' zero _ N _ _ p = p
hn-right-i' (suc _) _ N _ _ p = p
hn-right-i' zero _ A _ _ p = p
hn-right-i' (suc _) _ A _ _ p = p
hn-right-i' zero _ Π _ _ p = p
hn-right-i' (suc _) _ Π _ _ p = p
hn-right-i' zero _ i _ _ p = p
hn-right-i' (suc _) _ i _ _ p = p
hn-right-i' zero _ (app _ _) _ _ p = p
hn-right-i' (suc _) _ (app _ _) _ _ p = p
hn-right : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α : Type n} (m : ℕ) (F : Form Γ-t α) (G : Form Γ-t α) → Γ ⊢ α ∋ G ↔ headNorm m F → Γ ⊢ α ∋ G ↔ F
hn-right m F G p = hn-right-i m (λ x → x) F G p
mutual
hn-succ-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t β) → Γ ⊢ S (headNorm m F) → Γ ⊢ S F
hn-succ-i m S (app F H) p = hn-succ-i m (λ x → S (app x H)) F (hn-succ-i' m S (headNorm m F) H p)
hn-succ-i _ _ (var _ _) p = p
hn-succ-i _ _ N p = p
hn-succ-i _ _ A p = p
hn-succ-i _ _ Π p = p
hn-succ-i _ _ i p = p
hn-succ-i _ _ (lam _ _) p = p
hn-succ-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t (γ > β)) (H : Form Γ-t γ) → Γ ⊢ S (headNorm' m F H) → Γ ⊢ S (app F H)
hn-succ-i' (suc m) S (lam _ F) H p with hn-succ-i m S (sub H F) p
hn-succ-i' (suc _) S (lam _ _) _ _ | p' = reduce {_} {_} {_} {_} {_} {S} p'
hn-succ-i' 0 _ (lam _ _) _ p = p
hn-succ-i' zero _ (var _ _) _ p = p
hn-succ-i' (suc _) _ (var _ _) _ p = p
hn-succ-i' zero _ N _ p = p
hn-succ-i' (suc _) _ N _ p = p
hn-succ-i' zero _ A _ p = p
hn-succ-i' (suc _) _ A _ p = p
hn-succ-i' zero _ Π _ p = p
hn-succ-i' (suc _) _ Π _ p = p
hn-succ-i' zero _ i _ p = p
hn-succ-i' (suc _) _ i _ p = p
hn-succ-i' zero _ (app _ _) _ p = p
hn-succ-i' (suc _) _ (app _ _) _ p = p
hn-succ : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} (m : ℕ) (F : Form Γ-t $o) → Γ ⊢ headNorm m F → Γ ⊢ F
hn-succ m F p = hn-succ-i m (λ x → x) F p
mutual
hn-ante-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t β) (G : Form Γ-t $o) → Γ , S (headNorm m F) ⊢ G → Γ , S F ⊢ G
hn-ante-i m S (app F H) G p = hn-ante-i m (λ x → S (app x H)) F G (hn-ante-i' m S (headNorm m F) H G p)
hn-ante-i _ _ (var _ _) _ p = p
hn-ante-i _ _ N _ p = p
hn-ante-i _ _ A _ p = p
hn-ante-i _ _ Π _ p = p
hn-ante-i _ _ i _ p = p
hn-ante-i _ _ (lam _ _) _ p = p
hn-ante-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t (γ > β)) (H : Form Γ-t γ) (G : Form Γ-t $o) → Γ , S (headNorm' m F H) ⊢ G → Γ , S (app F H) ⊢ G
hn-ante-i' (suc m) S (lam _ F) H G p with hn-ante-i m S (sub H F) G p
hn-ante-i' (suc _) S (lam _ _) _ _ _ | p' = reduce {_} {_} {_} {_} {_} {S} p'
hn-ante-i' 0 _ (lam _ _) _ _ p = p
hn-ante-i' zero _ (var _ _) _ _ p = p
hn-ante-i' (suc _) _ (var _ _) _ _ p = p
hn-ante-i' zero _ N _ _ p = p
hn-ante-i' (suc _) _ N _ _ p = p
hn-ante-i' zero _ A _ _ p = p
hn-ante-i' (suc _) _ A _ _ p = p
hn-ante-i' zero _ Π _ _ p = p
hn-ante-i' (suc _) _ Π _ _ p = p
hn-ante-i' zero _ i _ _ p = p
hn-ante-i' (suc _) _ i _ _ p = p
hn-ante-i' zero _ (app _ _) _ _ p = p
hn-ante-i' (suc _) _ (app _ _) _ _ p = p
hn-ante : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} (m : ℕ) (F : Form Γ-t $o) (G : Form Γ-t $o) → Γ , headNorm m F ⊢ G → Γ , F ⊢ G
hn-ante m F G p = hn-ante-i m (λ x → x) F G p
mutual
hn-ante-eq-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t β) (G H : Form Γ-t α) → Γ , S (headNorm m F) ⊢ G == H → Γ , S F ⊢ G == H
hn-ante-eq-i m S (app F I) G H p = hn-ante-eq-i m (λ x → S (app x I)) F G H (hn-ante-eq-i' m S (headNorm m F) I G H p)
hn-ante-eq-i _ _ (var _ _) _ _ p = p
hn-ante-eq-i _ _ N _ _ p = p
hn-ante-eq-i _ _ A _ _ p = p
hn-ante-eq-i _ _ Π _ _ p = p
hn-ante-eq-i _ _ i _ _ p = p
hn-ante-eq-i _ _ (lam _ _) _ _ p = p
hn-ante-eq-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t (γ > β)) (I : Form Γ-t γ) (G H : Form Γ-t α) → Γ , S (headNorm' m F I) ⊢ G == H → Γ , S (app F I) ⊢ G == H
hn-ante-eq-i' (suc m) S (lam _ F) I G H p with hn-ante-eq-i m S (sub I F) G H p
hn-ante-eq-i' (suc _) S (lam _ _) _ _ _ _ | p' = reduce {_} {_} {_} {_} {_} {_} {S} p'
hn-ante-eq-i' 0 _ (lam _ _) _ _ _ p = p
hn-ante-eq-i' zero _ (var _ _) _ _ _ p = p
hn-ante-eq-i' (suc _) _ (var _ _) _ _ _ p = p
hn-ante-eq-i' zero _ N _ _ _ p = p
hn-ante-eq-i' (suc _) _ N _ _ _ p = p
hn-ante-eq-i' zero _ A _ _ _ p = p
hn-ante-eq-i' (suc _) _ A _ _ _ p = p
hn-ante-eq-i' zero _ Π _ _ _ p = p
hn-ante-eq-i' (suc _) _ Π _ _ _ p = p
hn-ante-eq-i' zero _ i _ _ _ p = p
hn-ante-eq-i' (suc _) _ i _ _ _ p = p
hn-ante-eq-i' zero _ (app _ _) _ _ _ p = p
hn-ante-eq-i' (suc _) _ (app _ _) _ _ _ p = p
hn-ante-eq : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α : Type n} (m : ℕ) (F : Form Γ-t $o) (G H : Form Γ-t α) → Γ , headNorm m F ⊢ G == H → Γ , F ⊢ G == H
hn-ante-eq m F G H p = hn-ante-eq-i m (λ x → x) F G H p
-- ------------------------------------
head-& : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {F₁ F₂ G₁ G₂ : Form Γ-t $o} →
Γ ⊢ $o ∋ F₁ == F₂ → Γ ⊢ $o ∋ G₁ == G₂ →
Γ ⊢ $o ∋ (F₁ & G₁) ↔ (F₂ & G₂)
head-& p₁ p₂ = head-app _ _ _ _ _ _ (simp (head-const _ N)) (simp (head-app _ _ _ _ _ _ (simp (head-app _ _ _ _ _ _ (simp (head-const _ A)) (simp (head-app _ _ _ _ _ _ (simp (head-const _ N)) p₁)))) (simp (head-app _ _ _ _ _ _ (simp (head-const _ N)) p₂))))
head-|| : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {F₁ F₂ G₁ G₂ : Form Γ-t $o} →
Γ ⊢ $o ∋ F₁ == F₂ → Γ ⊢ $o ∋ G₁ == G₂ →
Γ ⊢ $o ∋ (F₁ || G₁) ↔ (F₂ || G₂)
head-|| p₁ p₂ = head-app _ _ _ _ _ _ (simp (head-app _ _ _ _ _ _ (simp (head-const _ A)) p₁)) p₂
head-=> : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {F₁ F₂ G₁ G₂ : Form Γ-t $o} →
Γ ⊢ $o ∋ F₁ == F₂ → Γ ⊢ $o ∋ G₁ == G₂ →
Γ ⊢ $o ∋ (F₁ => G₁) ↔ (F₂ => G₂)
head-=> p₁ p₂ = head-app _ _ _ _ _ _ (simp (head-app _ _ _ _ _ _ (simp (head-const _ A)) (simp (head-app _ _ _ _ _ _ (simp (head-const _ N)) p₁)))) p₂
head-~ : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {F₁ F₂ : Form Γ-t $o} →
Γ ⊢ $o ∋ F₁ == F₂ →
Γ ⊢ $o ∋ (~ F₁) ↔ (~ F₂)
head-~ p = head-app _ _ _ _ _ _ (simp (head-const _ N)) p
head-== : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α : Type n} {F₁ F₂ G₁ G₂ : Form Γ-t α} →
Γ ⊢ α ∋ F₁ == F₂ → Γ ⊢ α ∋ G₁ == G₂ →
Γ ⊢ $o ∋ (F₁ == G₁) ↔ (F₂ == G₂)
head-== p₁ p₂ = head-app _ _ _ _ _ _ (simp (head-app _ _ _ _ _ _ (simp (head-const _ _)) p₁)) p₂
|
algebraic-stack_agda0000_doc_17419 | {-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.Exactness
open import cohomology.Choice
module cohomology.Theory where
record CohomologyTheory i : Type (lsucc i) where
field
C : ℤ → Ptd i → Group i
CEl : ℤ → Ptd i → Type i
CEl n X = Group.El (C n X)
Cid : (n : ℤ) (X : Ptd i) → CEl n X
Cid n X = GroupStructure.ident (Group.group-struct (C n X))
⊙CEl : ℤ → Ptd i → Ptd i
⊙CEl n X = ⊙[ CEl n X , Cid n X ]
field
CF-hom : (n : ℤ) {X Y : Ptd i} → fst (X ⊙→ Y) → (C n Y →ᴳ C n X)
CF-ident : (n : ℤ) {X : Ptd i}
→ CF-hom n {X} {X} (⊙idf X) == idhom (C n X)
CF-comp : (n : ℤ) {X Y Z : Ptd i} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y))
→ CF-hom n (g ⊙∘ f) == CF-hom n f ∘ᴳ CF-hom n g
CF : (n : ℤ) {X Y : Ptd i} → fst (X ⊙→ Y) → fst (⊙CEl n Y ⊙→ ⊙CEl n X)
CF n f = GroupHom.⊙f (CF-hom n f)
field
C-abelian : (n : ℤ) (X : Ptd i) → is-abelian (C n X)
C-Susp : (n : ℤ) (X : Ptd i) → C (succ n) (⊙Susp X) == C n X
C-exact : (n : ℤ) {X Y : Ptd i} (f : fst (X ⊙→ Y))
→ is-exact (CF n (⊙cfcod f)) (CF n f)
C-additive : (n : ℤ) {I : Type i} (Z : I → Ptd i)
→ ((W : I → Type i) → has-choice ⟨0⟩ I W)
→ C n (⊙BigWedge Z) == Πᴳ I (C n ∘ Z)
{- A quick useful special case of C-additive:
C n (X ∨ Y) == C n X × C n Y -}
C-binary-additive : (n : ℤ) (X Y : Ptd i)
→ C n (X ⊙∨ Y) == C n X ×ᴳ C n Y
C-binary-additive n X Y =
ap (C n) (! (BigWedge-Bool-⊙path Pick))
∙ C-additive n _ (λ _ → Bool-has-choice)
∙ Πᴳ-Bool-is-×ᴳ (C n ∘ Pick)
where
Pick : Lift {j = i} Bool → Ptd i
Pick (lift true) = X
Pick (lift false) = Y
record OrdinaryTheory i : Type (lsucc i) where
constructor ordinary-theory
field
cohomology-theory : CohomologyTheory i
open CohomologyTheory cohomology-theory public
field
C-dimension : (n : ℤ) → n ≠ O → C n (⊙Sphere O) == 0ᴳ
|
algebraic-stack_agda0000_doc_17420 | {-# OPTIONS --cubical --safe #-}
module Relation.Nullary.Discrete.FromBoolean where
open import Prelude
open import Relation.Nullary.Discrete
module _ {a} {A : Type a}
(_≡ᴮ_ : A → A → Bool)
(sound : ∀ x y → T (x ≡ᴮ y) → x ≡ y)
(complete : ∀ x → T (x ≡ᴮ x))
where
from-bool-eq : Discrete A
from-bool-eq x y =
iff-dec (sound x y iff flip (subst (λ z → T (x ≡ᴮ z))) (complete x)) (T? (x ≡ᴮ y))
|
algebraic-stack_agda0000_doc_17421 | module calculus-examples where
open import Data.List using (List ; _∷_ ; [] ; _++_)
open import Data.List.Any using (here ; there ; any)
open import Data.List.Any.Properties
open import Data.OrderedListMap
open import Data.Sum using (inj₁ ; inj₂ ; _⊎_)
open import Data.Maybe.Base
open import Data.Empty using (⊥ ; ⊥-elim)
open import Data.Bool.Base using (true ; false)
open import Relation.Nullary using (Dec ; yes ; no ; ¬_)
open import Agda.Builtin.Equality using (refl ; _≡_)
open import Relation.Nullary.Decidable
using (⌊_⌋)
open import Relation.Binary.PropositionalEquality
using (subst ; cong ; sym ; trans)
open import calculus
open import utility
open import Esterel.Environment as Env
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ ; unknown ; present ; absent ; _≟ₛₜ_)
open import Esterel.Variable.Shared as SharedVar using (SharedVar)
open import Esterel.Variable.Sequential as SeqVar using (SeqVar)
open import Esterel.Lang
open import Esterel.Lang.CanFunction
open import Esterel.Lang.CanFunction.Properties
open import Esterel.Lang.CanFunction.SetSigMonotonic using (canₛ-set-sig-monotonic)
open import Esterel.Lang.Properties
open import Esterel.Lang.Binding
open import Esterel.Context
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import context-properties
open import Esterel.Lang.CanFunction.Base using (canₛ-⊆-FV)
open import Data.Nat as Nat
using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_)
open import Data.Nat.Properties.Simple
using (+-comm)
open import Data.Product
using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_)
open import eval
{-
This example is not true (and not provable under the current calculus)
{- rewriting a present to the true branch -}
{- cannot prove without the `signal` form -}
ex1 : ∀ S p q -> CB p ->
signl S (emit S >> (present S ∣⇒ p ∣⇒ q)) ≡ₑ
signl S (emit S >> p) # []
ex1 S p q CBp = calc where
θS→unk : Env
θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] []
S∈θS→unk : SigMap.∈Dom S (sig θS→unk)
S∈θS→unk = sig-∈-single S Signal.unknown
θS→unk[S]≡unk : sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.unknown
θS→unk[S]≡unk = sig-stats-1map' S Signal.unknown S∈θS→unk
θS→pre : Env
θS→pre = set-sig{S} θS→unk S∈θS→unk Signal.present
S∈θS→pre : SigMap.∈Dom S (sig θS→pre)
S∈θS→pre = sig-set-mono' {S} {S} {θS→unk} {Signal.present} {S∈θS→unk} S∈θS→unk
θS→pre[S]≡pre : sig-stats{S = S} θS→pre S∈θS→pre ≡ Signal.present
θS→pre[S]≡pre = sig-putget{S} {θS→unk} {Signal.present} S∈θS→unk S∈θS→pre
θS→unk[S]≠absent : ¬ sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.absent
θS→unk[S]≠absent is rewrite θS→unk[S]≡unk = unknotabs is where
unknotabs : Signal.unknown ≡ Signal.absent → ⊥
unknotabs ()
CBsignalS[emitS>>p] : CB (signl S (emit S >> p))
CBsignalS[emitS>>p]
= CBsig (CBseq (CBemit{S}) CBp ((λ z → λ ()) , (λ z → λ ()) , (λ z → λ ())))
calc : signl S (emit S >> (present S ∣⇒ p ∣⇒ q)) ≡ₑ
signl S (emit S >> p) # []
calc =
≡ₑtran {r = (ρ θS→unk · (emit S >> (present S ∣⇒ p ∣⇒ q)))}
(≡ₑstep [raise-signal])
(≡ₑtran {r = (ρ θS→pre · (nothin >> (present S ∣⇒ p ∣⇒ q)))}
(≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (deseq dehole)))
(≡ₑtran {r = (ρ θS→pre · (present S ∣⇒ p ∣⇒ q))}
(≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [seq-done]))
(≡ₑtran {r = (ρ θS→pre · p)}
(≡ₑstep ([is-present] S S∈θS→pre θS→pre[S]≡pre dehole))
(≡ₑsymm CBsignalS[emitS>>p]
(≡ₑtran {r = (ρ θS→unk · (emit S >> p))}
(≡ₑstep [raise-signal])
(≡ₑtran {r = (ρ θS→pre · (nothin >> p))}
(≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (deseq dehole)))
(≡ₑtran {r = ρ θS→pre · p}
(≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [seq-done]))
≡ₑrefl)))))))
-}
Canₛpresent-fact : ∀ S p q ->
(Signal.unwrap S) ∈ Canₛ (present S ∣⇒ p ∣⇒ q) (Θ SigMap.[ S ↦ Signal.unknown ] [] []) ->
(Signal.unwrap S ∈ Canₛ p (Θ SigMap.[ S ↦ Signal.unknown ] [] [])) ⊎
(Signal.unwrap S ∈ Canₛ q (Θ SigMap.[ S ↦ Signal.unknown ] [] []))
Canₛpresent-fact S p q S∈Canₛ[presentSpq]
with Env.Sig∈ S (Θ SigMap.[ S ↦ Signal.unknown ] [] [])
Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈
with ⌊ present ≟ₛₜ (Env.sig-stats{S} (Θ SigMap.[ S ↦ Signal.unknown ] [] []) S∈) ⌋
Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈ | true
= inj₁ S∈Canₛ[presentSpq]
Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈ | false
with ⌊ absent ≟ₛₜ Env.sig-stats{S} (Θ SigMap.[ S ↦ Signal.unknown ] [] []) S∈ ⌋
Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈ | false | true
= inj₂ S∈Canₛ[presentSpq]
Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈ | false | false
= ++⁻ (Canₛ p (Θ SigMap.[ S ↦ Signal.unknown ] [] [])) S∈Canₛ[presentSpq]
Canₛpresent-fact S p q _ | no ¬p
= ⊥-elim (¬p (SigMap.update-in-keys [] S unknown))
{- rewriting a present to the false branch -}
ex2b : ∀ S p q C -> CB (C ⟦ signl S q ⟧c) ->
Signal.unwrap S ∉ (Canₛ p (Θ SigMap.[ S ↦ unknown ] [] [])) ->
Signal.unwrap S ∉ (Canₛ q (Θ SigMap.[ S ↦ unknown ] [] [])) ->
signl S (present S ∣⇒ p ∣⇒ q) ≡ₑ
signl S q # C
ex2b S p q C CBq s∉Canₛp s∉Canₛq = calc where
θS→unk : Env
θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] []
S∈θS→unk : SigMap.∈Dom S (sig θS→unk)
S∈θS→unk = sig-∈-single S Signal.unknown
θS→unk[S]≡unk : sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.unknown
θS→unk[S]≡unk = sig-stats-1map' S Signal.unknown S∈θS→unk
θS→abs : Env
θS→abs = set-sig{S} θS→unk S∈θS→unk Signal.absent
S∈θS→abs : SigMap.∈Dom S (sig θS→abs)
S∈θS→abs = sig-set-mono' {S} {S} {θS→unk} {Signal.absent} {S∈θS→unk} S∈θS→unk
θS→abs[S]≡abs : sig-stats{S = S} θS→abs S∈θS→abs ≡ Signal.absent
θS→abs[S]≡abs = sig-putget{S} {θS→unk} {Signal.absent} S∈θS→unk S∈θS→abs
S∉Canθₛq : Signal.unwrap S ∉ Canθₛ SigMap.[ S ↦ unknown ] 0 q []env
S∉Canθₛq S∈Canθₛq = s∉Canₛq (Canθₛunknown->Canₛunknown S q S∈Canθₛq)
S∉CanθₛpresentSpq : Signal.unwrap S ∉ Canθₛ SigMap.[ S ↦ unknown ]
0
(present S ∣⇒ p ∣⇒ q)
[]env
S∉CanθₛpresentSpq S∈Canθₛ
with Canθₛunknown->Canₛunknown S (present S ∣⇒ p ∣⇒ q) S∈Canθₛ
... | fact
with Canₛpresent-fact S p q fact
... | inj₁ s∈Canₛp = s∉Canₛp s∈Canₛp
... | inj₂ s∈Canₛq = s∉Canₛq s∈Canₛq
bwd : signl S q ≡ₑ (ρ⟨ θS→abs , WAIT ⟩· q) # C
bwd =
≡ₑtran (≡ₑstep [raise-signal])
(≡ₑtran (≡ₑstep ([absence] S S∈θS→unk θS→unk[S]≡unk S∉Canθₛq))
≡ₑrefl)
fwd : signl S (present S ∣⇒ p ∣⇒ q) ≡ₑ
(ρ⟨ θS→abs , WAIT ⟩· q) # C
fwd =
≡ₑtran (≡ₑstep [raise-signal])
(≡ₑtran (≡ₑstep ([absence] S S∈θS→unk θS→unk[S]≡unk S∉CanθₛpresentSpq))
(≡ₑtran (≡ₑstep ([is-absent] S S∈θS→abs θS→abs[S]≡abs dehole))
≡ₑrefl)) where
calc : signl S (present S ∣⇒ p ∣⇒ q) ≡ₑ
signl S q # C
calc = ≡ₑtran fwd (≡ₑsymm CBq bwd)
ex2 : ∀ S p q C ->
CB (C ⟦ signl S q ⟧c) ->
(∀ status -> Signal.unwrap S ∉ (Canₛ p (Θ SigMap.[ S ↦ status ] [] []))) ->
(∀ status -> Signal.unwrap S ∉ (Canₛ q (Θ SigMap.[ S ↦ status ] [] []))) ->
signl S (present S ∣⇒ p ∣⇒ q) ≡ₑ
signl S q # C
ex2 S p q C CB noSp noSq = ex2b S p q C CB (noSp unknown) (noSq unknown)
{-
Although true, the this example is not provable under the current calculus
{- lifting an emit out of a par -}
ex3 : ∀ S p q -> CB (p ∥ q) ->
signl S ((emit S >> p) ∥ q) ≡ₑ
signl S (emit S >> (p ∥ q)) # []
ex3 S p q CBp∥q = calc where
θS→unk : Env
θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] []
S∈θS→unk : SigMap.∈Dom S (sig θS→unk)
S∈θS→unk = sig-∈-single S Signal.unknown
θS→unk[S]≡unk : sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.unknown
θS→unk[S]≡unk = sig-stats-1map' S Signal.unknown S∈θS→unk
θS→pre : Env
θS→pre = set-sig{S} θS→unk S∈θS→unk Signal.present
θS→unk[S]≠absent : ¬ sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.absent
θS→unk[S]≠absent is rewrite θS→unk[S]≡unk = unknotabs is where
unknotabs : Signal.unknown ≡ Signal.absent → ⊥
unknotabs ()
calc : signl S ((emit S >> p) ∥ q) ≡ₑ
signl S (emit S >> (p ∥ q)) # []
calc =
≡ₑtran {r = ρ⟨ θS→unk · ((emit S >> p) ∥ q)}
(≡ₑstep [raise-signal])
(≡ₑtran {r = ρ θS→pre · (nothin >> p ∥ q)}
(≡ₑstep ([emit]{S = S} S∈θS→unk θS→unk[S]≠absent (depar₁ (deseq dehole))))
(≡ₑtran {r = ρ θS→pre · (p ∥ q)}
(≡ₑctxt (dcenv (dcpar₁ dchole))
(dcenv (dcpar₁ dchole))
(≡ₑstep [seq-done]))
(≡ₑsymm (CBsig (CBseq CBemit CBp∥q
(((λ z → λ ()) ,
(λ z → λ ()) ,
(λ z → λ ())))))
(≡ₑtran {r = ρ θS→unk · (emit S >> (p ∥ q))}
(≡ₑstep [raise-signal])
(≡ₑtran (≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (deseq dehole)))
(≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [seq-done])))))))
-}
{- pushing a trap across a par -}
ex4 : ∀ n p q -> CB p ->
done q -> p ≡ₑ q # [] ->
(trap (exit (suc n) ∥ p)) ≡ₑ (exit n ∥ trap p) # []
ex4 = ex4-split where
basealwaysdistinct : ∀ x -> distinct base x
basealwaysdistinct x = (λ { z () x₂ }) , (λ { z () x₂ }) , (λ { z () x₂})
CBplugrpartrap : ∀ n -> ∀ {r r′ BVp FVp} ->
CorrectBinding r BVp FVp →
r′ ≐ ceval (epar₂ (exit n)) ∷ ceval etrap ∷ [] ⟦ r ⟧c →
CB r′
CBplugrpartrap n {p} {p′} {BVp} {FVp} CBp r′dc
with BVFVcorrect p BVp FVp CBp | unplugc r′dc
... | refl , refl | refl = CBpar CBexit (CBtrap CBp)
(basealwaysdistinct BVp)
(basealwaysdistinct (BVars p))
(basealwaysdistinct (FVars p))
(λ { _ () _ })
CBplugtraprpar : ∀ n -> {r r′ : Term}
{BVp FVp : Σ (List ℕ) (λ x → List ℕ × List ℕ)} →
CorrectBinding r BVp FVp →
r′ ≐ ceval etrap ∷ ceval (epar₂ (exit (suc n))) ∷ [] ⟦ r ⟧c →
CB r′
CBplugtraprpar n {r} {r′} {BVp} {FVp} CBr r′C
with unplugc r′C
... | refl
with BVFVcorrect r BVp FVp CBr
... | refl , refl
= CBtrap (CBpar CBexit CBr
(basealwaysdistinct BVp)
(basealwaysdistinct (BVars r))
(basealwaysdistinct (FVars r))
(λ { _ () _}))
ex4-split : ∀ n p q -> CB p ->
done q -> p ≡ₑ q # [] ->
(trap (exit (suc n) ∥ p)) ≡ₑ (exit n ∥ trap p) # []
ex4-split n p .nothin CBp (dhalted hnothin) p≡ₑnothin =
≡ₑtran {r = trap (exit (suc n) ∥ nothin)}
(≡ₑctxt (dctrap (dcpar₂ dchole))
(dctrap (dcpar₂ dchole))
(≡ₑ-context [] _ (CBplugtraprpar n) p≡ₑnothin))
(≡ₑtran {r = trap (exit (suc n))}
(≡ₑctxt (dctrap dchole)
(dctrap dchole)
(≡ₑtran (≡ₑstep [par-swap])
(≡ₑstep ([par-nothing] (dhalted (hexit (suc n)))))))
(≡ₑtran {r = exit n}
(≡ₑstep ([trap-done] (hexit (suc n))))
(≡ₑsymm (CBpar CBexit (CBtrap CBp)
(basealwaysdistinct (BVars p))
(basealwaysdistinct (BVars p))
(basealwaysdistinct (FVars p))
(λ { _ () _ }))
(≡ₑtran {r = exit n ∥ trap nothin}
(≡ₑctxt (dcpar₂ (dctrap dchole))
(dcpar₂ (dctrap dchole))
(≡ₑ-context [] _ (CBplugrpartrap n) p≡ₑnothin))
(≡ₑtran {r = exit n ∥ nothin}
(≡ₑctxt (dcpar₂ dchole) (dcpar₂ dchole) (≡ₑstep ([trap-done] hnothin)))
(≡ₑtran {r = nothin ∥ exit n}
(≡ₑstep [par-swap])
(≡ₑtran {r = exit n}
(≡ₑstep ([par-nothing] (dhalted (hexit n))))
≡ₑrefl)))))))
ex4-split n p .(exit 0) CBp (dhalted (hexit 0)) p≡ₑexit0 =
≡ₑtran {r = trap (exit (suc n) ∥ exit 0) }
(≡ₑctxt (dctrap (dcpar₂ dchole))
(dctrap (dcpar₂ dchole))
(≡ₑ-context [] _ (CBplugtraprpar n) p≡ₑexit0))
(≡ₑtran {r = trap (exit (suc n))}
(≡ₑctxt (dctrap dchole) (dctrap dchole)
(≡ₑstep ([par-2exit] (suc n) zero)))
(≡ₑtran {r = exit n}
(≡ₑstep ([trap-done] (hexit (suc n))))
(≡ₑsymm (CBpar CBexit (CBtrap CBp)
(basealwaysdistinct (BVars p))
(basealwaysdistinct (BVars p))
(basealwaysdistinct (FVars p))
(λ { _ () _ }))
(≡ₑtran {r = exit n ∥ trap (exit 0)}
(≡ₑctxt (dcpar₂ (dctrap dchole))
(dcpar₂ (dctrap dchole))
(≡ₑ-context [] _ (CBplugrpartrap n) p≡ₑexit0))
(≡ₑtran {r = exit n ∥ nothin }
(≡ₑctxt (dcpar₂ dchole) (dcpar₂ dchole)
(≡ₑstep ([trap-done] (hexit zero))))
(≡ₑtran {r = nothin ∥ exit n}
(≡ₑstep [par-swap])
(≡ₑtran {r = exit n}
(≡ₑstep ([par-nothing] (dhalted (hexit n))))
≡ₑrefl)))))))
ex4-split n p .(exit (suc m)) CBp (dhalted (hexit (suc m))) p≡ₑexitm =
≡ₑtran {r = trap (exit (suc n) ∥ exit (suc m)) }
(≡ₑctxt (dctrap (dcpar₂ dchole))
(dctrap (dcpar₂ dchole))
(≡ₑ-context [] _ (CBplugtraprpar n) p≡ₑexitm))
(≡ₑtran {r = trap (exit (suc n ⊔ℕ (suc m)))}
(≡ₑctxt (dctrap dchole) (dctrap dchole)
(≡ₑstep ([par-2exit] (suc n) (suc m))))
(≡ₑtran {r = ↓_ {p = (exit (suc n ⊔ℕ (suc m)))} (hexit (suc n ⊔ℕ (suc m))) }
(≡ₑstep ([trap-done] (hexit (suc (n ⊔ℕ m)))))
(≡ₑsymm (CBpar CBexit (CBtrap CBp)
(basealwaysdistinct (BVars p))
(basealwaysdistinct (BVars p))
(basealwaysdistinct (FVars p))
(λ { _ () _ }))
(≡ₑtran {r = exit n ∥ trap (exit (suc m))}
(≡ₑctxt (dcpar₂ (dctrap dchole))
(dcpar₂ (dctrap dchole))
(≡ₑ-context [] _ (CBplugrpartrap n) p≡ₑexitm))
(≡ₑtran {r = exit n ∥ ↓_ {p = exit (suc m)} (hexit (suc m))}
(≡ₑctxt (dcpar₂ dchole) (dcpar₂ dchole)
(≡ₑstep ([trap-done] (hexit (suc m)))) )
(≡ₑtran {r = ↓_ {p = (exit (suc n ⊔ℕ (suc m)))} (hexit (suc n ⊔ℕ (suc m))) }
(≡ₑstep ([par-2exit] n m))
≡ₑrefl))))))
ex4-split n p q CBp (dpaused pausedq) p≡ₑq =
≡ₑtran {r = trap (exit (suc n) ∥ q)}
(≡ₑctxt (dctrap (dcpar₂ dchole))
(dctrap (dcpar₂ dchole))
(≡ₑ-context [] _ (CBplugtraprpar n) p≡ₑq))
(≡ₑtran {r = trap (exit (suc n))}
(≡ₑctxt (dctrap dchole) (dctrap dchole)
(≡ₑstep ([par-1exit] (suc n) pausedq)))
(≡ₑtran {r = exit n}
(≡ₑstep ([trap-done] (hexit (suc n))))
(≡ₑsymm (CBpar CBexit (CBtrap CBp)
(basealwaysdistinct (BVars p))
(basealwaysdistinct (BVars p))
(basealwaysdistinct (FVars p))
(λ { _ () _ }))
(≡ₑtran {r = exit n ∥ trap q}
(≡ₑctxt (dcpar₂ (dctrap dchole))
(dcpar₂ (dctrap dchole))
(≡ₑ-context [] _ (CBplugrpartrap n) p≡ₑq))
(≡ₑtran {r = exit n}
(≡ₑstep ([par-1exit] n (ptrap pausedq)))
≡ₑrefl)))))
{- lifting a signal out of an evaluation context -}
ex5 : ∀ S p q r E -> CB r ->
q ≐ E ⟦(signl S p)⟧e ->
r ≐ E ⟦ p ⟧e ->
(ρ⟨ []env , WAIT ⟩· q) ≡ₑ (ρ⟨ []env , WAIT ⟩· (signl S r)) # []
ex5 S p q r E CBr decomp1 decomp2 = calc where
θS→unk : Env
θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] []
replugit : q ≐ Data.List.map ceval E ⟦ signl S p ⟧c ->
E ⟦ ρ⟨ θS→unk , WAIT ⟩· p ⟧e ≐ Data.List.map ceval E ⟦ ρ⟨ θS→unk , WAIT ⟩· p ⟧c
replugit x = ⟦⟧e-to-⟦⟧c Erefl
calc : (ρ⟨ []env , WAIT ⟩· q) ≡ₑ (ρ⟨ []env , WAIT ⟩· (signl S r)) # []
calc =
≡ₑtran {r = ρ⟨ []env , WAIT ⟩· (E ⟦ (ρ⟨ θS→unk , WAIT ⟩· p) ⟧e)}
(≡ₑctxt (dcenv (⟦⟧e-to-⟦⟧c decomp1))
(dcenv (replugit (⟦⟧e-to-⟦⟧c decomp1)))
(≡ₑstep [raise-signal]))
(≡ₑtran {r = ρ⟨ θS→unk , WAIT ⟩· (E ⟦ p ⟧e)}
(≡ₑstep ([merge]{E = E} Erefl))
(≡ₑsymm (CBρ (CBsig CBr))
(≡ₑtran {r = ρ⟨ []env , WAIT ⟩· (ρ⟨ θS→unk , WAIT ⟩· r)}
(≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [raise-signal]))
(≡ₑstep ([merge] {E = []}
(subst (\ x ->
ρ⟨ θS→unk , WAIT ⟩· x ≐ [] ⟦
ρ⟨ θS→unk , WAIT ⟩· E ⟦ p ⟧e ⟧e)
(unplug decomp2) dehole))))))
{- two specific examples of lifting a signal out of an evaluation context -}
ex6 : ∀ S p q -> CB (p ∥ q) ->
(ρ⟨ []env , WAIT ⟩· ((signl S p) ∥ q)) ≡ₑ (ρ⟨ []env , WAIT ⟩· (signl S (p ∥ q))) # []
ex6 S p q CBp∥q =
ex5 S p (signl S p ∥ q) (p ∥ q) ((epar₁ q) ∷ []) CBp∥q (depar₁ dehole) (depar₁ dehole)
ex7 : ∀ S p q -> CB (p >> q) ->
(ρ⟨ []env , WAIT ⟩· ((signl S p) >> q)) ≡ₑ (ρ⟨ []env , WAIT ⟩· (signl S (p >> q))) # []
ex7 S p q CBp>>q =
ex5 S p (signl S p >> q) (p >> q) ((eseq q) ∷ []) CBp>>q (deseq dehole) (deseq dehole)
{- pushing a seq into a binding form (a signal in this case).
this shows the need for the outer environment ρ [} · _
in order to manipulate the environment.
-}
ex8-worker : ∀ {BV FV} S p q ->
CorrectBinding ((signl S p) >> q) BV FV ->
(ρ⟨ []env , WAIT ⟩· (signl S p) >> q) ≡ₑ
(ρ⟨ []env , WAIT ⟩· signl S (p >> q)) # []
ex8-worker S p q (CBseq {BVp = BVsigS·p} {FVq = FVq} (CBsig {BV = BVp} CBp) CBq BVsigS·p≠FVq) =
≡ₑtran {r = ρ⟨ []env , WAIT ⟩· (ρ⟨ [S]-env S , WAIT ⟩· p) >> q} {C = []}
(≡ₑctxt {C = []} {C′ = cenv []env WAIT ∷ ceval (eseq q) ∷ []}
Crefl Crefl
(≡ₑstep ([raise-signal] {p} {S})))
(≡ₑtran {r = ρ⟨ [S]-env S , WAIT ⟩· p >> q} {C = []}
(≡ₑstep ([merge] (deseq dehole)))
(≡ₑsymm
(CBρ
(CBsig
(CBseq CBp CBq
(⊆-respect-distinct-left (∪ʳ (+S S base) ⊆-refl) BVsigS·p≠FVq))))
(≡ₑtran {r = ρ⟨ []env , WAIT ⟩· (ρ⟨ [S]-env S , WAIT ⟩· p >> q)} {C = []}
(≡ₑctxt {C = []} {C′ = cenv []env WAIT ∷ []}
Crefl Crefl
(≡ₑstep ([raise-signal] {p >> q} {S})))
(≡ₑstep ([merge] dehole)))))
ex8 : ∀ S p q ->
CB ((signl S p) >> q) ->
(ρ⟨ []env , WAIT ⟩· (signl S p) >> q) ≡ₑ
(ρ⟨ []env , WAIT ⟩· signl S (p >> q)) # []
ex8 S p q cb = ex8-worker S p q cb
{- rearranging signal forms -}
ex9 : ∀ S1 S2 p ->
CB p ->
signl S1 (signl S2 p) ≡ₑ signl S2 (signl S1 p) # []
ex9 S1 S2 p CBp =
≡ₑtran {r = ρ⟨ (Θ SigMap.[ S1 ↦ Signal.unknown ] [] []) , WAIT ⟩· (signl S2 p)}
(≡ₑstep [raise-signal])
(≡ₑtran {r = (ρ⟨ Θ SigMap.[ S1 ↦ Signal.unknown ] [] [] , WAIT ⟩·
(ρ⟨ Θ SigMap.[ S2 ↦ Signal.unknown ] [] [] , WAIT ⟩· p))}
(≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [raise-signal]))
(≡ₑtran {r = (ρ⟨ (Θ SigMap.[ S1 ↦ Signal.unknown ] [] []) ←
(Θ SigMap.[ S2 ↦ Signal.unknown ] [] []) , A-max WAIT WAIT ⟩·
p)}
(≡ₑstep ([merge] dehole))
(≡ₑsymm (CBsig (CBsig CBp))
(≡ₑtran {r = ρ⟨ (Θ SigMap.[ S2 ↦ Signal.unknown ] [] []) , WAIT ⟩· (signl S1 p)}
(≡ₑstep [raise-signal])
(≡ₑtran {r = (ρ⟨ Θ SigMap.[ S2 ↦ Signal.unknown ] [] [] , WAIT ⟩·
(ρ⟨ Θ SigMap.[ S1 ↦ Signal.unknown ] [] [] , WAIT ⟩· p))}
(≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [raise-signal]))
(≡ₑtran {r = (ρ⟨ (Θ SigMap.[ S2 ↦ Signal.unknown ] [] []) ←
(Θ SigMap.[ S1 ↦ Signal.unknown ] [] []) ,
A-max WAIT WAIT ⟩·
p)}
(≡ₑstep ([merge] dehole))
(map-order-irr S1 S2 WAIT p))))))) where
distinct-Ss-env'' : ∀ S1 S2 S3 ->
¬ Signal.unwrap S1 ≡ Signal.unwrap S2 ->
Data.List.Any.Any (_≡_ S3) (Signal.unwrap S1 ∷ []) ->
Data.List.Any.Any (_≡_ S3) (Signal.unwrap S2 ∷ []) ->
⊥
distinct-Ss-env'' S1 S2 S3 S1≠S2 (here S3=S1) (here S3=S2) rewrite S3=S1 = S1≠S2 S3=S2
distinct-Ss-env'' S1 S2 S3 S1≠S2 (here px) (there ())
distinct-Ss-env'' S1 S2 S3 S1≠S2 (there ()) S3∈Domθ2
distinct-Ss-env' : ∀ S1 S2 S3 ->
¬ Signal.unwrap S1 ≡ Signal.unwrap S2 ->
Data.List.Any.Any (_≡_ S3) (Signal.unwrap S1 ∷ []) ->
S3 ∈ proj₁ (Dom (Θ SigMap.[ S2 ↦ Signal.unknown ] [] [])) ->
⊥
distinct-Ss-env' S1 S2 S3 S1≠S2 S3∈Domθ1 S3∈Domθ2
rewrite SigMap.keys-1map S2 Signal.unknown =
distinct-Ss-env'' S1 S2 S3 S1≠S2 S3∈Domθ1 S3∈Domθ2
distinct-Ss-env : ∀ S1 S2 S3 ->
¬ Signal.unwrap S1 ≡ Signal.unwrap S2 ->
S3 ∈ proj₁ (Dom (Θ SigMap.[ S1 ↦ Signal.unknown ] [] [])) ->
S3 ∈ proj₁ (Dom (Θ SigMap.[ S2 ↦ Signal.unknown ] [] [])) ->
⊥
distinct-Ss-env S1 S2 S3 S1≠S2 S3∈Domθ1 S3∈Domθ2
rewrite SigMap.keys-1map S1 Signal.unknown =
distinct-Ss-env' S1 S2 S3 S1≠S2 S3∈Domθ1 S3∈Domθ2
distinct-doms : ∀ S1 S2 ->
¬ (Signal.unwrap S1 ≡ Signal.unwrap S2) ->
distinct (Env.Dom (Θ SigMap.[ S1 ↦ Signal.unknown ] [] []))
(Env.Dom (Θ SigMap.[ S2 ↦ Signal.unknown ] [] []))
distinct-doms S1 S2 S1≠S2 =
(λ {S3 S3∈θ1 S3∈θ2 -> distinct-Ss-env S1 S2 S3 S1≠S2 S3∈θ1 S3∈θ2})
,
(λ x₁ x₂ → λ ())
,
(λ x₁ x₂ → λ ())
map-order-irr' : ∀ S1 S2 ->
(Θ SigMap.[ S1 ↦ Signal.unknown ] [] []) ←
(Θ SigMap.[ S2 ↦ Signal.unknown ] [] [])
≡
(Θ SigMap.[ S2 ↦ Signal.unknown ] [] []) ←
(Θ SigMap.[ S1 ↦ Signal.unknown ] [] [])
map-order-irr' S1 S2 with (Signal.unwrap S1) Nat.≟ (Signal.unwrap S2)
map-order-irr' S1 S2 | yes S1=S2 rewrite S1=S2 = refl
map-order-irr' S1 S2 | no ¬S1=S2 = Env.←-comm
((Θ SigMap.[ S1 ↦ Signal.unknown ] [] []))
((Θ SigMap.[ S2 ↦ Signal.unknown ] [] []))
(distinct-doms S1 S2 ¬S1=S2)
map-order-irr : ∀ S1 S2 A p ->
(ρ⟨
Θ SigMap.[ S2 ↦ Signal.unknown ] [] [] ←
Θ SigMap.[ S1 ↦ Signal.unknown ] [] []
,
A ⟩· p)
≡ₑ
(ρ⟨
Θ SigMap.[ S1 ↦ Signal.unknown ] [] [] ←
Θ SigMap.[ S2 ↦ Signal.unknown ] [] []
,
A ⟩· p) # []
map-order-irr S1 S2 A p rewrite map-order-irr' S1 S2 = ≡ₑrefl
{- dropping a loop whose body is just `exit` -}
ex10 : ∀ C n -> (loop (exit n)) ≡ₑ (exit n) # C
ex10 C n = ≡ₑtran (≡ₑstep [loop-unroll]) (≡ₑstep [loopˢ-exit])
{- (nothin ∥ p) ≡ₑ p, but only if we know that
p goes to something that's done -}
ex11 : ∀ p q ->
CB p -> done q -> p ≡ₑ q # [] ->
(nothin ∥ p) ≡ₑ p # []
ex11 = calc where
ex11-pq : ∀ q C -> done q -> (nothin ∥ q) ≡ₑ q # C
ex11-pq .nothin C (dhalted hnothin) =
≡ₑtran (≡ₑstep [par-swap]) (≡ₑstep ([par-nothing] (dhalted hnothin)))
ex11-pq .(exit n) C (dhalted (hexit n)) =
≡ₑstep ([par-nothing] (dhalted (hexit n)))
ex11-pq q C (dpaused p/paused) =
≡ₑstep ([par-nothing] (dpaused p/paused))
basealwaysdistinct : ∀ x -> distinct base x
basealwaysdistinct x = (λ { z () x₂ }) , (λ { z () x₂ }) , (λ { z () x₂})
CBp->CBnothingp : {r r′ : Term}
{BVp FVp : Σ (List ℕ) (λ x → List ℕ × List ℕ)} →
CorrectBinding r BVp FVp →
r′ ≐ ceval (epar₂ nothin) ∷ [] ⟦ r ⟧c → CB r′
CBp->CBnothingp {r} CBr r′dc
with sym (unplugc r′dc) | BVFVcorrect _ _ _ CBr
... | refl | refl , refl
= CBpar CBnothing CBr
(basealwaysdistinct (BVars r))
(basealwaysdistinct (BVars r))
(basealwaysdistinct (FVars r))
(λ { _ () _ })
calc : ∀ p q ->
CB p -> done q -> p ≡ₑ q # [] ->
(nothin ∥ p) ≡ₑ p # []
calc p q CBp doneq p≡ₑq =
≡ₑtran {r = (nothin ∥ q)}
(≡ₑctxt (dcpar₂ dchole)
(dcpar₂ dchole)
(≡ₑ-context [] _ CBp->CBnothingp p≡ₑq))
(≡ₑtran {r = q} (ex11-pq q [] doneq) (≡ₑsymm CBp p≡ₑq))
{- although true, can no longer prove
{- an emit (first) in sequence is the same as emit in parallel -}
ex12 : ∀ S p q ->
CB p -> done q -> p ≡ₑ q # [] ->
(signl S ((emit S) ∥ p)) ≡ₑ (signl S ((emit S) >> p)) # []
ex12 S p q CBp doneq p≡ₑq = calc where
θS→unk : Env
θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] []
S∈θS→unk : SigMap.∈Dom S (sig θS→unk)
S∈θS→unk = sig-∈-single S Signal.unknown
θS→unk[S]≡unk : sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.unknown
θS→unk[S]≡unk = sig-stats-1map' S Signal.unknown S∈θS→unk
θS→pre : Env
θS→pre = set-sig{S} θS→unk S∈θS→unk Signal.present
θS→unk[S]≠absent : ¬ sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.absent
θS→unk[S]≠absent is rewrite θS→unk[S]≡unk = unknotabs is where
unknotabs : Signal.unknown ≡ Signal.absent → ⊥
unknotabs ()
CBp->CBρθSp : {r r′ : Term}
{BVp FVp : Σ (List ℕ) (λ x → List ℕ × List ℕ)} →
CorrectBinding r BVp FVp → r′ ≐ cenv θS→pre ∷ [] ⟦ r ⟧c → CB r′
CBp->CBρθSp {r} CBr r′dc
with sym (unplugc r′dc) | BVFVcorrect _ _ _ CBr
... | refl | refl , refl = CBρ CBr
basealwaysdistinct : ∀ x -> distinct base x
basealwaysdistinct x = (λ { z () x₂ }) , (λ { z () x₂ }) , (λ { z () x₂})
CBsiglSemitS>>p : CB (signl S (emit S >> p))
CBsiglSemitS>>p =
CBsig (CBseq CBemit CBp (basealwaysdistinct (FVars p)))
calc : (signl S ((emit S) ∥ p)) ≡ₑ
(signl S ((emit S) >> p)) # []
calc =
≡ₑtran {r = ρ θS→unk · ((emit S) ∥ p)}
(≡ₑstep [raise-signal])
(≡ₑtran {r = ρ θS→pre · (nothin ∥ p)}
(≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (depar₁ dehole)))
(≡ₑtran {r = ρ θS→pre · p}
(≡ₑctxt (dcenv dchole) (dcenv dchole)
(≡ₑ-context [] (cenv _ ∷ [])
CBp->CBρθSp
(ex11 p q CBp doneq p≡ₑq)))
(≡ₑsymm CBsiglSemitS>>p
(≡ₑtran {r = ρ θS→unk · (emit S >> p)}
(≡ₑstep [raise-signal])
(≡ₑtran {r = ρ θS→pre · nothin >> p}
(≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (deseq dehole)))
(≡ₑctxt (dcenv dchole) (dcenv dchole)
(≡ₑstep [seq-done])))))))
-}
|
algebraic-stack_agda0000_doc_17422 | interleaved mutual
-- we don't do `data A : Set`
data A where
-- you don't have to actually define any constructor to trigger the error, the "where" is enough
data B where
b : B
|
algebraic-stack_agda0000_doc_17423 | module getline where
-- https://github.com/alhassy/AgdaCheatSheet#interacting-with-the-real-world-compilation-haskell-and-io
open import Data.Nat using (ℕ; suc)
open import Data.Nat.Show using (show)
open import Data.Char using (Char)
open import Data.List as L using (map; sum; upTo)
open import Function using (_$_; const; _∘_)
open import Data.String as S using (String; _++_; fromList)
open import Agda.Builtin.Unit using (⊤)
open import Codata.Musical.Colist using (take)
open import Codata.Musical.Costring using (Costring)
open import Data.Vec.Bounded as B using (toList)
open import Agda.Builtin.Coinduction using (♯_)
open import IO as IO using (run ; putStrLn ; IO)
import IO.Primitive as Primitive
infixr 1 _>>=_ _>>_
_>>=_ : ∀ {ℓ} {α β : Set ℓ} → IO α → (α → IO β) → IO β
this >>= f = ♯ this IO.>>= λ x → ♯ f x
_>>_ : ∀{ℓ} {α β : Set ℓ} → IO α → IO β → IO β
x >> y = x >>= const y
postulate
getLine∞ : Primitive.IO Costring
{-# FOREIGN GHC
toColist :: [a] -> MAlonzo.Code.Codata.Musical.Colist.AgdaColist a
toColist [] = MAlonzo.Code.Codata.Musical.Colist.Nil
toColist (x : xs) =
MAlonzo.Code.Codata.Musical.Colist.Cons x (MAlonzo.RTE.Sharp (toColist xs))
#-}
{- Haskell's prelude is implicitly available; this is for demonstration. -}
{-# FOREIGN GHC import Prelude as Haskell #-}
{-# COMPILE GHC getLine∞ = fmap toColist Haskell.getLine #-}
-- (1)
-- getLine : IO Costring
-- getLine = IO.lift getLine∞
getLine : IO String
getLine = IO.lift
$ getLine∞ Primitive.>>= (Primitive.return ∘ S.fromList ∘ B.toList ∘ take 100)
postulate readInt : L.List Char → ℕ
{-# COMPILE GHC readInt = \x -> read x :: Integer #-}
main : Primitive.IO ⊤
main = run do
putStrLn "Hello, world! I'm a compiled Agda program!"
IO.putStrLn "What is your name?:"
name ← getLine
IO.putStrLn "Please enter a number:"
num ← getLine
let tri = show $ sum $ upTo $ suc $ readInt $ S.toList num
putStrLn $ "The triangle number of " ++ num ++ " is " ++ tri
putStrLn ("Bye, " ++ name)
-- IO.putStrLn∞ ("Bye, " ++ name) {- If using approach (1) above. -}
|
algebraic-stack_agda0000_doc_8720 | module plfa.part1.Induction where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_)
+-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc zero n p =
begin
(zero + n) + p
≡⟨⟩
n + p
≡⟨⟩
zero + (n + p)
∎
+-assoc (suc m) n p =
begin
(suc m + n) + p
≡⟨⟩
suc (m + n) + p
≡⟨⟩
suc ((m + n) + p)
-- A relation is said to be a congruence for
-- a given function if it is preserved by applying that function
-- If e is evidence that x ≡ y,
-- then cong f e is evidence that f x ≡ f y,
-- for any function f
-- The correspondence between proof by induction and
-- definition by recursion is one of the most appealing
-- aspects of Agda
-- cong : ∀ (f : A → B) {x y} → x ≡ y → f x ≡ f y
-- ^- suc ^- (m + n) + p ≡ m + (n + p)
-- ----------------------------------------------------------- (=> implies)
-- suc ((m + n) + p) ≡ suc (m + (n + p))
≡⟨ cong suc (+-assoc m n p) ⟩
suc (m + (n + p))
-- cong : ∀ (f : A → B) {x y} → x ≡ y → f x ≡ f y
-- cong f refl = refl
≡⟨⟩
suc m + (n + p)
∎
+-assoc-2 : ∀ (n p : ℕ) → (2 + n) + p ≡ 2 + (n + p)
+-assoc-2 n p =
begin
(2 + n) + p
≡⟨⟩
suc (1 + n) + p
≡⟨⟩
suc ((1 + n) + p)
≡⟨ cong suc (+-assoc-1 n p) ⟩
suc (1 + (n + p))
≡⟨⟩
2 + (n + p)
∎
where
+-assoc-1 : ∀ (n p : ℕ) -> (1 + n) + p ≡ 1 + (n + p)
+-assoc-1 n p =
begin
(1 + n) + p
≡⟨⟩
suc (0 + n) + p
≡⟨⟩
suc ((0 + n) + p)
≡⟨ cong suc (+-assoc-0 n p) ⟩
suc (0 + (n + p))
≡⟨⟩
1 + (n + p)
∎
where
+-assoc-0 : ∀ (n p : ℕ) → (0 + n) + p ≡ 0 + (n + p)
+-assoc-0 n p =
begin
(0 + n) + p
≡⟨⟩
n + p
≡⟨⟩
0 + (n + p)
∎
+-identityᴿ : ∀ (m : ℕ) → m + zero ≡ m
+-identityᴿ zero =
begin
zero + zero
≡⟨⟩
zero
∎
+-identityᴿ (suc m) =
begin
suc m + zero
≡⟨⟩
suc (m + zero)
≡⟨ cong suc (+-identityᴿ m) ⟩
suc m
∎
+-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n)
+-suc zero n =
begin
zero + suc n
≡⟨⟩
suc n
≡⟨⟩
suc (zero + n)
∎
+-suc (suc m) n =
begin
suc m + suc n
≡⟨⟩
suc (m + suc n)
≡⟨ cong suc (+-suc m n) ⟩
suc (suc (m + n))
≡⟨⟩
suc (suc m + n)
∎
+-comm : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm m zero =
begin
m + zero
≡⟨ +-identityᴿ m ⟩
m
≡⟨⟩
zero + m
∎
+-comm m (suc n) =
begin
m + suc n
≡⟨ +-suc m n ⟩
suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩
suc (n + m)
≡⟨⟩
suc n + m
∎
-- Rearranging
-- We can apply associativity to
-- rearrange parentheses however we like
+-rearrange
: ∀ (m n p q : ℕ)
→ (m + n) + (p + q) ≡ m + (n + p) + q
+-rearrange m n p q =
begin
(m + n) + (p + q)
≡⟨ +-assoc m n (p + q) ⟩
m + (n + (p + q))
≡⟨ cong (m +_) (sym (+-assoc n p q)) ⟩
m + ((n + p) + q)
-- +-assoc : (m + n) + p ≡ m + (n + p)
-- sym (+-assoc) : m + (n + p) ≡ (m + n) + p
≡⟨ sym (+-assoc m (n + p) q) ⟩
(m + (n + p)) + q
∎
-- Associativity with rewrite
-- Rewriting avoids not only chains of
-- equations but also the need to invoke cong
+-assoc' : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc' zero n p = refl
+-assoc' (suc m) n p rewrite +-assoc' m n p = refl
+-identity' : ∀ (n : ℕ) → n + zero ≡ n
+-identity' zero = refl
+-identity' (suc n) rewrite +-identity' n = refl
+-suc' : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n)
+-suc' zero n = refl
+-suc' (suc m) n rewrite +-suc' m n = refl
+-comm' : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm' m zero rewrite +-identity' m = refl
+-comm' m (suc n) rewrite +-suc' m n | +-comm' m n = refl
-- Building proofs interactively
+-assoc'' : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc'' zero n p = refl
+-assoc'' (suc m) n p rewrite +-assoc'' m n p = refl
-- Exercise
-- Note:
-- sym -- rewrites the left side of the Goal
+-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p)
+-swap zero n p = refl
+-swap (suc m) n p rewrite
+-assoc'' m n p
| +-suc n (m + p)
| +-swap m n p
= refl
-- (suc m + n) * p ≡ suc m * p + n * p
-- p + (m * p + n * p) ≡ p + m * p + n * p
*-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p
*-distrib-+ zero n p = refl
*-distrib-+ (suc m) n p rewrite
*-distrib-+ m n p
| sym (+-assoc p (m * p) (n * p))
= refl
-- (n + m * n) * p ≡ n * p + m * (n * p)
*-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p)
*-assoc zero n p = refl
*-assoc (suc m) n p rewrite
*-distrib-+ n (m * n) p
| *-assoc m n p
= refl
|
algebraic-stack_agda0000_doc_8721 | module ProjectingRecordMeta where
data _==_ {A : Set}(a : A) : A -> Set where
refl : a == a
-- Andreas, Feb/Apr 2011
record Prod (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
open Prod public
testProj : {A B : Set}(y z : Prod A B) ->
let X : Prod A B
X = _ -- Solution: fst y , snd z
in (C : Set) -> (fst X == fst y -> snd X == snd z -> C) -> C
testProj y z C k = k refl refl
-- ok, Agda handles projections properly during unification
testProj' : {A B : Set}(y z : Prod A B) ->
let X : Prod A B
X = _ -- Solution: fst y , snd z
in Prod (fst X == fst y) (snd X == snd z)
testProj' y z = refl , refl
|
algebraic-stack_agda0000_doc_8722 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- "Finite" sets indexed on coinductive "natural" numbers
------------------------------------------------------------------------
module Data.Cofin where
open import Coinduction
open import Data.Conat as Conat using (Coℕ; suc; ∞ℕ)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Fin using (Fin; zero; suc)
------------------------------------------------------------------------
-- The type
-- Note that Cofin ∞ℕ is /not/ finite. Note also that this is not a
-- coinductive type, but it is indexed on a coinductive type.
data Cofin : Coℕ → Set where
zero : ∀ {n} → Cofin (suc n)
suc : ∀ {n} (i : Cofin (♭ n)) → Cofin (suc n)
------------------------------------------------------------------------
-- Some operations
fromℕ : ℕ → Cofin ∞ℕ
fromℕ zero = zero
fromℕ (suc n) = suc (fromℕ n)
toℕ : ∀ {n} → Cofin n → ℕ
toℕ zero = zero
toℕ (suc i) = suc (toℕ i)
fromFin : ∀ {n} → Fin n → Cofin (Conat.fromℕ n)
fromFin zero = zero
fromFin (suc i) = suc (fromFin i)
toFin : ∀ n → Cofin (Conat.fromℕ n) → Fin n
toFin zero ()
toFin (suc n) zero = zero
toFin (suc n) (suc i) = suc (toFin n i)
|
algebraic-stack_agda0000_doc_8723 | module Pi1r where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Groupoid
-- infix 2 _∎ -- equational reasoning for paths
-- infixr 2 _≡⟨_⟩_ -- equational reasoning for paths
infixr 10 _◎_
infixr 30 _⟷_
------------------------------------------------------------------------------
-- Level 0:
-- Types at this level are just plain sets with no interesting path structure.
-- The path structure is defined at levels 1 and beyond.
data U : Set where
ZERO : U
ONE : U
PLUS : U → U → U
TIMES : U → U → U
⟦_⟧ : U → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
-- Programs
-- We use pointed types; programs map a pointed type to another
-- In other words, each program takes one particular value to another; if we
-- want to work on another value, we generally use another program
record U• : Set where
constructor •[_,_]
field
∣_∣ : U
• : ⟦ ∣_∣ ⟧
open U•
-- examples of plain types, values, and pointed types
ONE• : U•
ONE• = •[ ONE , tt ]
BOOL : U
BOOL = PLUS ONE ONE
BOOL² : U
BOOL² = TIMES BOOL BOOL
TRUE : ⟦ BOOL ⟧
TRUE = inj₁ tt
FALSE : ⟦ BOOL ⟧
FALSE = inj₂ tt
BOOL•F : U•
BOOL•F = •[ BOOL , FALSE ]
BOOL•T : U•
BOOL•T = •[ BOOL , TRUE ]
-- The actual programs are the commutative semiring isomorphisms between
-- pointed types.
data _⟷_ : U• → U• → Set where
unite₊ : ∀ {t v} → •[ PLUS ZERO t , inj₂ v ] ⟷ •[ t , v ]
uniti₊ : ∀ {t v} → •[ t , v ] ⟷ •[ PLUS ZERO t , inj₂ v ]
swap1₊ : ∀ {t₁ t₂ v₁} →
•[ PLUS t₁ t₂ , inj₁ v₁ ] ⟷ •[ PLUS t₂ t₁ , inj₂ v₁ ]
swap2₊ : ∀ {t₁ t₂ v₂} →
•[ PLUS t₁ t₂ , inj₂ v₂ ] ⟷ •[ PLUS t₂ t₁ , inj₁ v₂ ]
assocl1₊ : ∀ {t₁ t₂ t₃ v₁} →
•[ PLUS t₁ (PLUS t₂ t₃) , inj₁ v₁ ] ⟷
•[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ]
assocl2₊ : ∀ {t₁ t₂ t₃ v₂} →
•[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] ⟷
•[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ]
assocl3₊ : ∀ {t₁ t₂ t₃ v₃} →
•[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] ⟷
•[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ]
assocr1₊ : ∀ {t₁ t₂ t₃ v₁} →
•[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] ⟷
•[ PLUS t₁ (PLUS t₂ t₃) , inj₁ v₁ ]
assocr2₊ : ∀ {t₁ t₂ t₃ v₂} →
•[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] ⟷
•[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ]
assocr3₊ : ∀ {t₁ t₂ t₃ v₃} →
•[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ] ⟷
•[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ]
unite⋆ : ∀ {t v} → •[ TIMES ONE t , (tt , v) ] ⟷ •[ t , v ]
uniti⋆ : ∀ {t v} → •[ t , v ] ⟷ •[ TIMES ONE t , (tt , v) ]
swap⋆ : ∀ {t₁ t₂ v₁ v₂} →
•[ TIMES t₁ t₂ , (v₁ , v₂) ] ⟷ •[ TIMES t₂ t₁ , (v₂ , v₁) ]
assocl⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} →
•[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] ⟷
•[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ]
assocr⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} →
•[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] ⟷
•[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ]
distz : ∀ {t v absurd} →
•[ TIMES ZERO t , (absurd , v) ] ⟷ •[ ZERO , absurd ]
factorz : ∀ {t v absurd} →
•[ ZERO , absurd ] ⟷ •[ TIMES ZERO t , (absurd , v) ]
dist1 : ∀ {t₁ t₂ t₃ v₁ v₃} →
•[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] ⟷
•[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ]
dist2 : ∀ {t₁ t₂ t₃ v₂ v₃} →
•[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] ⟷
•[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ]
factor1 : ∀ {t₁ t₂ t₃ v₁ v₃} →
•[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] ⟷
•[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ]
factor2 : ∀ {t₁ t₂ t₃ v₂ v₃} →
•[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] ⟷
•[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ]
id⟷ : ∀ {t v} → •[ t , v ] ⟷ •[ t , v ]
_◎_ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → (•[ t₁ , v₁ ] ⟷ •[ t₂ , v₂ ]) →
(•[ t₂ , v₂ ] ⟷ •[ t₃ , v₃ ]) →
(•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ])
_⊕1_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} →
(•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) →
(•[ PLUS t₁ t₂ , inj₁ v₁ ] ⟷ •[ PLUS t₃ t₄ , inj₁ v₃ ])
_⊕2_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} →
(•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) →
(•[ PLUS t₁ t₂ , inj₂ v₂ ] ⟷ •[ PLUS t₃ t₄ , inj₂ v₄ ])
_⊗_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} →
(•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) →
(•[ TIMES t₁ t₂ , (v₁ , v₂) ] ⟷ •[ TIMES t₃ t₄ , (v₃ , v₄) ])
loop : ∀ {t v} → •[ t , v ] ⟷ •[ t , v ]
! : {t₁ t₂ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁)
! unite₊ = uniti₊
! uniti₊ = unite₊
! swap1₊ = swap2₊
! swap2₊ = swap1₊
! assocl1₊ = assocr1₊
! assocl2₊ = assocr2₊
! assocl3₊ = assocr3₊
! assocr1₊ = assocl1₊
! assocr2₊ = assocl2₊
! assocr3₊ = assocl3₊
! unite⋆ = uniti⋆
! uniti⋆ = unite⋆
! swap⋆ = swap⋆
! assocl⋆ = assocr⋆
! assocr⋆ = assocl⋆
! distz = factorz
! factorz = distz
! dist1 = factor1
! dist2 = factor2
! factor1 = dist1
! factor2 = dist2
! id⟷ = id⟷
! (c₁ ◎ c₂) = ! c₂ ◎ ! c₁
! (c₁ ⊕1 c₂) = ! c₁ ⊕1 ! c₂
! (c₁ ⊕2 c₂) = ! c₁ ⊕2 ! c₂
! (c₁ ⊗ c₂) = ! c₁ ⊗ ! c₂
! loop = loop
-- example programs
NOT•T : •[ BOOL , TRUE ] ⟷ •[ BOOL , FALSE ]
NOT•T = swap1₊
NOT•F : •[ BOOL , FALSE ] ⟷ •[ BOOL , TRUE ]
NOT•F = swap2₊
CNOT•Fx : {b : ⟦ BOOL ⟧} →
•[ BOOL² , (FALSE , b) ] ⟷ •[ BOOL² , (FALSE , b) ]
CNOT•Fx = dist2 ◎ ((id⟷ ⊗ NOT•F) ⊕2 id⟷) ◎ factor2
CNOT•TF : •[ BOOL² , (TRUE , FALSE) ] ⟷ •[ BOOL² , (TRUE , TRUE) ]
CNOT•TF = dist1 ◎
((id⟷ ⊗ NOT•F) ⊕1 (id⟷ {TIMES ONE BOOL} {(tt , TRUE)})) ◎
factor1
CNOT•TT : •[ BOOL² , (TRUE , TRUE) ] ⟷ •[ BOOL² , (TRUE , FALSE) ]
CNOT•TT = dist1 ◎
((id⟷ ⊗ NOT•T) ⊕1 (id⟷ {TIMES ONE BOOL} {(tt , TRUE)})) ◎
factor1
-- The evaluation of a program is not done in order to figure out the output
-- value. Both the input and output values are encoded in the type of the
-- program; what the evaluation does is follow the path to constructively
-- reach the ouput value from the input value. Even though programs of the
-- same pointed types are, by definition, observationally equivalent, they
-- may follow different paths. At this point, we simply declare that all such
-- programs are "the same." At the next level, we will weaken this "path
-- irrelevant" equivalence and reason about which paths can be equated to
-- other paths via 2paths etc.
-- Even though individual types are sets, the universe of types is a
-- groupoid. The objects of this groupoid are the pointed types; the
-- morphisms are the programs; and the equivalence of programs is the
-- degenerate observational equivalence that equates every two programs that
-- are extensionally equivalent.
_obs≅_ : {t₁ t₂ : U•} → (c₁ c₂ : t₁ ⟷ t₂) → Set
c₁ obs≅ c₂ = ⊤
UG : 1Groupoid
UG = record
{ set = U•
; _↝_ = _⟷_
; _≈_ = _obs≅_
; id = id⟷
; _∘_ = λ y⟷z x⟷y → x⟷y ◎ y⟷z
; _⁻¹ = !
; lneutr = λ _ → tt
; rneutr = λ _ → tt
; assoc = λ _ _ _ → tt
; equiv = record { refl = tt
; sym = λ _ → tt
; trans = λ _ _ → tt
}
; linv = λ _ → tt
; rinv = λ _ → tt
; ∘-resp-≈ = λ _ _ → tt
}
------------------------------------------------------------------------------
-- Level 1:
-- Types are sets of paths. The paths are defined at the previous level
-- (level 0). At level 1, there is no interesting 2path structure. From
-- the perspective of level 0, we have points with non-trivial paths between
-- them, i.e., we have a groupoid. The paths cross type boundaries, i.e., we
-- have heterogeneous equality
-- types
data 1U : Set where
1ZERO : 1U -- empty set of paths
1ONE : 1U -- a trivial path
1PLUS : 1U → 1U → 1U -- disjoint union of paths
1TIMES : 1U → 1U → 1U -- pairs of paths
PATH : (t₁ t₂ : U•) → 1U -- level 0 paths between values
-- values
data Path (t₁ t₂ : U•) : Set where
path : (c : t₁ ⟷ t₂) → Path t₁ t₂
1⟦_⟧ : 1U → Set
1⟦ 1ZERO ⟧ = ⊥
1⟦ 1ONE ⟧ = ⊤
1⟦ 1PLUS t₁ t₂ ⟧ = 1⟦ t₁ ⟧ ⊎ 1⟦ t₂ ⟧
1⟦ 1TIMES t₁ t₂ ⟧ = 1⟦ t₁ ⟧ × 1⟦ t₂ ⟧
1⟦ PATH t₁ t₂ ⟧ = Path t₁ t₂
-- examples
T⟷F : Set
T⟷F = Path BOOL•T BOOL•F
F⟷T : Set
F⟷T = Path BOOL•F BOOL•T
-- all the following are paths from T to F; we will show below that they
-- are equivalent using 2paths
p₁ p₂ p₃ p₄ p₅ : T⟷F
p₁ = path NOT•T
p₂ = path (id⟷ ◎ NOT•T)
p₃ = path (NOT•T ◎ NOT•F ◎ NOT•T)
p₄ = path (NOT•T ◎ id⟷)
p₅ = path (uniti⋆ ◎ swap⋆ ◎ (NOT•T ⊗ id⟷) ◎ swap⋆ ◎ unite⋆)
p₆ : (T⟷F × T⟷F) ⊎ F⟷T
p₆ = inj₁ (p₁ , p₂)
-- Programs map paths to paths. We also use pointed types.
record 1U• : Set where
constructor 1•[_,_]
field
1∣_∣ : 1U
1• : 1⟦ 1∣_∣ ⟧
open 1U•
data _⇔_ : 1U• → 1U• → Set where
unite₊ : ∀ {t v} → 1•[ 1PLUS 1ZERO t , inj₂ v ] ⇔ 1•[ t , v ]
uniti₊ : ∀ {t v} → 1•[ t , v ] ⇔ 1•[ 1PLUS 1ZERO t , inj₂ v ]
swap1₊ : ∀ {t₁ t₂ v₁} →
1•[ 1PLUS t₁ t₂ , inj₁ v₁ ] ⇔ 1•[ 1PLUS t₂ t₁ , inj₂ v₁ ]
swap2₊ : ∀ {t₁ t₂ v₂} →
1•[ 1PLUS t₁ t₂ , inj₂ v₂ ] ⇔ 1•[ 1PLUS t₂ t₁ , inj₁ v₂ ]
assocl1₊ : ∀ {t₁ t₂ t₃ v₁} →
1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₁ v₁ ] ⇔
1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ]
assocl2₊ : ∀ {t₁ t₂ t₃ v₂} →
1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] ⇔
1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ]
assocl3₊ : ∀ {t₁ t₂ t₃ v₃} →
1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] ⇔
1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₂ v₃ ]
assocr1₊ : ∀ {t₁ t₂ t₃ v₁} →
1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] ⇔
1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₁ v₁ ]
assocr2₊ : ∀ {t₁ t₂ t₃ v₂} →
1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] ⇔
1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₂ (inj₁ v₂) ]
assocr3₊ : ∀ {t₁ t₂ t₃ v₃} →
1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₂ v₃ ] ⇔
1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₂ (inj₂ v₃) ]
unite⋆ : ∀ {t v} → 1•[ 1TIMES 1ONE t , (tt , v) ] ⇔ 1•[ t , v ]
uniti⋆ : ∀ {t v} → 1•[ t , v ] ⇔ 1•[ 1TIMES 1ONE t , (tt , v) ]
swap⋆ : ∀ {t₁ t₂ v₁ v₂} →
1•[ 1TIMES t₁ t₂ , (v₁ , v₂) ] ⇔ 1•[ 1TIMES t₂ t₁ , (v₂ , v₁) ]
assocl⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} →
1•[ 1TIMES t₁ (1TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] ⇔
1•[ 1TIMES (1TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ]
assocr⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} →
1•[ 1TIMES (1TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] ⇔
1•[ 1TIMES t₁ (1TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ]
distz : ∀ {t v absurd} →
1•[ 1TIMES 1ZERO t , (absurd , v) ] ⇔ 1•[ 1ZERO , absurd ]
factorz : ∀ {t v absurd} →
1•[ 1ZERO , absurd ] ⇔ 1•[ 1TIMES 1ZERO t , (absurd , v) ]
dist1 : ∀ {t₁ t₂ t₃ v₁ v₃} →
1•[ 1TIMES (1PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] ⇔
1•[ 1PLUS (1TIMES t₁ t₃) (1TIMES t₂ t₃) , inj₁ (v₁ , v₃) ]
dist2 : ∀ {t₁ t₂ t₃ v₂ v₃} →
1•[ 1TIMES (1PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] ⇔
1•[ 1PLUS (1TIMES t₁ t₃) (1TIMES t₂ t₃) , inj₂ (v₂ , v₃) ]
factor1 : ∀ {t₁ t₂ t₃ v₁ v₃} →
1•[ 1PLUS (1TIMES t₁ t₃) (1TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] ⇔
1•[ 1TIMES (1PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ]
factor2 : ∀ {t₁ t₂ t₃ v₂ v₃} →
1•[ 1PLUS (1TIMES t₁ t₃) (1TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] ⇔
1•[ 1TIMES (1PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ]
id⇔ : ∀ {t v} → 1•[ t , v ] ⇔ 1•[ t , v ]
_◎_ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → (1•[ t₁ , v₁ ] ⇔ 1•[ t₂ , v₂ ]) →
(1•[ t₂ , v₂ ] ⇔ 1•[ t₃ , v₃ ]) →
(1•[ t₁ , v₁ ] ⇔ 1•[ t₃ , v₃ ])
_⊕1_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} →
(1•[ t₁ , v₁ ] ⇔ 1•[ t₃ , v₃ ]) → (1•[ t₂ , v₂ ] ⇔ 1•[ t₄ , v₄ ]) →
(1•[ 1PLUS t₁ t₂ , inj₁ v₁ ] ⇔ 1•[ 1PLUS t₃ t₄ , inj₁ v₃ ])
_⊕2_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} →
(1•[ t₁ , v₁ ] ⇔ 1•[ t₃ , v₃ ]) → (1•[ t₂ , v₂ ] ⇔ 1•[ t₄ , v₄ ]) →
(1•[ 1PLUS t₁ t₂ , inj₂ v₂ ] ⇔ 1•[ 1PLUS t₃ t₄ , inj₂ v₄ ])
_⊗_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} →
(1•[ t₁ , v₁ ] ⇔ 1•[ t₃ , v₃ ]) → (1•[ t₂ , v₂ ] ⇔ 1•[ t₄ , v₄ ]) →
(1•[ 1TIMES t₁ t₂ , (v₁ , v₂) ] ⇔ 1•[ 1TIMES t₃ t₄ , (v₃ , v₄) ])
lidl : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂} →
1•[ PATH t₁ t₂ , path (id⟷ ◎ c) ] ⇔ 1•[ PATH t₁ t₂ , path c ]
lidr : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂} →
1•[ PATH t₁ t₂ , path c ] ⇔ 1•[ PATH t₁ t₂ , path (id⟷ ◎ c) ]
ridl : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂} →
1•[ PATH t₁ t₂ , path (c ◎ id⟷) ] ⇔ 1•[ PATH t₁ t₂ , path c ]
ridr : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂} →
1•[ PATH t₁ t₂ , path c ] ⇔ 1•[ PATH t₁ t₂ , path (c ◎ id⟷) ]
assocl : ∀ {t₁ t₂ t₃ t₄} →
{c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} →
1•[ PATH t₁ t₄ , path (c₁ ◎ (c₂ ◎ c₃)) ] ⇔
1•[ PATH t₁ t₄ , path ((c₁ ◎ c₂) ◎ c₃) ]
assocr : ∀ {t₁ t₂ t₃ t₄} →
{c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} →
1•[ PATH t₁ t₄ , path ((c₁ ◎ c₂) ◎ c₃) ] ⇔
1•[ PATH t₁ t₄ , path (c₁ ◎ (c₂ ◎ c₃)) ]
unit₊l : ∀ {t v} →
1•[ PATH (•[ PLUS ZERO t , inj₂ v ]) (•[ PLUS ZERO t , inj₂ v ]) ,
path (unite₊ ◎ uniti₊) ] ⇔
1•[ PATH (•[ PLUS ZERO t , inj₂ v ]) (•[ PLUS ZERO t , inj₂ v ]) ,
path id⟷ ]
unit₊r : ∀ {t v} →
1•[ PATH (•[ PLUS ZERO t , inj₂ v ]) (•[ PLUS ZERO t , inj₂ v ]) ,
path id⟷ ] ⇔
1•[ PATH (•[ PLUS ZERO t , inj₂ v ]) (•[ PLUS ZERO t , inj₂ v ]) ,
path (unite₊ ◎ uniti₊) ]
resp◎ : ∀ {t₁ t₂ t₃} →
{c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₁ ⟷ t₂} {c₄ : t₂ ⟷ t₃} →
(1•[ PATH t₁ t₂ , path c₁ ] ⇔ 1•[ PATH t₁ t₂ , path c₃ ]) →
(1•[ PATH t₂ t₃ , path c₂ ] ⇔ 1•[ PATH t₂ t₃ , path c₄ ]) →
1•[ PATH t₁ t₃ , path (c₁ ◎ c₂) ] ⇔ 1•[ PATH t₁ t₃ , path (c₃ ◎ c₄) ]
1! : {t₁ t₂ : 1U•} → (t₁ ⇔ t₂) → (t₂ ⇔ t₁)
1! unite₊ = uniti₊
1! uniti₊ = unite₊
1! swap1₊ = swap2₊
1! swap2₊ = swap1₊
1! assocl1₊ = assocr1₊
1! assocl2₊ = assocr2₊
1! assocl3₊ = assocr3₊
1! assocr1₊ = assocl1₊
1! assocr2₊ = assocl2₊
1! assocr3₊ = assocl3₊
1! unite⋆ = uniti⋆
1! uniti⋆ = unite⋆
1! swap⋆ = swap⋆
1! assocl⋆ = assocr⋆
1! assocr⋆ = assocl⋆
1! distz = factorz
1! factorz = distz
1! dist1 = factor1
1! dist2 = factor2
1! factor1 = dist1
1! factor2 = dist2
1! id⇔ = id⇔
1! (c₁ ◎ c₂) = 1! c₂ ◎ 1! c₁
1! (c₁ ⊕1 c₂) = 1! c₁ ⊕1 1! c₂
1! (c₁ ⊕2 c₂) = 1! c₁ ⊕2 1! c₂
1! (c₁ ⊗ c₂) = 1! c₁ ⊗ 1! c₂
1! (resp◎ c₁ c₂) = resp◎ (1! c₁) (1! c₂)
1! ridl = ridr
1! ridr = ridl
1! lidl = lidr
1! lidr = lidl
1! assocl = assocr
1! assocr = assocl
1! unit₊l = unit₊r
1! unit₊r = unit₊l
1!≡ : {t₁ t₂ : 1U•} → (c : t₁ ⇔ t₂) → 1! (1! c) ≡ c
1!≡ unite₊ = refl
1!≡ uniti₊ = refl
1!≡ swap1₊ = refl
1!≡ swap2₊ = refl
1!≡ assocl1₊ = refl
1!≡ assocl2₊ = refl
1!≡ assocl3₊ = refl
1!≡ assocr1₊ = refl
1!≡ assocr2₊ = refl
1!≡ assocr3₊ = refl
1!≡ unite⋆ = refl
1!≡ uniti⋆ = refl
1!≡ swap⋆ = refl
1!≡ assocl⋆ = refl
1!≡ assocr⋆ = refl
1!≡ distz = refl
1!≡ factorz = refl
1!≡ dist1 = refl
1!≡ dist2 = refl
1!≡ factor1 = refl
1!≡ factor2 = refl
1!≡ id⇔ = refl
1!≡ (c₁ ◎ c₂) = cong₂ (λ c₁ c₂ → c₁ ◎ c₂) (1!≡ c₁) (1!≡ c₂)
1!≡ (c₁ ⊕1 c₂) = cong₂ (λ c₁ c₂ → c₁ ⊕1 c₂) (1!≡ c₁) (1!≡ c₂)
1!≡ (c₁ ⊕2 c₂) = cong₂ (λ c₁ c₂ → c₁ ⊕2 c₂) (1!≡ c₁) (1!≡ c₂)
1!≡ (c₁ ⊗ c₂) = cong₂ (λ c₁ c₂ → c₁ ⊗ c₂) (1!≡ c₁) (1!≡ c₂)
1!≡ lidl = refl
1!≡ lidr = refl
1!≡ ridl = refl
1!≡ ridr = refl
1!≡ (resp◎ c₁ c₂) = cong₂ (λ c₁ c₂ → resp◎ c₁ c₂) (1!≡ c₁) (1!≡ c₂)
1!≡ assocl = refl
1!≡ assocr = refl
1!≡ unit₊l = refl
1!≡ unit₊r = refl
-- sane syntax
α₁ : 1•[ PATH BOOL•T BOOL•F , p₁ ] ⇔ 1•[ PATH BOOL•T BOOL•F , p₁ ]
α₁ = id⇔
α₂ : 1•[ PATH BOOL•T BOOL•F , p₁ ] ⇔ 1•[ PATH BOOL•T BOOL•F , p₂ ]
α₂ = lidr
{--
_≡⟨_⟩_ : {t₁ t₂ : U•} (c₁ : t₁ ⟷ t₂) {c₂ : t₁ ⟷ t₂} {c₃ : t₁ ⟷ t₂} →
(2•[ PATH c₁ , path c₁ ] ⇔ 2•[ PATH c₂ , path c₂ ]) →
(2•[ PATH c₂ , path c₂ ] ⇔ 2•[ PATH c₃ , path c₃ ]) →
(2•[ PATH c₁ , path c₁ ] ⇔ 2•[ PATH c₃ , path c₃ ])
_ ≡⟨ α ⟩ β = α ◎ β
_∎ : {t₁ t₂ : U•} → (c : t₁ ⟷ t₂) →
2•[ PATH c , path c ] ⇔ 2•[ PATH c , path c ]
_∎ c = id⟷
--}
-- example programs
-- level 0 is a groupoid with a non-trivial path equivalence the various inv*
-- rules are not justified by the groupoid proof; they are justified by the
-- need for computational rules. So it is important to have not just a
-- groupoid structure but a groupoid structure that we can compute with. So
-- if we say that we want p ◎ p⁻¹ to be id, we must have computational rules
-- that allow us to derive this for any path p, and similarly for all the
-- other groupoid rules. (cf. The canonicity for 2D type theory by Licata and
-- Harper)
linv : {t₁ t₂ : U•} → (c : t₁ ⟷ t₂) →
1•[ PATH t₁ t₁ , path (c ◎ ! c) ] ⇔ 1•[ PATH t₁ t₁ , path id⟷ ]
linv unite₊ = unit₊l
linv uniti₊ = {!!}
linv swap1₊ = {!!}
linv swap2₊ = {!!}
linv assocl1₊ = {!!}
linv assocl2₊ = {!!}
linv assocl3₊ = {!!}
linv assocr1₊ = {!!}
linv assocr2₊ = {!!}
linv assocr3₊ = {!!}
linv unite⋆ = {!!}
linv uniti⋆ = {!!}
linv swap⋆ = {!!}
linv assocl⋆ = {!!}
linv assocr⋆ = {!!}
linv distz = {!!}
linv factorz = {!!}
linv dist1 = {!!}
linv dist2 = {!!}
linv factor1 = {!!}
linv factor2 = {!!}
linv id⟷ = {!!}
linv (c ◎ c₁) = {!!}
linv (c ⊕1 c₁) = {!!}
linv (c ⊕2 c₁) = {!!}
linv (c ⊗ c₁) = {!!}
linv loop = {!!}
G : 1Groupoid
G = record
{ set = U•
; _↝_ = _⟷_
; _≈_ = λ {t₁} {t₂} c₀ c₁ →
1•[ PATH t₁ t₂ , path c₀ ] ⇔ 1•[ PATH t₁ t₂ , path c₁ ]
; id = id⟷
; _∘_ = λ c₀ c₁ → c₁ ◎ c₀
; _⁻¹ = !
; lneutr = λ _ → ridl
; rneutr = λ _ → lidl
; assoc = λ _ _ _ → assocl
; equiv = record { refl = id⇔
; sym = λ c → 1! c
; trans = λ c₀ c₁ → c₀ ◎ c₁ }
; linv = λ {t₁} {t₂} c → linv c
; rinv = λ {t₁} {t₂} c → {!!}
; ∘-resp-≈ = λ f⟷h g⟷i → resp◎ g⟷i f⟷h
}
------------------------------------------------------------------------------
|
algebraic-stack_agda0000_doc_8724 | {-# OPTIONS --without-K --safe #-}
-- A Categorical WeakInverse induces an Adjoint Equivalence
module Categories.Category.Equivalence.Properties where
open import Level
open import Data.Product using (Σ-syntax; _,_; proj₁)
open import Categories.Adjoint.Equivalence using (⊣Equivalence)
open import Categories.Adjoint
open import Categories.Adjoint.TwoSided using (_⊣⊢_; withZig)
open import Categories.Category
open import Categories.Category.Equivalence using (WeakInverse; StrongEquivalence)
open import Categories.Morphism
import Categories.Morphism.Reasoning as MR
import Categories.Morphism.Properties as MP
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties using ([_]-resp-Iso)
open import Categories.NaturalTransformation using (ntHelper; _∘ᵥ_; _∘ˡ_; _∘ʳ_)
open import Categories.NaturalTransformation.NaturalIsomorphism as ≃
using (NaturalIsomorphism ; unitorˡ; unitorʳ; associator; _ⓘᵥ_; _ⓘˡ_; _ⓘʳ_)
open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (pointwise-iso)
private
variable
o ℓ e : Level
C D E : Category o ℓ e
module _ {F : Functor C D} {G : Functor D C} (W : WeakInverse F G) where
open WeakInverse W
private
module C = Category C
module D = Category D
module F = Functor F
module G = Functor G
-- adjoint equivalence
F⊣⊢G : F ⊣⊢ G
F⊣⊢G = withZig record
{ unit = ≃.sym G∘F≈id
; counit =
let open D
open HomReasoning
open MR D
open MP D
in record
{ F⇒G = ntHelper record
{ η = λ X → F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))
; commute = λ {X Y} f → begin
(F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ Y))) ∘ F.F₁ (G.F₁ f)
≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G.F₁ f))) ⟩
F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)))
≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩
F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y) C.∘ G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))
≈⟨ refl⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G.F₁ f)) ⟩∘⟨refl ⟩
F∘G≈id.⇒.η Y ∘ F.F₁ (G.F₁ f C.∘ G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))
≈⟨ refl⟩∘⟨ F.homomorphism ⟩∘⟨refl ⟩
F∘G≈id.⇒.η Y ∘ (F.F₁ (G.F₁ f) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))
≈⟨ center⁻¹ (F∘G≈id.⇒.commute f) Equiv.refl ⟩
(f ∘ F∘G≈id.⇒.η X) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))
≈⟨ assoc ⟩
f ∘ F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))
∎
}
; F⇐G = ntHelper record
{ η = λ X → (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X
; commute = λ {X Y} f → begin
((F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F∘G≈id.⇐.η Y) ∘ f
≈⟨ pullʳ (F∘G≈id.⇐.commute f) ⟩
(F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F.F₁ (G.F₁ f) ∘ F∘G≈id.⇐.η X
≈⟨ center (⟺ F.homomorphism) ⟩
F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y) C.∘ G.F₁ f) ∘ F∘G≈id.⇐.η X
≈⟨ refl⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇐.commute (G.F₁ f)) ⟩∘⟨refl ⟩
F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G.F₁ (F.F₁ (G.F₁ f)) C.∘ G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X
≈⟨ refl⟩∘⟨ F.homomorphism ⟩∘⟨refl ⟩
F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X
≈⟨ center⁻¹ (F∘G≈id.⇒.commute _) Equiv.refl ⟩
(F.F₁ (G.F₁ f) ∘ F∘G≈id.⇒.η (F.F₀ (G.F₀ X))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X
≈⟨ center Equiv.refl ⟩
F.F₁ (G.F₁ f) ∘ (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X
∎
}
; iso = λ X → Iso-∘ (Iso-∘ (Iso-swap (F∘G≈id.iso _)) ([ F ]-resp-Iso (G∘F≈id.iso _)))
(F∘G≈id.iso X)
}
; zig = λ {A} →
let open D
open HomReasoning
open MR D
in begin
(F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ (F.F₀ A))))
∘ F.F₁ (G∘F≈id.⇐.η A)
≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G∘F≈id.⇐.η A))) ⟩
F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘
F.F₁ (G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A)
≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩
F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A)) C.∘ G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A)
≈⟨ refl⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G∘F≈id.⇐.η A)) ⟩∘⟨refl ⟩
F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇐.η A C.∘ G∘F≈id.⇒.η A) ∘ F∘G≈id.⇐.η (F.F₀ A)
≈⟨ refl⟩∘⟨ elimˡ ((F.F-resp-≈ (G∘F≈id.iso.isoˡ _)) ○ F.identity) ⟩
F∘G≈id.⇒.η (F.F₀ A) ∘ F∘G≈id.⇐.η (F.F₀ A)
≈⟨ F∘G≈id.iso.isoʳ _ ⟩
id
∎
}
module F⊣⊢G = _⊣⊢_ F⊣⊢G
module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (SE : StrongEquivalence C D) where
open StrongEquivalence SE
C≅D : ⊣Equivalence C D
C≅D = record
{ L = F
; R = G
; L⊣⊢R = F⊣⊢G weak-inverse
}
module C≅D = ⊣Equivalence C≅D
module _ {F : Functor C D} {G : Functor D C} (F⊣G : F ⊣ G) where
private
module C = Category C
module D = Category D
module F = Functor F
module G = Functor G
open Adjoint F⊣G
-- If the unit and the counit of an adjuction are pointwise isomorphisms, then they form an equivalence of categories.
pointwise-iso-equivalence : (∀ X → Σ[ f ∈ D [ X , F.F₀ (G.F₀ X) ] ] Iso D (counit.η X) f) → (∀ X → Σ[ f ∈ C [ G.F₀ (F.F₀ X) , X ] ] Iso C (unit.η X) f) → WeakInverse F G
pointwise-iso-equivalence counit-iso unit-iso = record
{ F∘G≈id =
let iso X =
let (to , is-iso) = counit-iso X
in record { from = counit.η X ; to = to ; iso = is-iso }
in pointwise-iso iso counit.commute
; G∘F≈id =
let iso X =
let (to , is-iso) = unit-iso X
in record { from = unit.η X ; to = to ; iso = is-iso }
in ≃.sym (pointwise-iso iso unit.commute)
}
|
algebraic-stack_agda0000_doc_8725 | -- Andreas, 2019-08-08, issue #3972 (and #3967)
-- In the presence of an unreachable clause, the serializer crashed on a unsolve meta.
-- It seems this issue was fixed along #3966: only the ranges of unreachable clauses
-- are now serialized.
open import Agda.Builtin.Equality public
postulate
List : Set → Set
data Coo {A} (xs : List A) : Set where
coo : Coo xs → Coo xs
test : {A : Set} (xs : List A) (z : Coo xs) → Set₁
test xs z = cs xs z refl
where
cs : (xs : List _) -- filling this meta _=A removes the internal error
(z : Coo xs)
(eq : xs ≡ xs)
→ Set₁
cs xs (coo z) refl = Set
cs xs (coo z) eq = Set -- unreachable
|
algebraic-stack_agda0000_doc_8726 | {-# OPTIONS --type-in-type #-}
module functors where
open import prelude
record Category {O : Set} (𝒞[_,_] : O → O → Set) : Set where
constructor 𝒾:_▸:_𝒾▸:_▸𝒾:
infixl 8 _▸_
field
𝒾 : ∀ {x} → 𝒞[ x , x ]
_▸_ : ∀ {x y z} → 𝒞[ x , y ] → 𝒞[ y , z ] → 𝒞[ x , z ]
𝒾▸ : ∀ {x y} (f : 𝒞[ x , y ]) → (𝒾 ▸ f) ≡ f
▸𝒾 : ∀ {x y} (f : 𝒞[ x , y ]) → (f ▸ 𝒾) ≡ f
open Category ⦃...⦄ public
record Functor {A : Set} {𝒜[_,_] : A → A → Set}
{B : Set} {ℬ[_,_] : B → B → Set}
(f : A → B) : Set where
constructor φ:_𝒾:_▸:
field
⦃ cat₁ ⦄ : Category {A} 𝒜[_,_]
⦃ cat₂ ⦄ : Category {B} ℬ[_,_]
φ : ∀ {a b} → 𝒜[ a , b ] → ℬ[ f a , f b ]
functor-id : ∀ {a} → φ {a} 𝒾 ≡ 𝒾
functor-comp : ∀ {A B C} → (f : 𝒜[ A , B ]) (g : 𝒜[ B , C ])
→ φ (f ▸ g) ≡ φ f ▸ φ g
open Functor ⦃...⦄ public
record Nat {A : Set} {𝒜[_,_] : A → A → Set}
{B : Set} {ℬ[_,_] : B → B → Set}
{F : A → B} {G : A → B}
(α : (x : A) → ℬ[ F x , G x ]) : Set where
field
overlap ⦃ fun₁ ⦄ : Functor {A} {𝒜[_,_]} {B} {ℬ[_,_]} F
overlap ⦃ fun₂ ⦄ : Functor {A} {𝒜[_,_]} {B} {ℬ[_,_]} G
nat : ∀ {x y : A} (f : 𝒜[ x , y ]) → let _▹_ = _▸_ ⦃ cat₂ ⦄
in φ f ▹ α y ≡ α x ▹ φ f
module _ {A : Set} {𝒜[_,_] : A → A → Set} where
instance
id-functor : ⦃ Category 𝒜[_,_] ⦄ → Functor id
id-functor = φ: id
𝒾: refl
▸: λ f g → refl
record Monad (f : A → A) : Set where
field
⦃ functor ⦄ : Functor {_} {𝒜[_,_]} {_} {𝒜[_,_]} f
η : ∀ {a} → 𝒜[ a , f a ]
μ : ∀ {a} → 𝒜[ f (f a) , f a ]
open Monad ⦃...⦄ public
{-
record Lift[_⇒_] (pre post : (Set → Set) → Set) (t : (Set → Set) → Set → Set) : Set where
field
⦃ lifted ⦄ : ∀ {f} → post (t f)
lift : {f : Set → Set} {a : Set} → ⦃ pre f ⦄ → f a → t f a
open Lift[_⇒_] ⦃...⦄ public
-}
Cat[_,_] : Set → Set → Set
Cat[ a , b ] = a → b
instance
Cat-cat : Category Cat[_,_]
Cat-cat = record { 𝒾 = id ; _▸_ = λ f g → g ∘ f ; 𝒾▸ = λ _ → refl; ▸𝒾 = λ _ → refl}
instance
≡-cat : ∀ {A} → Category {A} (λ a b → a ≡ b)
𝒾 {{≡-cat}} = refl
_▸_ {{≡-cat}} = trans
𝒾▸ {{≡-cat}} _ = refl
▸𝒾 {{≡-cat}} x≡y rewrite x≡y = refl
instance
×-cat : ∀ {A 𝒜[_,_]} ⦃ 𝒜 : Category {A} 𝒜[_,_] ⦄
{B ℬ[_,_]} ⦃ ℬ : Category {B} ℬ[_,_] ⦄
→ Category {A × B} (λ (a , b) (a′ , b′) → 𝒜[ a , a′ ] × ℬ[ b , b′ ])
𝒾 {{×-cat}} = 𝒾 , 𝒾
_▸_ {{×-cat}} (f , f′ ) ( g , g′ ) = f ▸ g , f′ ▸ g′
𝒾▸ {{×-cat}} (f , g) = 𝒾▸ f ×⁼ 𝒾▸ g
▸𝒾 {{×-cat}} (f , g) = ▸𝒾 f ×⁼ ▸𝒾 g
data _ᵒᵖ {A : Set} (𝒜 : A → A → Set) : A → A → Set where
_ᵗ : ∀ {y x} → 𝒜(y )( x) → (𝒜 ᵒᵖ)(x )( y)
instance
op-cat : {A : Set} {𝒜[_,_] : A → A → Set} ⦃ 𝒜 : Category {A} 𝒜[_,_] ⦄
→ Category (𝒜[_,_] ᵒᵖ)
𝒾 {{op-cat}} = 𝒾 ᵗ
_▸_ {{op-cat}} (f ᵗ) (g ᵗ) = (g ▸ f) ᵗ
𝒾▸ {{op-cat}} (f ᵗ) = _ᵗ ⟨$⟩ ▸𝒾 f
▸𝒾 {{op-cat}} (f ᵗ) = _ᵗ ⟨$⟩ 𝒾▸ f
|
algebraic-stack_agda0000_doc_8727 | {-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Neutral {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties.Reflexivity
open import Definition.LogicalRelation.Properties.Escape
open import Definition.LogicalRelation.Properties.Symmetry
open import Tools.Embedding
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Neutral reflexive types are reducible.
neu : ∀ {l Γ A} (neA : Neutral A)
→ Γ ⊢ A
→ Γ ⊢ A ~ A ∷ U
→ Γ ⊩⟨ l ⟩ A
neu neA A A~A = ne′ _ (idRed:*: A) neA A~A
-- Helper function for reducible neutral equality of a specific type of derivation.
neuEq′ : ∀ {l Γ A B} ([A] : Γ ⊩⟨ l ⟩ne A)
(neA : Neutral A)
(neB : Neutral B)
→ Γ ⊢ A → Γ ⊢ B
→ Γ ⊢ A ~ B ∷ U
→ Γ ⊩⟨ l ⟩ A ≡ B / ne-intr [A]
neuEq′ (noemb (ne K [ ⊢A , ⊢B , D ] neK K≡K)) neA neB A B A~B =
let A≡K = whnfRed* D (ne neA)
in ιx (ne₌ _ (idRed:*: B) neB (PE.subst (λ x → _ ⊢ x ~ _ ∷ _) A≡K A~B))
neuEq′ (emb 0<1 x) neA neB A B A~B = ιx (neuEq′ x neA neB A B A~B)
-- Neutrally equal types are of reducible equality.
neuEq : ∀ {l Γ A B} ([A] : Γ ⊩⟨ l ⟩ A)
(neA : Neutral A)
(neB : Neutral B)
→ Γ ⊢ A → Γ ⊢ B
→ Γ ⊢ A ~ B ∷ U
→ Γ ⊩⟨ l ⟩ A ≡ B / [A]
neuEq [A] neA neB A B A~B =
irrelevanceEq (ne-intr (ne-elim neA [A]))
[A]
(neuEq′ (ne-elim neA [A]) neA neB A B A~B)
mutual
-- Neutral reflexive terms are reducible.
neuTerm : ∀ {l Γ A n} ([A] : Γ ⊩⟨ l ⟩ A) (neN : Neutral n)
→ Γ ⊢ n ∷ A
→ Γ ⊢ n ~ n ∷ A
→ Γ ⊩⟨ l ⟩ n ∷ A / [A]
neuTerm (Uᵣ′ .⁰ 0<1 ⊢Γ) neN n n~n =
Uₜ _ (idRedTerm:*: n) (ne neN) (~-to-≅ₜ n~n) (neu neN (univ n) n~n)
neuTerm (ℕᵣ [ ⊢A , ⊢B , D ]) neN n n~n =
let A≡ℕ = subset* D
n~n′ = ~-conv n~n A≡ℕ
n≡n = ~-to-≅ₜ n~n′
in ιx (ℕₜ _ (idRedTerm:*: (conv n A≡ℕ)) n≡n (ne (neNfₜ neN (conv n A≡ℕ) n~n′)))
neuTerm (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) neN n n~n =
let A≡K = subset* D
in ιx (neₜ _ (idRedTerm:*: (conv n A≡K)) (neNfₜ neN (conv n A≡K)
(~-conv n~n A≡K)))
neuTerm (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n =
let A≡ΠFG = subset* (red D)
in Πₜ _ (idRedTerm:*: (conv n A≡ΠFG)) (ne neN) (~-to-≅ₜ (~-conv n~n A≡ΠFG))
(λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] →
let A≡ΠFG = subset* (red D)
ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D))
G[a]≡G[b] = escapeEq ([G] [ρ] ⊢Δ [b])
(symEq ([G] [ρ] ⊢Δ [a]) ([G] [ρ] ⊢Δ [b])
(G-ext [ρ] ⊢Δ [a] [b] [a≡b]))
a = escapeTerm ([F] [ρ] ⊢Δ) [a]
b = escapeTerm ([F] [ρ] ⊢Δ) [b]
a≡b = escapeTermEq ([F] [ρ] ⊢Δ) [a≡b]
ρn = conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG
neN∘a = ∘ₙ (wkNeutral ρ neN)
neN∘b = ∘ₙ (wkNeutral ρ neN)
in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∘a neN∘b
(ρn ∘ⱼ a)
(conv (ρn ∘ⱼ b) (≅-eq G[a]≡G[b]))
(~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡b))
(λ {ρ} [ρ] ⊢Δ [a] →
let ρA≡ρΠFG = wkEq [ρ] ⊢Δ (subset* (red D))
a = escapeTerm ([F] [ρ] ⊢Δ) [a]
a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a])
in neuTerm ([G] [ρ] ⊢Δ [a]) (∘ₙ (wkNeutral ρ neN))
(conv (wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG ∘ⱼ a)
(~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡a))
neuTerm (emb′ 0<1 x) neN n n~n = ιx (neuTerm x neN n n~n)
-- Neutrally equal terms are of reducible equality.
neuEqTerm : ∀ {l Γ A n n′} ([A] : Γ ⊩⟨ l ⟩ A)
(neN : Neutral n) (neN′ : Neutral n′)
→ Γ ⊢ n ∷ A
→ Γ ⊢ n′ ∷ A
→ Γ ⊢ n ~ n′ ∷ A
→ Γ ⊩⟨ l ⟩ n ≡ n′ ∷ A / [A]
neuEqTerm (Uᵣ′ .⁰ 0<1 ⊢Γ) neN neN′ n n′ n~n′ =
let [n] = neu neN (univ n) (~-trans n~n′ (~-sym n~n′))
[n′] = neu neN′ (univ n′) (~-trans (~-sym n~n′) n~n′)
in Uₜ₌ _ _ (idRedTerm:*: n) (idRedTerm:*: n′) (ne neN) (ne neN′)
(~-to-≅ₜ n~n′) [n] [n′] (neuEq [n] neN neN′ (univ n) (univ n′) n~n′)
neuEqTerm (ℕᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ =
let A≡ℕ = subset* D
n~n′₁ = ~-conv n~n′ A≡ℕ
n≡n′ = ~-to-≅ₜ n~n′₁
in ιx (ℕₜ₌ _ _ (idRedTerm:*: (conv n A≡ℕ)) (idRedTerm:*: (conv n′ A≡ℕ))
n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁)))
neuEqTerm (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) neN neN′ n n′ n~n′ =
let A≡K = subset* D
in ιx (neₜ₌ _ _ (idRedTerm:*: (conv n A≡K)) (idRedTerm:*: (conv n′ A≡K))
(neNfₜ₌ neN neN′ (~-conv n~n′ A≡K)))
neuEqTerm (Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ =
let [ΠFG] = Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext
A≡ΠFG = subset* D
n~n′₁ = ~-conv n~n′ A≡ΠFG
n≡n′ = ~-to-≅ₜ n~n′₁
n~n = ~-trans n~n′ (~-sym n~n′)
n′~n′ = ~-trans (~-sym n~n′) n~n′
in Πₜ₌ _ _ (idRedTerm:*: (conv n A≡ΠFG)) (idRedTerm:*: (conv n′ A≡ΠFG))
(ne neN) (ne neN′) n≡n′
(neuTerm [ΠFG] neN n n~n) (neuTerm [ΠFG] neN′ n′ n′~n′)
(λ {ρ} [ρ] ⊢Δ [a] →
let ρA≡ρΠFG = wkEq [ρ] ⊢Δ A≡ΠFG
ρn = wkTerm [ρ] ⊢Δ n
ρn′ = wkTerm [ρ] ⊢Δ n′
a = escapeTerm ([F] [ρ] ⊢Δ) [a]
a≡a = escapeTermEq ([F] [ρ] ⊢Δ)
(reflEqTerm ([F] [ρ] ⊢Δ) [a])
neN∙a = ∘ₙ (wkNeutral ρ neN)
neN′∙a′ = ∘ₙ (wkNeutral ρ neN′)
in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∙a neN′∙a′
(conv ρn ρA≡ρΠFG ∘ⱼ a)
(conv ρn′ ρA≡ρΠFG ∘ⱼ a)
(~-app (~-wk [ρ] ⊢Δ n~n′₁) a≡a))
neuEqTerm (emb′ 0<1 x) neN neN′ n n′ n~n′ = ιx (neuEqTerm x neN neN′ n n′ n~n′)
|
algebraic-stack_agda0000_doc_8728 | {-# OPTIONS --without-K #-}
-- Define all the permutations that occur in Pi
-- These are defined by transport, using univalence
module Permutation where
open import Relation.Binary.PropositionalEquality
using (_≡_; refl)
open import Data.Nat using (_+_;_*_)
open import Data.Fin using (Fin)
open import Relation.Binary using (Setoid)
open import Function.Equality using (_⟨$⟩_)
open import Equiv using (_≃_; id≃; sym≃; trans≃; _●_)
open import ConcretePermutation
open import ConcretePermutationProperties
open import SEquivSCPermEquiv
open import FinEquivTypeEquiv using (module PlusE; module TimesE)
open import EquivEquiv
open import Proofs using (
-- FiniteFunctions
finext
)
infixr 5 _●p_
infix 8 _⊎p_
infixr 7 _×p_
------------------------------------------------------------------------------
-- useful short-hands; these should all be moved elsewhere.
e⇒p : ∀ {m n} → (Fin m ≃ Fin n) → CPerm m n
e⇒p e = _≃S_.g univalence ⟨$⟩ e
p⇒e : ∀ {m n} → CPerm m n → (Fin m ≃ Fin n)
p⇒e p = _≃S_.f univalence ⟨$⟩ p
αu : ∀ {m n} → {e f : Fin m ≃ Fin n} → e ≋ f → p⇒e (e⇒p e) ≋ f
αu e≋f = _≃S_.α univalence e≋f
βu : ∀ {m n} → {p q : CPerm m n} → p ≡ q → e⇒p (p⇒e p) ≡ q
βu p≡q = _≃S_.β univalence p≡q
α₁ : ∀ {m n} → {e : Fin m ≃ Fin n} → p⇒e (e⇒p e) ≋ e
α₁ {e = e} = αu (id≋ {x = e}) -- Agda can infer here, but this helps later?
-- inside an e⇒p, we can freely replace equivalences
-- this expresses the fundamental property that equivalent equivalences
-- map to THE SAME permutation.
≋⇒≡ : ∀ {m n} → {e₁ e₂ : Fin m ≃ Fin n} → e₁ ≋ e₂ → e⇒p e₁ ≡ e⇒p e₂
≋⇒≡ {e₁} {e₂} (eq fwd bwd) = p≡ (finext bwd)
-- combination of above, where we use αu on left/right of ●
right-α-over-● : ∀ {m n o} → (e₁ : Fin n ≃ Fin o) → (e₂ : Fin m ≃ Fin n) →
(e₁ ● (p⇒e (e⇒p e₂))) ≋ (e₁ ● e₂)
right-α-over-● e₁ e₂ = (id≋ {x = e₁}) ◎ (αu {e = e₂} id≋)
left-α-over-● : ∀ {m n o} → (e₁ : Fin n ≃ Fin o) → (e₂ : Fin m ≃ Fin n) →
((p⇒e (e⇒p e₁)) ● e₂) ≋ (e₁ ● e₂)
left-α-over-● e₁ e₂ = (αu {e = e₁} id≋) ◎ (id≋ {x = e₂})
------------------------------------------------------------------------------
-- zero permutation
0p : CPerm 0 0
0p = e⇒p (id≃ {A = Fin 0})
-- identity permutation
idp : ∀ {n} → CPerm n n
idp {n} = e⇒p (id≃ {A = Fin n})
-- disjoint union
_⊎p_ : ∀ {m₁ m₂ n₁ n₂} → CPerm m₁ m₂ → CPerm n₁ n₂ → CPerm (m₁ + n₁) (m₂ + n₂)
p₁ ⊎p p₂ = e⇒p ((p⇒e p₁) +F (p⇒e p₂))
where open PlusE
-- cartesian product
_×p_ : ∀ {m₁ m₂ n₁ n₂} → CPerm m₁ m₂ → CPerm n₁ n₂ → CPerm (m₁ * n₁) (m₂ * n₂)
p₁ ×p p₂ = e⇒p ((p⇒e p₁) *F (p⇒e p₂))
where open TimesE
-- symmetry
symp : ∀ {m n} → CPerm m n → CPerm n m
symp p = e⇒p (sym≃ (p⇒e p))
-- transitivity; note the 'transposition' of the arguments!
_●p_ : ∀ {m₁ m₂ m₃} → CPerm m₂ m₁ → CPerm m₃ m₂ → CPerm m₃ m₁
p₁ ●p p₂ = e⇒p ((p⇒e p₁) ● (p⇒e p₂))
|
algebraic-stack_agda0000_doc_8729 |
module PreludeShow where
import RTP -- magic module
import AlonzoPrelude as Prelude
open import PreludeNat
open import PreludeString
import PreludeList
open import PreludeBool
open Prelude
-- open Data.Integer, using (Int, pos, neg)
open PreludeList hiding (_++_)
showInt : Int -> String
showInt = RTP.primShowInt
showNat : Nat -> String
showNat n = showInt (RTP.primNatToInt n)
{-
showNat : Nat -> String
showNat zero = "0"
showNat n = reverseString $ show n
where
digit : Nat -> String
digit 0 = "0"
digit 1 = "1"
digit 2 = "2"
digit 3 = "3"
digit 4 = "4"
digit 5 = "5"
digit 6 = "6"
digit 7 = "7"
digit 8 = "8"
digit 9 = "9"
digit _ = "?"
show : Nat -> String
show zero = ""
show n = digit (mod n 10) ++ show (div n 10)
-}
{-
showInt : Int -> String
showInt (pos n) = showNat n
showInt (neg n) = "-" ++ showNat (suc n)
-}
showChar : Char -> String
showChar = RTP.primShowChar
showBool : Bool -> String
showBool true = "true"
showBool false = "false"
primitive
primShowFloat : Float -> String
showFloat : Float -> String
showFloat = primShowFloat |
algebraic-stack_agda0000_doc_8730 | -- | Trailing inductive copattern matches on the LHS can be savely
-- translated to record expressions on RHS, without jeopardizing
-- termination.
--
{-# LANGUAGE CPP #-}
module Agda.TypeChecking.CompiledClause.ToRHS where
-- import Control.Applicative
import Data.Monoid
import qualified Data.Map as Map
import Data.List (genericReplicate, nubBy, findIndex)
import Data.Function
import Agda.Syntax.Common
import Agda.Syntax.Internal as I
import Agda.TypeChecking.CompiledClause
import Agda.TypeChecking.Coverage
import Agda.TypeChecking.Coverage.SplitTree
import Agda.TypeChecking.Monad
import Agda.TypeChecking.RecordPatterns
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Pretty
import Agda.Utils.List
import Agda.Utils.Impossible
#include "../../undefined.h"
|
algebraic-stack_agda0000_doc_8731 | module _ where
open import Agda.Builtin.Bool
module M (b : Bool) where
module Inner where
some-boolean : Bool
some-boolean = b
postulate
@0 a-postulate : Bool
@0 A : @0 Bool → Set
A b = Bool
module A where
module M′ = M b
bad : @0 Bool → Bool
bad = A.M′.Inner.some-boolean
|
algebraic-stack_agda0000_doc_8732 | -- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness --sized-types #-}
open import Data.Product
open import Data.Empty
open import Data.Sum
open import Data.Vec
open import Data.List as List
open import Data.Unit
open import Data.Fin
open import Data.Bool renaming (Bool to 𝔹)
open import Relation.Unary using (_∈_; _⊆_;_∉_)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Size
open import Codata.Thunk
open import is-lib.InfSys
open import Common using (Message)
module FairSubtyping-IS {𝕋 : Set} (message : Message 𝕋) where
open Message message
open import SessionType message
open import Session message
open import Transitions message
open import Convergence message
open import Divergence message
open import Discriminator message
open import Action message using (Action)
open import Subtyping message
open import FairSubtyping message as FS
open import HasTrace message
open import Compliance message
open import FairCompliance message
open import Trace message
open import FairCompliance-IS message
private
U : Set
U = SessionType × SessionType
data FSubIS-RN : Set where
nil-any end-def : FSubIS-RN
ii oo : FSubIS-RN
data FSubCOIS-RN : Set where
co-conv : FSubCOIS-RN
nil-any-r : FinMetaRule U
nil-any-r .Ctx = SessionType
nil-any-r .comp T =
[] ,
------------------
(nil , T)
end-def-r : FinMetaRule U
end-def-r .Ctx = Σ[ (T , S) ∈ SessionType × SessionType ] End T × Defined S
end-def-r .comp ((T , S) , _) =
[] ,
------------------
(T , S)
ii-r : MetaRule U
ii-r .Ctx = Σ[ (f , g) ∈ Continuation × Continuation ] dom f ⊆ dom g
ii-r .Pos ((f , _) , _) = Σ[ t ∈ 𝕋 ] t ∈ dom f
ii-r .prems ((f , g) , _) (t , _) = f t .force , g t .force
ii-r .conclu ((f , g) , _) = inp f , inp g
oo-r : MetaRule U
oo-r .Ctx = Σ[ (f , g) ∈ Continuation × Continuation ] dom g ⊆ dom f × Witness g
oo-r .Pos ((_ , g) , _) = Σ[ t ∈ 𝕋 ] t ∈ dom g
oo-r .prems ((f , g) , _) (t , _) = f t .force , g t .force
oo-r .conclu ((f , g) , _) = out f , out g
co-conv-r : FinMetaRule U
co-conv-r .Ctx = Σ[ (T , S) ∈ SessionType × SessionType ] T ↓ S
co-conv-r .comp ((T , S) , _) =
[] ,
------------------
(T , S)
FSubIS : IS U
FSubIS .Names = FSubIS-RN
FSubIS .rules nil-any = from nil-any-r
FSubIS .rules end-def = from end-def-r
FSubIS .rules ii = ii-r
FSubIS .rules oo = oo-r
FSubCOIS : IS U
FSubCOIS .Names = FSubCOIS-RN
FSubCOIS .rules co-conv = from co-conv-r
_≤F_ : SessionType → SessionType → Set
T ≤F S = FCoInd⟦ FSubIS , FSubCOIS ⟧ (T , S)
_≤Fᵢ_ : SessionType → SessionType → Set
T ≤Fᵢ S = Ind⟦ FSubIS ∪ FSubCOIS ⟧ (T , S)
_≤Fc_ : SessionType → SessionType → Set
T ≤Fc S = CoInd⟦ FSubIS ⟧ (T , S)
{- Specification using _⊢_ is correct wrt FairSubtypingS -}
FSSpec-⊢ : U → Set
FSSpec-⊢ (T , S) = ∀{R} → R ⊢ T → R ⊢ S
spec-sound : ∀{T S} → FairSubtypingS T S → FSSpec-⊢ (T , S)
spec-sound fs fc = fc-complete (fs (fc-sound fc))
spec-complete : ∀{T S} → FSSpec-⊢ (T , S) → FairSubtypingS T S
spec-complete fs fc = fc-sound (fs (fc-complete fc))
------------------------------------------------------
{- Soundness -}
-- Using bounded coinduction wrt SpecAux
≤Fᵢ->↓ : ∀{S T} → S ≤Fᵢ T → S ↓ T
≤Fᵢ->↓ (fold (inj₁ nil-any , _ , refl , _)) = nil-converges
≤Fᵢ->↓ (fold (inj₁ end-def , (_ , (end , def)) , refl , _)) = end-converges end def
≤Fᵢ->↓ (fold (inj₁ ii , _ , refl , pr)) = converge (pre-conv-inp-back λ x → ↓->preconv (≤Fᵢ->↓ (pr (_ , x))))
≤Fᵢ->↓ (fold (inj₁ oo , (_ , (incl , (t , ok-t))) , refl , pr)) =
converge
λ _ _ → [] , t , none , (_ , incl ok-t , step (out (incl ok-t)) refl) , (_ , ok-t , step (out ok-t) refl) , ≤Fᵢ->↓ (pr (t , ok-t))
≤Fᵢ->↓ (fold (inj₂ co-conv , (_ , conv) , refl , _)) = conv
SpecAux : U → Set
SpecAux (R , T) = Σ[ S ∈ SessionType ] S ≤F T × R ⊢ S
≤Fᵢ->defined : ∀{S T} → Defined S → S ≤Fᵢ T → Defined T
≤Fᵢ->defined def fs = conv->defined def (≤Fᵢ->↓ fs)
spec-bounded-rec : ∀{R S} T → T ≤Fᵢ S → R ⊢ T → R ⊢ᵢ S
spec-bounded-rec _ fs fc =
let _ , reds , succ = con-sound (≤Fᵢ->↓ fs) (fc-sound fc) in
maysucceed->⊢ᵢ reds succ
spec-bounded : SpecAux ⊆ λ (R , S) → R ⊢ᵢ S
spec-bounded (T , fs , fc) = spec-bounded-rec T (fcoind-to-ind fs) fc
spec-cons : SpecAux ⊆ ISF[ FCompIS ] SpecAux
spec-cons {(R , T)} (S , fs , fc) with fc .CoInd⟦_⟧.unfold
spec-cons {(R , T)} (S , fs , fc) | client-end , ((_ , (win , def)) , _) , refl , _ =
client-end , ((R , _) , (win , ≤Fᵢ->defined def (fcoind-to-ind fs))) , refl , λ ()
spec-cons {(out r , _)} ((inp f) , fs , fc) | oi , (((.r , .f) , wit-r) , _) , refl , pr with fs .CoInd⟦_⟧.unfold
... | end-def , (((.(inp f) , _) , (inp e , _)) , _) , refl , _ = ⊥-elim (e _ (proj₂ (fc->defined (pr wit-r))))
... | ii , (((.f , g) , _) , _) , refl , pr' = oi , (_ , wit-r) , refl , λ wit → _ , pr' (_ , proj₂ (fc->defined (pr wit))) , pr wit
spec-cons {(inp r , T)} (out f , fs , fc) | io , (((.r , .f) , wit-f) , _) , refl , pr with fs .CoInd⟦_⟧.unfold
... | end-def , (((.(out f) , _) , (out e , _)) , _) , refl , _ = ⊥-elim (e _ (proj₂ wit-f))
... | oo , (((.f , g) , (incl , wit-g)) , _) , refl , pr' = io , (_ , wit-g) , refl , λ wit → _ , pr' wit , pr (_ , incl (proj₂ wit))
spec-aux-sound : SpecAux ⊆ λ (R , S) → R ⊢ S
spec-aux-sound = bounded-coind[ FCompIS , FCompCOIS ] SpecAux spec-bounded spec-cons
fs-sound : ∀{T S} → T ≤F S → FSSpec-⊢ (T , S)
fs-sound {T} fs fc = spec-aux-sound (T , fs , fc)
{- Soundness & Completeness of Sub wrt ≤Fc -}
≤Fc->sub : ∀{S T} → S ≤Fc T → ∀ {i} → Sub S T i
≤Fc->sub fs with fs .CoInd⟦_⟧.unfold
... | nil-any , _ , refl , _ = nil<:any
... | end-def , (_ , (end , def)) , refl , _ = end<:def end def
... | ii , ((f , g) , incl) , refl , pr = inp<:inp incl λ x → λ where .force → if-def x
where
if-def : (t : 𝕋) → ∀{i} → Sub (f t .force) (g t .force) i
if-def t with t ∈? f
... | yes ok-t = ≤Fc->sub (pr (_ , ok-t))
... | no no-t = subst (λ x → Sub x (g t .force) _) (sym (not-def->nil no-t)) nil<:any
... | oo , (_ , (incl , wit)) , refl , pr = out<:out wit incl λ ok-x → λ where .force → ≤Fc->sub (pr (_ , ok-x))
sub->≤Fc : ∀{S T} → (∀{i} → Sub S T i) → S ≤Fc T
CoInd⟦_⟧.unfold (sub->≤Fc fs) with fs
... | nil<:any = nil-any , _ , refl , λ ()
... | end<:def end def = end-def , (_ , (end , def)) , refl , λ ()
... | inp<:inp incl pr = ii , (_ , incl) , refl , λ (p , _) → sub->≤Fc (pr p .force)
... | out<:out wit incl pr = oo , (_ , (incl , wit)) , refl , λ (_ , ok) → sub->≤Fc (pr ok .force)
{- Auxiliary -}
-- Only premise for rules using sample-cont in ⊢
sample-cont-prem : ∀{f : Continuation}{t R} → R ⊢ f t .force
→ (pos : Σ[ p ∈ 𝕋 ] p ∈ dom (sample-cont t R nil)) → (sample-cont t R nil) (proj₁ pos) .force ⊢ f (proj₁ pos) .force
sample-cont-prem {f} {t} pr (p , ok-p) with p ?= t
... | yes refl = pr
sample-cont-prem {f} {t} pr (p , ()) | no ¬eq
-- Premises using sample-cont-dual in ⊢
sample-cont-prems : ∀{f : Continuation}{t} → t ∉ dom f
→ (pos : Σ[ p ∈ 𝕋 ] p ∈ dom f) → (sample-cont t nil win) (proj₁ pos) .force ⊢ f (proj₁ pos) .force
sample-cont-prems {f} {t} no-t (p , ok-p) with p ?= t
... | yes refl = ⊥-elim (no-t ok-p)
... | no ¬eq = win⊢def ok-p
-- Premises using sample-cont-dual in ⊢
sample-cont-prems' : ∀{f : Continuation}{t R} → R ⊢ f t .force
→ (pos : Σ[ p ∈ 𝕋 ] p ∈ dom f) → (sample-cont t R win) (proj₁ pos) .force ⊢ f (proj₁ pos) .force
sample-cont-prems' {f} {t} pr (p , ok-p) with p ?= t
... | yes refl = pr
... | no ¬eq = win⊢def ok-p
spec-inp->incl : ∀{f g} → FSSpec-⊢ (inp f , inp g) → dom f ⊆ dom g
spec-inp->incl {f} {g} fs {t} ok-t with fs (apply-fcoind oi ((sample-cont t win nil , f) , wit-cont out) (sample-cont-prem {f} {t} (win⊢def ok-t))) .CoInd⟦_⟧.unfold
... | client-end , ((_ , (out e , _)) , _) , refl , _ = ⊥-elim (e t (proj₂ (wit-cont out)))
... | oi , _ , refl , pr = proj₂ (fc->defined (pr (t , proj₂ (wit-cont out))))
spec-out->incl : ∀{f g} → FSSpec-⊢ (out f , out g) → Witness f → dom g ⊆ dom f
spec-out->incl {f} {g} fs wit {t} ok-t with t ∈? f
... | yes ok = ok
... | no no-t with (fs (apply-fcoind io ((sample-cont t nil win , f) , wit) (sample-cont-prems {f} {t} no-t))) .CoInd⟦_⟧.unfold
... | client-end , ((_ , (() , _)) , _) , refl , _
... | io , _ , refl , pr = ⊥-elim (cont-not-def (proj₁ (fc->defined (pr (t , ok-t)))))
spec-out->wit : ∀{f g} → Witness f → FSSpec-⊢ (out f , out g) → Witness g
spec-out->wit {f} {g} wit-f fs with Empty? g
... | inj₂ wit = wit
... | inj₁ e with (fs (apply-fcoind io ((full-cont win , f) , wit-f) λ (_ , ok) → win⊢def ok)) .CoInd⟦_⟧.unfold
... | client-end , ((_ , (() , _)) , _) , refl , _
... | io , ((_ , wit-g) , _) , refl , _ = ⊥-elim (e _ (proj₂ wit-g))
{- Boundedness & Consistency -}
fsspec-cons : FSSpec-⊢ ⊆ ISF[ FSubIS ] FSSpec-⊢
fsspec-cons {nil , T} fs = nil-any , _ , refl , λ ()
fsspec-cons {inp f , nil} fs with (fs (apply-fcoind client-end ((win , _) , (Win-win , inp)) λ ())) .CoInd⟦_⟧.unfold
... | client-end , ((_ , (_ , ())) , _) , refl , _
fsspec-cons {inp f , inp g} fs = ii , ((f , g) , spec-inp->incl fs) , refl ,
λ (p , _) {R} fc-r-f →
let wit = wit-cont (proj₁ (fc->defined fc-r-f)) in
let fc-Or-Ig = fs (apply-fcoind oi ((sample-cont p R nil , f) , wit) (sample-cont-prem {f} {p} fc-r-f)) in
let fc-r-g = ⊢-after-out {sample-cont p R nil} {g} {p} (proj₂ wit) fc-Or-Ig in
subst (λ x → x ⊢ g p .force) (sym force-eq) fc-r-g
fsspec-cons {inp f , out g} fs with Empty? f
... | inj₁ e = end-def , (_ , (inp e , out)) , refl , λ ()
... | inj₂ (t , ok-t) with (fs (apply-fcoind oi ((sample-cont t win nil , f) , wit-cont out) (sample-cont-prem {f} {t} (win⊢def ok-t)))) .CoInd⟦_⟧.unfold
... | client-end , ((_ , (out e , out)) , _) , refl , _ = ⊥-elim (e t (proj₂ (wit-cont out)))
fsspec-cons {out f , nil} fs with (fs (apply-fcoind client-end ((win , _) , (Win-win , out)) λ ())) .CoInd⟦_⟧.unfold
... | client-end , ((_ , (_ , ())) , _) , refl , _
fsspec-cons {out f , inp g} fs with Empty? f
... | inj₁ e = end-def , (_ , (out e , inp)) , refl , λ ()
... | inj₂ (t , ok-t) with (fs (apply-fcoind io ((full-cont win , f) , (t , ok-t)) λ (_ , ok-p) → win⊢def ok-p)) .CoInd⟦_⟧.unfold
... | client-end , ((_ , (() , inp)) , _) , refl , _
fsspec-cons {out f , out g} fs with Empty? f
... | inj₁ e = end-def , (_ , (out e , out)) , refl , λ ()
... | inj₂ (t , ok-t) =
let wit-g = spec-out->wit (t , ok-t) fs in
let incl = spec-out->incl fs (t , ok-t) in
oo , ((f , g) , (incl , wit-g)) , refl , λ (p , ok-p) {R} fc-r-f →
let fc-Ir-Og = fs (apply-fcoind io ((sample-cont p R win , f) , (t , ok-t)) (sample-cont-prems' {f} {p} fc-r-f)) in
let fc-r-g = ⊢-after-in {sample-cont p R win} {g} {p} ok-p fc-Ir-Og in
subst (λ x → x ⊢ g p .force) (sym force-eq) fc-r-g
fsspec->sub : ∀{S T} → FSSpec-⊢ (S , T) → S ≤Fc T
fsspec->sub = coind[ FSubIS ] FSSpec-⊢ fsspec-cons
postulate
not-conv-div : ∀{T S} → ¬ T ↓ S → T ↑ S
fs-convergence : ∀{T S} → FairSubtypingS T S → T ↓ S
fs-convergence {T} {S} fs with Common.excluded-middle {T ↓ S}
fs-convergence {T} {S} fs | yes p = p
fs-convergence {T} {S} fs | no p =
let div = not-conv-div p in
let sub = ≤Fc->sub (fsspec->sub (spec-sound fs)) in
let d-comp = discriminator-compliant sub div in
let ¬d-comp = discriminator-not-compliant sub div in
⊥-elim (¬d-comp (fs d-comp))
fsspec-bounded : ∀{S T} → FSSpec-⊢ (S , T) → S ≤Fᵢ T
fsspec-bounded fs = apply-ind (inj₂ co-conv) (_ , (fs-convergence (spec-complete fs))) λ ()
{- Completeness -}
fs-complete : ∀{S T} → FSSpec-⊢ (S , T) → S ≤F T
fs-complete = bounded-coind[ FSubIS , FSubCOIS ] FSSpec-⊢ fsspec-bounded fsspec-cons |
algebraic-stack_agda0000_doc_8733 | -- Andreas, 2016-10-11, AIM XXIV
-- We cannot bind NATURAL to an abstract version of Nat.
abstract
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
|
algebraic-stack_agda0000_doc_8734 | -- Jesper, 2018-10-29 (comment on #3332): Besides for rewrite, builtin
-- equality is also used for primErase and primForceLemma. But I don't
-- see how it would hurt to have these use a Prop instead of a Set for
-- equality.
{-# OPTIONS --prop #-}
data _≡_ {A : Set} (a : A) : A → Prop where
refl : a ≡ a
{-# BUILTIN EQUALITY _≡_ #-}
|
algebraic-stack_agda0000_doc_8735 |
open import Agda.Builtin.Nat
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
macro
five : Term → TC ⊤
five hole = unify hole (lit (nat 5))
-- Here you get hole = _X (λ {n} → y {_n})
-- and fail to solve _n.
yellow : ({n : Nat} → Set) → Nat
yellow y = five
-- Here you get hole = _X ⦃ n ⦄ (λ ⦃ n' ⦄ → y ⦃ _n ⦄)
-- and fail to solve _n due to the multiple candidates n and n'.
more-yellow : ⦃ n : Nat ⦄ → (⦃ n : Nat ⦄ → Set) → Nat
more-yellow y = five
|
algebraic-stack_agda0000_doc_8704 | {-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-}
module Agda.Builtin.Reflection where
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.Word
open import Agda.Builtin.List
open import Agda.Builtin.String
open import Agda.Builtin.Char
open import Agda.Builtin.Float
open import Agda.Builtin.Int
open import Agda.Builtin.Sigma
-- Names --
postulate Name : Set
{-# BUILTIN QNAME Name #-}
primitive
primQNameEquality : Name → Name → Bool
primQNameLess : Name → Name → Bool
primShowQName : Name → String
-- Fixity --
data Associativity : Set where
left-assoc : Associativity
right-assoc : Associativity
non-assoc : Associativity
data Precedence : Set where
related : Int → Precedence
unrelated : Precedence
data Fixity : Set where
fixity : Associativity → Precedence → Fixity
{-# BUILTIN ASSOC Associativity #-}
{-# BUILTIN ASSOCLEFT left-assoc #-}
{-# BUILTIN ASSOCRIGHT right-assoc #-}
{-# BUILTIN ASSOCNON non-assoc #-}
{-# BUILTIN PRECEDENCE Precedence #-}
{-# BUILTIN PRECRELATED related #-}
{-# BUILTIN PRECUNRELATED unrelated #-}
{-# BUILTIN FIXITY Fixity #-}
{-# BUILTIN FIXITYFIXITY fixity #-}
{-# COMPILE GHC Associativity = data MAlonzo.RTE.Assoc (MAlonzo.RTE.LeftAssoc | MAlonzo.RTE.RightAssoc | MAlonzo.RTE.NonAssoc) #-}
{-# COMPILE GHC Precedence = data MAlonzo.RTE.Precedence (MAlonzo.RTE.Related | MAlonzo.RTE.Unrelated) #-}
{-# COMPILE GHC Fixity = data MAlonzo.RTE.Fixity (MAlonzo.RTE.Fixity) #-}
{-# COMPILE JS Associativity = function (x,v) { return v[x](); } #-}
{-# COMPILE JS left-assoc = "left-assoc" #-}
{-# COMPILE JS right-assoc = "right-assoc" #-}
{-# COMPILE JS non-assoc = "non-assoc" #-}
{-# COMPILE JS Precedence =
function (x,v) {
if (x === "unrelated") { return v[x](); } else { return v["related"](x); }} #-}
{-# COMPILE JS related = function(x) { return x; } #-}
{-# COMPILE JS unrelated = "unrelated" #-}
{-# COMPILE JS Fixity = function (x,v) { return v["fixity"](x["assoc"], x["prec"]); } #-}
{-# COMPILE JS fixity = function (x) { return function (y) { return { "assoc": x, "prec": y}; }; } #-}
primitive
primQNameFixity : Name → Fixity
-- Metavariables --
postulate Meta : Set
{-# BUILTIN AGDAMETA Meta #-}
primitive
primMetaEquality : Meta → Meta → Bool
primMetaLess : Meta → Meta → Bool
primShowMeta : Meta → String
-- Arguments --
-- Arguments can be (visible), {hidden}, or {{instance}}.
data Visibility : Set where
visible hidden instance′ : Visibility
{-# BUILTIN HIDING Visibility #-}
{-# BUILTIN VISIBLE visible #-}
{-# BUILTIN HIDDEN hidden #-}
{-# BUILTIN INSTANCE instance′ #-}
-- Arguments can be relevant or irrelevant.
data Relevance : Set where
relevant irrelevant : Relevance
{-# BUILTIN RELEVANCE Relevance #-}
{-# BUILTIN RELEVANT relevant #-}
{-# BUILTIN IRRELEVANT irrelevant #-}
data ArgInfo : Set where
arg-info : (v : Visibility) (r : Relevance) → ArgInfo
data Arg (A : Set) : Set where
arg : (i : ArgInfo) (x : A) → Arg A
{-# BUILTIN ARGINFO ArgInfo #-}
{-# BUILTIN ARGARGINFO arg-info #-}
{-# BUILTIN ARG Arg #-}
{-# BUILTIN ARGARG arg #-}
-- Name abstraction --
data Abs (A : Set) : Set where
abs : (s : String) (x : A) → Abs A
{-# BUILTIN ABS Abs #-}
{-# BUILTIN ABSABS abs #-}
-- Literals --
data Literal : Set where
nat : (n : Nat) → Literal
word64 : (n : Word64) → Literal
float : (x : Float) → Literal
char : (c : Char) → Literal
string : (s : String) → Literal
name : (x : Name) → Literal
meta : (x : Meta) → Literal
{-# BUILTIN AGDALITERAL Literal #-}
{-# BUILTIN AGDALITNAT nat #-}
{-# BUILTIN AGDALITWORD64 word64 #-}
{-# BUILTIN AGDALITFLOAT float #-}
{-# BUILTIN AGDALITCHAR char #-}
{-# BUILTIN AGDALITSTRING string #-}
{-# BUILTIN AGDALITQNAME name #-}
{-# BUILTIN AGDALITMETA meta #-}
-- Patterns --
data Pattern : Set where
con : (c : Name) (ps : List (Arg Pattern)) → Pattern
dot : Pattern
var : (s : String) → Pattern
lit : (l : Literal) → Pattern
proj : (f : Name) → Pattern
absurd : Pattern
{-# BUILTIN AGDAPATTERN Pattern #-}
{-# BUILTIN AGDAPATCON con #-}
{-# BUILTIN AGDAPATDOT dot #-}
{-# BUILTIN AGDAPATVAR var #-}
{-# BUILTIN AGDAPATLIT lit #-}
{-# BUILTIN AGDAPATPROJ proj #-}
{-# BUILTIN AGDAPATABSURD absurd #-}
-- Terms --
data Sort : Set
data Clause : Set
data Term : Set
Type = Term
data Term where
var : (x : Nat) (args : List (Arg Term)) → Term
con : (c : Name) (args : List (Arg Term)) → Term
def : (f : Name) (args : List (Arg Term)) → Term
lam : (v : Visibility) (t : Abs Term) → Term
pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term
pi : (a : Arg Type) (b : Abs Type) → Term
agda-sort : (s : Sort) → Term
lit : (l : Literal) → Term
meta : (x : Meta) → List (Arg Term) → Term
unknown : Term
data Sort where
set : (t : Term) → Sort
lit : (n : Nat) → Sort
unknown : Sort
data Clause where
clause : (ps : List (Arg Pattern)) (t : Term) → Clause
absurd-clause : (ps : List (Arg Pattern)) → Clause
{-# BUILTIN AGDASORT Sort #-}
{-# BUILTIN AGDATERM Term #-}
{-# BUILTIN AGDACLAUSE Clause #-}
{-# BUILTIN AGDATERMVAR var #-}
{-# BUILTIN AGDATERMCON con #-}
{-# BUILTIN AGDATERMDEF def #-}
{-# BUILTIN AGDATERMMETA meta #-}
{-# BUILTIN AGDATERMLAM lam #-}
{-# BUILTIN AGDATERMEXTLAM pat-lam #-}
{-# BUILTIN AGDATERMPI pi #-}
{-# BUILTIN AGDATERMSORT agda-sort #-}
{-# BUILTIN AGDATERMLIT lit #-}
{-# BUILTIN AGDATERMUNSUPPORTED unknown #-}
{-# BUILTIN AGDASORTSET set #-}
{-# BUILTIN AGDASORTLIT lit #-}
{-# BUILTIN AGDASORTUNSUPPORTED unknown #-}
{-# BUILTIN AGDACLAUSECLAUSE clause #-}
{-# BUILTIN AGDACLAUSEABSURD absurd-clause #-}
-- Definitions --
data Definition : Set where
function : (cs : List Clause) → Definition
data-type : (pars : Nat) (cs : List Name) → Definition
record-type : (c : Name) (fs : List (Arg Name)) → Definition
data-cons : (d : Name) → Definition
axiom : Definition
prim-fun : Definition
{-# BUILTIN AGDADEFINITION Definition #-}
{-# BUILTIN AGDADEFINITIONFUNDEF function #-}
{-# BUILTIN AGDADEFINITIONDATADEF data-type #-}
{-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-}
{-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-}
{-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-}
{-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-}
-- Errors --
data ErrorPart : Set where
strErr : String → ErrorPart
termErr : Term → ErrorPart
nameErr : Name → ErrorPart
{-# BUILTIN AGDAERRORPART ErrorPart #-}
{-# BUILTIN AGDAERRORPARTSTRING strErr #-}
{-# BUILTIN AGDAERRORPARTTERM termErr #-}
{-# BUILTIN AGDAERRORPARTNAME nameErr #-}
-- TC monad --
postulate
TC : ∀ {a} → Set a → Set a
returnTC : ∀ {a} {A : Set a} → A → TC A
bindTC : ∀ {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B
unify : Term → Term → TC ⊤
typeError : ∀ {a} {A : Set a} → List ErrorPart → TC A
inferType : Term → TC Type
checkType : Term → Type → TC Term
normalise : Term → TC Term
reduce : Term → TC Term
catchTC : ∀ {a} {A : Set a} → TC A → TC A → TC A
quoteTC : ∀ {a} {A : Set a} → A → TC Term
unquoteTC : ∀ {a} {A : Set a} → Term → TC A
getContext : TC (List (Arg Type))
extendContext : ∀ {a} {A : Set a} → Arg Type → TC A → TC A
inContext : ∀ {a} {A : Set a} → List (Arg Type) → TC A → TC A
freshName : String → TC Name
declareDef : Arg Name → Type → TC ⊤
declarePostulate : Arg Name → Type → TC ⊤
defineFun : Name → List Clause → TC ⊤
getType : Name → TC Type
getDefinition : Name → TC Definition
blockOnMeta : ∀ {a} {A : Set a} → Meta → TC A
commitTC : TC ⊤
isMacro : Name → TC Bool
-- If the argument is 'true' makes the following primitives also normalise
-- their results: inferType, checkType, quoteTC, getType, and getContext
withNormalisation : ∀ {a} {A : Set a} → Bool → TC A → TC A
-- Prints the third argument if the corresponding verbosity level is turned
-- on (with the -v flag to Agda).
debugPrint : String → Nat → List ErrorPart → TC ⊤
-- Fail if the given computation gives rise to new, unsolved
-- "blocking" constraints.
noConstraints : ∀ {a} {A : Set a} → TC A → TC A
-- Run the given TC action and return the first component. Resets to
-- the old TC state if the second component is 'false', or keep the
-- new TC state if it is 'true'.
runSpeculative : ∀ {a} {A : Set a} → TC (Σ A λ _ → Bool) → TC A
{-# BUILTIN AGDATCM TC #-}
{-# BUILTIN AGDATCMRETURN returnTC #-}
{-# BUILTIN AGDATCMBIND bindTC #-}
{-# BUILTIN AGDATCMUNIFY unify #-}
{-# BUILTIN AGDATCMTYPEERROR typeError #-}
{-# BUILTIN AGDATCMINFERTYPE inferType #-}
{-# BUILTIN AGDATCMCHECKTYPE checkType #-}
{-# BUILTIN AGDATCMNORMALISE normalise #-}
{-# BUILTIN AGDATCMREDUCE reduce #-}
{-# BUILTIN AGDATCMCATCHERROR catchTC #-}
{-# BUILTIN AGDATCMQUOTETERM quoteTC #-}
{-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-}
{-# BUILTIN AGDATCMGETCONTEXT getContext #-}
{-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-}
{-# BUILTIN AGDATCMINCONTEXT inContext #-}
{-# BUILTIN AGDATCMFRESHNAME freshName #-}
{-# BUILTIN AGDATCMDECLAREDEF declareDef #-}
{-# BUILTIN AGDATCMDECLAREPOSTULATE declarePostulate #-}
{-# BUILTIN AGDATCMDEFINEFUN defineFun #-}
{-# BUILTIN AGDATCMGETTYPE getType #-}
{-# BUILTIN AGDATCMGETDEFINITION getDefinition #-}
{-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-}
{-# BUILTIN AGDATCMCOMMIT commitTC #-}
{-# BUILTIN AGDATCMISMACRO isMacro #-}
{-# BUILTIN AGDATCMWITHNORMALISATION withNormalisation #-}
{-# BUILTIN AGDATCMDEBUGPRINT debugPrint #-}
{-# BUILTIN AGDATCMNOCONSTRAINTS noConstraints #-}
{-# BUILTIN AGDATCMRUNSPECULATIVE runSpeculative #-}
|
algebraic-stack_agda0000_doc_8705 | module Where where
{-
id : Set -> Set
id a = a
-}
-- x : (_ : _) -> _
x = id Set3000
where id = \x -> x
y = False
where data False : Set where
|
algebraic-stack_agda0000_doc_8706 | {-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.CircleHSpace
open import homotopy.JoinAssocCubical
open import homotopy.JoinSusp
module homotopy.Hopf where
import homotopy.HopfConstruction
module Hopf = homotopy.HopfConstruction S¹-conn ⊙S¹-hSpace
Hopf : S² → Type₀
Hopf = Hopf.H.f
Hopf-fiber : Hopf north == S¹
Hopf-fiber = idp
-- TODO Turn [Hopf.theorem] into an equivalence
Hopf-total : Σ _ Hopf ≃ S³
Hopf-total =
Σ _ Hopf ≃⟨ coe-equiv Hopf.theorem ⟩
S¹ * S¹ ≃⟨ *-Susp-l S⁰ S¹ ⟩
Susp (S⁰ * S¹) ≃⟨ Susp-emap (*-Bool-l S¹) ⟩
S³ ≃∎
|
algebraic-stack_agda0000_doc_8707 | module Relations where
open import Agda.Builtin.Equality
open import Natural
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ} →
zero ≤ n
s≤s : ∀ {m n : ℕ} →
m ≤ n →
(suc m) ≤ (suc n)
infix 4 _≤_
-- example : finished by auto mode
_ : 3 ≤ 5
_ = s≤s {2} {4} (s≤s {1} {3} (s≤s {0} {2} (z≤n {2})))
inv-s≤s : ∀ {m n : ℕ}
→ suc m ≤ suc n
→ m ≤ n
inv-s≤s (s≤s m≤n) = m≤n
inv-z≤n : ∀ {m : ℕ}
→ m ≤ zero
→ m ≡ zero
inv-z≤n z≤n = refl
|
algebraic-stack_agda0000_doc_8708 | -- cj-xu and fredriknordvallforsberg, 2018-04-30
open import Common.IO
data Bool : Set where
true false : Bool
data MyUnit : Set where
tt : MyUnit -- no eta!
HiddenFunType : MyUnit -> Set
HiddenFunType tt = Bool -> Bool
notTooManyArgs : (x : MyUnit) -> HiddenFunType x
notTooManyArgs tt b = b
{- This should not happen when compiling notTooManyArgs:
• Couldn't match expected type ‘GHC.Prim.Any’
with actual type ‘a0 -> b0’
The type variables ‘b0’, ‘a0’ are ambiguous
• The equation(s) for ‘d10’ have two arguments,
but its type ‘T2 -> AgdaAny’ has only one
-}
main : IO MyUnit
main = return tt
|
algebraic-stack_agda0000_doc_8709 | module Data.Num.Nat where
open import Data.Num.Core renaming
( carry to carry'
; carry-lower-bound to carry-lower-bound'
; carry-upper-bound to carry-upper-bound'
)
open import Data.Num.Maximum
open import Data.Num.Bounded
open import Data.Num.Next
open import Data.Num.Increment
open import Data.Num.Continuous
open import Data.Nat
open import Data.Nat.Properties
open import Data.Nat.Properties.Simple
open import Data.Nat.Properties.Extra
open import Data.Nat.DM
open import Data.Fin as Fin
using (Fin; fromℕ≤; inject≤)
renaming (zero to z; suc to s)
open import Data.Fin.Properties using (toℕ-fromℕ≤; bounded)
open import Data.Product
open import Data.Empty using (⊥)
open import Data.Unit using (⊤; tt)
open import Function
open import Relation.Nullary.Decidable
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_)
open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl)
-- left-bounded infinite interval of natural number
data Nat : ℕ → Set where
from : ∀ offset → Nat offset
suc : ∀ {offset} → Nat offset → Nat offset
Nat-toℕ : ∀ {offset} → Nat offset → ℕ
Nat-toℕ (from offset) = offset
Nat-toℕ (suc n) = suc (Nat-toℕ n)
Nat-fromℕ : ∀ offset
→ (n : ℕ)
→ .(offset ≤ n)
→ Nat offset
Nat-fromℕ offset n p with offset ≟ n
Nat-fromℕ offset n p | yes eq = from offset
Nat-fromℕ offset zero p | no ¬eq = from offset
Nat-fromℕ offset (suc n) p | no ¬eq = suc (Nat-fromℕ offset n (≤-pred (≤∧≢⇒< p ¬eq)))
Nat-fromℕ-toℕ : ∀ offset
→ (n : ℕ)
→ (p : offset ≤ n)
→ Nat-toℕ (Nat-fromℕ offset n p) ≡ n
Nat-fromℕ-toℕ offset n p with offset ≟ n
Nat-fromℕ-toℕ offset n p | yes eq = eq
Nat-fromℕ-toℕ .0 zero z≤n | no ¬eq = refl
Nat-fromℕ-toℕ offset (suc n) p | no ¬eq =
begin
suc (Nat-toℕ (Nat-fromℕ offset n (≤-pred (≤∧≢⇒< p ¬eq))))
≡⟨ cong suc (Nat-fromℕ-toℕ offset n (≤-pred (≤∧≢⇒< p ¬eq))) ⟩
suc n
∎
fromNat : ∀ {b d o}
→ {cont : True (Continuous? b (suc d) o)}
→ Nat o
→ Num b (suc d) o
fromNat (from offset) = z ∙
fromNat {cont = cont} (suc nat) = 1+ {cont = cont} (fromNat {cont = cont} nat)
toℕ-fromNat : ∀ b d o
→ (cont : True (Continuous? b (suc d) o))
→ (n : ℕ)
→ (p : o ≤ n)
→ ⟦ fromNat {b} {d} {o} {cont = cont} (Nat-fromℕ o n p) ⟧ ≡ n
toℕ-fromNat b d o cont n p with o ≟ n
toℕ-fromNat b d o cont n p | yes eq = cong (_+_ zero) eq
toℕ-fromNat b d .0 cont zero z≤n | no ¬eq = refl
toℕ-fromNat b d o cont (suc n) p | no ¬eq =
begin
⟦ 1+ {b} {cont = cont} (fromNat (Nat-fromℕ o n (≤-pred (≤∧≢⇒< p ¬eq)))) ⟧
≡⟨ 1+-toℕ {b} (fromNat {cont = cont} (Nat-fromℕ o n (≤-pred (≤∧≢⇒< p ¬eq)))) ⟩
suc ⟦ fromNat {cont = cont} (Nat-fromℕ o n (≤-pred (≤∧≢⇒< p ¬eq))) ⟧
-- mysterious agda bug, this refl must stay here
≡⟨ refl ⟩
suc ⟦ fromNat {cont = cont} (Nat-fromℕ o n (≤-pred (≤∧≢⇒< p ¬eq))) ⟧
≡⟨ cong suc (toℕ-fromNat b d o cont n (≤-pred (≤∧≢⇒< p ¬eq))) ⟩
suc n
∎
-- -- a partial function that only maps ℕ to Continuous Nums
-- fromℕ : ∀ {b d o}
-- → {cond : N+Closed b d o}
-- → ℕ
-- → Num b (suc d) o
-- fromℕ {cond = cond} zero = z ∙
-- fromℕ {cond = cond} (suc n) = {! !}
-- fromℕ {cont = cont} zero = z ∙
-- fromℕ {cont = cont} (suc n) = 1+ {cont = cont} (fromℕ {cont = cont} n)
-- toℕ-fromℕ : ∀ {b d o}
-- → {cont : True (Continuous? b (suc d) o)}
-- → (n : ℕ)
-- → ⟦ fromℕ {cont = cont} n ⟧ ≡ n + o
-- toℕ-fromℕ {_} {_} {_} {cont} zero = refl
-- toℕ-fromℕ {b} {d} {o} {cont} (suc n) =
-- begin
-- ⟦ 1+ {cont = cont} (fromℕ {cont = cont} n) ⟧
-- ≡⟨ 1+-toℕ {cont = cont} (fromℕ {cont = cont} n) ⟩
-- suc ⟦ fromℕ {cont = cont} n ⟧
-- ≡⟨ cong suc (toℕ-fromℕ {cont = cont} n) ⟩
-- suc (n + o)
-- ∎
|
algebraic-stack_agda0000_doc_8710 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.BagAndSetEquality directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.BagAndSetEquality where
open import Data.List.Relation.Binary.BagAndSetEquality public
{-# WARNING_ON_IMPORT
"Data.List.Relation.BagAndSetEquality was deprecated in v1.0.
Use Data.List.Relation.Binary.BagAndSetEquality instead."
#-}
|
algebraic-stack_agda0000_doc_8711 | open import Categories
open import Monads
module Monads.EM.Functors {a b}{C : Cat {a}{b}}(M : Monad C) where
open import Library
open import Functors
open import Monads.EM M
open Cat C
open Fun
open Monad M
open Alg
open AlgMorph
EML : Fun C EM
EML = record {
OMap = λ X → record {
acar = T X;
astr = λ _ → bind;
alaw1 = sym law2;
alaw2 = law3};
HMap = λ f → record {
amor = bind (comp η f);
ahom = λ {Z} {g} →
proof
comp (bind (comp η f)) (bind g)
≅⟨ sym law3 ⟩
bind (comp (bind (comp η f)) g)
∎};
fid = AlgMorphEq (
proof
bind (comp η iden)
≅⟨ cong bind idr ⟩
bind η
≅⟨ law1 ⟩
iden ∎);
fcomp = λ {_}{_}{_}{f}{g} →
AlgMorphEq (
proof
bind (comp η (comp f g))
≅⟨ cong bind (sym ass) ⟩
bind (comp (comp η f) g)
≅⟨ cong (λ f → bind (comp f g)) (sym law2) ⟩
bind (comp (comp (bind (comp η f)) η) g)
≅⟨ cong bind ass ⟩
bind (comp (bind (comp η f)) (comp η g))
≅⟨ law3 ⟩
comp (bind (comp η f)) (bind (comp η g))
∎)}
EMR : Fun EM C
EMR = record {
OMap = acar;
HMap = amor;
fid = refl;
fcomp = refl}
|
algebraic-stack_agda0000_doc_8712 | {-# OPTIONS --no-positivity-check #-}
open import Prelude
module Implicits.Resolution.Undecidable.Resolution where
open import Data.Fin.Substitution
open import Implicits.Syntax
open import Implicits.Syntax.MetaType
open import Implicits.Substitutions
open import Extensions.ListFirst
infixl 4 _⊢ᵣ_ _⊢_↓_ _⟨_⟩=_
mutual
data _⊢_↓_ {ν} (Δ : ICtx ν) : Type ν → SimpleType ν → Set where
i-simp : ∀ a → Δ ⊢ simpl a ↓ a
i-iabs : ∀ {ρ₁ ρ₂ a} → Δ ⊢ᵣ ρ₁ → Δ ⊢ ρ₂ ↓ a → Δ ⊢ ρ₁ ⇒ ρ₂ ↓ a
i-tabs : ∀ {ρ a} b → Δ ⊢ ρ tp[/tp b ] ↓ a → Δ ⊢ ∀' ρ ↓ a
-- implicit resolution is simply the first rule in the implicit context
-- that yields the queried type
_⟨_⟩=_ : ∀ {ν} → ICtx ν → SimpleType ν → Type ν → Set
Δ ⟨ a ⟩= r = first r ∈ Δ ⇔ (λ r' → Δ ⊢ r' ↓ a)
data _⊢ᵣ_ {ν} (Δ : ICtx ν) : Type ν → Set where
r-simp : ∀ {τ ρ} → Δ ⟨ τ ⟩= ρ → Δ ⊢ᵣ simpl τ
r-iabs : ∀ ρ₁ {ρ₂} → ρ₁ List.∷ Δ ⊢ᵣ ρ₂ → Δ ⊢ᵣ ρ₁ ⇒ ρ₂
r-tabs : ∀ {ρ} → ictx-weaken Δ ⊢ᵣ ρ → Δ ⊢ᵣ ∀' ρ
_⊢ᵣ[_] : ∀ {ν} → (Δ : ICtx ν) → List (Type ν) → Set
_⊢ᵣ[_] Δ ρs = All (λ r → Δ ⊢ᵣ r) ρs
|
algebraic-stack_agda0000_doc_8713 | {-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Library.Data.Natural where
open import Light.Level using (Level ; Setω)
open import Light.Library.Arithmetic using (Arithmetic)
open import Light.Package using (Package)
open import Light.Library.Relation.Binary
using (SelfTransitive ; SelfSymmetric ; Reflexive)
open import Light.Library.Relation.Binary.Decidable using (DecidableSelfBinary)
import Light.Library.Relation.Decidable
open import Light.Library.Relation.Binary.Equality as ≈ using (_≈_)
open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableSelfEquality)
open import Light.Library.Relation using (False)
record Dependencies : Setω where
record Library (dependencies : Dependencies) : Setω where
field
ℓ : Level
ℕ : Set ℓ
⦃ equals ⦄ : DecidableSelfEquality ℕ
zero : ℕ
successor : ℕ → ℕ
predecessor : ∀ (a : ℕ) ⦃ a‐≉‐0 : False (a ≈ zero) ⦄ → ℕ
_+_ _∗_ _//_ _∸_ : ℕ → ℕ → ℕ
⦃ ≈‐transitive ⦄ : SelfTransitive (≈.self‐relation ℕ)
⦃ ≈‐symmetric ⦄ : SelfSymmetric (≈.self‐relation ℕ)
⦃ ≈‐reflexive ⦄ : Reflexive (≈.self‐relation ℕ)
instance arithmetic : Arithmetic ℕ
arithmetic = record { _+_ = _+_ ; _∗_ = _∗_ }
open Library ⦃ ... ⦄ public
|
algebraic-stack_agda0000_doc_8714 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- An either-or-both data type
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.These where
open import Level
open import Data.Maybe.Base using (Maybe; just; nothing; maybe′)
open import Data.Sum.Base using (_⊎_; [_,_]′)
open import Function
------------------------------------------------------------------------
-- Re-exporting the datatype and its operations
open import Data.These.Base public
private
variable
a b : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Additional operations
-- projections
fromThis : These A B → Maybe A
fromThis = fold just (const nothing) (const ∘′ just)
fromThat : These A B → Maybe B
fromThat = fold (const nothing) just (const just)
leftMost : These A A → A
leftMost = fold id id const
rightMost : These A A → A
rightMost = fold id id (flip const)
mergeThese : (A → A → A) → These A A → A
mergeThese = fold id id
-- deletions
deleteThis : These A B → Maybe (These A B)
deleteThis = fold (const nothing) (just ∘′ that) (const (just ∘′ that))
deleteThat : These A B → Maybe (These A B)
deleteThat = fold (just ∘′ this) (const nothing) (const ∘′ just ∘′ this)
|
algebraic-stack_agda0000_doc_8715 | module Formalization.ClassicalPropositionalLogic.NaturalDeduction where
open import Data.Either as Either using (Left ; Right)
open import Formalization.ClassicalPropositionalLogic.Syntax
open import Functional
import Lvl
import Logic.Propositional as Meta
open import Logic
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to singleton ; _≡_ to _≡ₛ_)
open import Type
private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level
data _⊢_ {ℓ ℓₚ} {P : Type{ℓₚ}} : Formulas(P){ℓ} → Formula(P) → Stmt{Lvl.𝐒(ℓₚ Lvl.⊔ ℓ)} where
direct : ∀{Γ} → (Γ ⊆ (Γ ⊢_))
[⊤]-intro : ∀{Γ} → (Γ ⊢ ⊤)
[⊥]-intro : ∀{Γ}{φ} → (Γ ⊢ φ) → (Γ ⊢ (¬ φ)) → (Γ ⊢ ⊥)
[⊥]-elim : ∀{Γ}{φ} → (Γ ⊢ ⊥) → (Γ ⊢ φ)
[¬]-intro : ∀{Γ}{φ} → ((Γ ∪ singleton(φ)) ⊢ ⊥) → (Γ ⊢ (¬ φ))
[¬]-elim : ∀{Γ}{φ} → ((Γ ∪ singleton(¬ φ)) ⊢ ⊥) → (Γ ⊢ φ)
[∧]-intro : ∀{Γ}{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ ψ) → (Γ ⊢ (φ ∧ ψ))
[∧]-elimₗ : ∀{Γ}{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ φ)
[∧]-elimᵣ : ∀{Γ}{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ ψ)
[∨]-introₗ : ∀{Γ}{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ∨ ψ))
[∨]-introᵣ : ∀{Γ}{φ ψ} → (Γ ⊢ ψ) → (Γ ⊢ (φ ∨ ψ))
[∨]-elim : ∀{Γ}{φ ψ χ} → ((Γ ∪ singleton(φ)) ⊢ χ) → ((Γ ∪ singleton(ψ)) ⊢ χ) → (Γ ⊢ (φ ∨ ψ)) → (Γ ⊢ χ)
[⟶]-intro : ∀{Γ}{φ ψ} → ((Γ ∪ singleton(φ)) ⊢ ψ) → (Γ ⊢ (φ ⟶ ψ))
[⟶]-elim : ∀{Γ}{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ⟶ ψ)) → (Γ ⊢ ψ)
[⟷]-intro : ∀{Γ}{φ ψ} → ((Γ ∪ singleton(ψ)) ⊢ φ) → ((Γ ∪ singleton(φ)) ⊢ ψ) → (Γ ⊢ (φ ⟷ ψ))
[⟷]-elimₗ : ∀{Γ}{φ ψ} → (Γ ⊢ ψ) → (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ φ)
[⟷]-elimᵣ : ∀{Γ}{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ ψ)
module _ where
private variable P : Type{ℓₚ}
private variable Γ Γ₁ Γ₂ : Formulas(P){ℓ}
private variable φ ψ : Formula(P)
_⊬_ : Formulas(P){ℓ} → Formula(P) → Stmt
_⊬_ = Meta.¬_ ∘₂ (_⊢_)
weaken-union-singleton : (Γ₁ ⊆ Γ₂) → (((Γ₁ ∪ singleton(φ)) ⊢_) ⊆ ((Γ₂ ∪ singleton(φ)) ⊢_))
weaken : (Γ₁ ⊆ Γ₂) → ((Γ₁ ⊢_) ⊆ (Γ₂ ⊢_))
weaken Γ₁Γ₂ {φ} (direct p) = direct (Γ₁Γ₂ p)
weaken Γ₁Γ₂ {.⊤} [⊤]-intro = [⊤]-intro
weaken Γ₁Γ₂ {.⊥} ([⊥]-intro p q) = [⊥]-intro (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q)
weaken Γ₁Γ₂ {φ} ([⊥]-elim p) = [⊥]-elim (weaken Γ₁Γ₂ p)
weaken Γ₁Γ₂ {.(¬ _)} ([¬]-intro p) = [¬]-intro (weaken-union-singleton Γ₁Γ₂ p)
weaken Γ₁Γ₂ {φ} ([¬]-elim p) = [¬]-elim (weaken-union-singleton Γ₁Γ₂ p)
weaken Γ₁Γ₂ {.(_ ∧ _)} ([∧]-intro p q) = [∧]-intro (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q)
weaken Γ₁Γ₂ {φ} ([∧]-elimₗ p) = [∧]-elimₗ (weaken Γ₁Γ₂ p)
weaken Γ₁Γ₂ {φ} ([∧]-elimᵣ p) = [∧]-elimᵣ (weaken Γ₁Γ₂ p)
weaken Γ₁Γ₂ {.(_ ∨ _)} ([∨]-introₗ p) = [∨]-introₗ (weaken Γ₁Γ₂ p)
weaken Γ₁Γ₂ {.(_ ∨ _)} ([∨]-introᵣ p) = [∨]-introᵣ (weaken Γ₁Γ₂ p)
weaken Γ₁Γ₂ {φ} ([∨]-elim p q r) = [∨]-elim (weaken-union-singleton Γ₁Γ₂ p) (weaken-union-singleton Γ₁Γ₂ q) (weaken Γ₁Γ₂ r)
weaken Γ₁Γ₂ {.(_ ⟶ _)} ([⟶]-intro p) = [⟶]-intro (weaken-union-singleton Γ₁Γ₂ p)
weaken Γ₁Γ₂ {φ} ([⟶]-elim p q) = [⟶]-elim (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q)
weaken Γ₁Γ₂ {.(_ ⟷ _)} ([⟷]-intro p q) = [⟷]-intro (weaken-union-singleton Γ₁Γ₂ p) (weaken-union-singleton Γ₁Γ₂ q)
weaken Γ₁Γ₂ {φ} ([⟷]-elimₗ p q) = [⟷]-elimₗ (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q)
weaken Γ₁Γ₂ {φ} ([⟷]-elimᵣ p q) = [⟷]-elimᵣ (weaken Γ₁Γ₂ p) (weaken Γ₁Γ₂ q)
weaken-union-singleton Γ₁Γ₂ p = weaken (Either.mapLeft Γ₁Γ₂) p
weaken-union : (Γ₁ ⊢_) ⊆ ((Γ₁ ∪ Γ₂) ⊢_)
weaken-union = weaken Either.Left
[⟵]-intro : ((Γ ∪ singleton(φ)) ⊢ ψ) → (Γ ⊢ (ψ ⟵ φ))
[⟵]-intro = [⟶]-intro
[⟵]-elim : (Γ ⊢ φ) → (Γ ⊢ (ψ ⟵ φ)) → (Γ ⊢ ψ)
[⟵]-elim = [⟶]-elim
[¬¬]-elim : (Γ ⊢ ¬(¬ φ)) → (Γ ⊢ φ)
[¬¬]-elim nnφ =
([¬]-elim
([⊥]-intro
(direct(Right [≡]-intro))
(weaken-union nnφ)
)
)
[¬¬]-intro : (Γ ⊢ φ) → (Γ ⊢ ¬(¬ φ))
[¬¬]-intro Γφ =
([¬]-intro
([⊥]-intro
(weaken-union Γφ)
(direct (Right [≡]-intro))
)
)
|
algebraic-stack_agda0000_doc_8716 | {-# OPTIONS --without-K #-}
open import Base
module Homotopy.Skeleton where
private
module Graveyard {i} {A B : Set i} {f : A → B} where
private
data #skeleton₁ : Set i where
#point : A → #skeleton₁
skeleton₁ : Set i
skeleton₁ = #skeleton₁
point : A → skeleton₁
point = #point
postulate -- HIT
link : ∀ a₁ a₂ → f a₁ ≡ f a₂ → point a₁ ≡ point a₂
skeleton₁-rec : ∀ {l} (P : skeleton₁ → Set l)
(point* : ∀ a → P (point a))
(link* : ∀ a₁ a₂ (p : f a₁ ≡ f a₂)
→ transport P (link a₁ a₂ p) (point* a₁) ≡ point* a₂)
→ (x : skeleton₁) → P x
skeleton₁-rec P point* link* (#point a) = point* a
postulate -- HIT
skeleton₁-β-link : ∀ {l} (P : skeleton₁ → Set l)
(point* : ∀ a → P (point a))
(link* : ∀ a₁ a₂ (p : f a₁ ≡ f a₂)
→ transport P (link a₁ a₂ p) (point* a₁) ≡ point* a₂)
a₁ a₂ (p : f a₁ ≡ f a₂)
→ apd (skeleton₁-rec {l} P point* link*) (link a₁ a₂ p)
≡ link* a₁ a₂ p
skeleton₁-rec-nondep : ∀ {l} (P : Set l) (point* : A → P)
(link* : ∀ a₁ a₂ → f a₁ ≡ f a₂ → point* a₁ ≡ point* a₂)
→ (skeleton₁ → P)
skeleton₁-rec-nondep P point* link* (#point a) = point* a
postulate -- HIT
skeleton₁-β-link-nondep : ∀ {l} (P : Set l) (point* : A → P)
(link* : ∀ a₁ a₂ → f a₁ ≡ f a₂ → point* a₁ ≡ point* a₂)
a₁ a₂ (p : f a₁ ≡ f a₂)
→ ap (skeleton₁-rec-nondep P point* link*) (link a₁ a₂ p)
≡ link* a₁ a₂ p
open Graveyard public hiding (skeleton₁)
module _ {i} {A B : Set i} where
skeleton₁ : (A → B) → Set i
skeleton₁ f = Graveyard.skeleton₁ {i} {A} {B} {f}
skeleton₁-lifted : ∀ {f} → skeleton₁ f → B
skeleton₁-lifted {f} = skeleton₁-rec-nondep B f (λ _ _ p → p)
|
algebraic-stack_agda0000_doc_8717 | {-# OPTIONS --cubical-compatible --rewriting --local-confluence-check #-}
open import Agda.Primitive using (Level; _⊔_; Setω; lzero; lsuc)
infix 4 _≡_
data _≡_ {ℓ : Level} {A : Set ℓ} (a : A) : A → Set ℓ where
refl : a ≡ a
{-# BUILTIN REWRITE _≡_ #-}
run : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → A → B
run refl x = x
ap : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {a₁ a₂} → a₁ ≡ a₂ → f a₁ ≡ f a₂
ap f refl = refl
transport1 : ∀ {a b} {A : Set a} (B : A → Set b) {x y : A} (p : x ≡ y) → B x → B y
transport1 B p = run (ap B p)
ap-const : ∀ {a b} {A : Set a} {B : Set b} (f : B) {a₁ a₂ : A} (p : a₁ ≡ a₂) → ap (\ _ → f) p ≡ refl
ap-const f refl = refl
{-# REWRITE ap-const #-}
ap2 : ∀ {a b rv} {A : Set a} {B : A → Set b} {RV : Set rv} (fn : ∀ a → B a → RV) {a₁ a₂} (pa : a₁ ≡ a₂) {b₁ b₂} (pb : transport1 B pa b₁ ≡ b₂) → fn a₁ b₁ ≡ fn a₂ b₂
ap2 fn refl refl = refl
transport2 : ∀ {a b rv} {A : Set a} {B : A → Set b} (RV : ∀ a → B a → Set rv) {a₁ a₂} (pa : a₁ ≡ a₂) {b₁ b₂} (pb : transport1 B pa b₁ ≡ b₂) → RV a₁ b₁ → RV a₂ b₂
transport2 RV pa pb = run (ap2 RV pa pb)
ap2-const : ∀ {a b rv} {A : Set a} {B : A → Set b} {RV : Set rv} (fn : RV) {a₁ a₂} (pa : a₁ ≡ a₂) {b₁ b₂} (pb : transport1 B pa b₁ ≡ b₂) → ap2 {a} {b} {rv} {A} {B} {RV} (λ _ _ → fn) pa pb ≡ refl
ap2-const fn refl refl = refl
{-# REWRITE ap2-const #-}
ap2-const' : ∀ {a b rv} {A : Set a} {B : A → Set b} {RV : Set rv} (fn : RV) {a₁ a₂} (pa : a₁ ≡ a₂) {b₁ b₂} (pb : transport1 B pa b₁ ≡ b₂) → ap2 {a} {b} {rv} {A} {B} {RV} (λ _ _ → fn) pa pb ≡ refl
ap2-const' {a} {b} {rv} {A} {B} {RV} fn pa pb = {!ap2 {a} {b} {_} {A} {_} {_} (λ _ _ → fn ≡ fn) pa _!}
|
algebraic-stack_agda0000_doc_8718 | module conversion where
open import lib
open import cedille-types
open import ctxt
open import is-free
open import lift
open import rename
open import subst
open import syntax-util
open import general-util
open import to-string
{- Some notes:
-- hnf{TERM} implements erasure as well as normalization.
-- hnf{TYPE} does not descend into terms.
-- definitions are assumed to be in hnf
-}
data unfolding : Set where
no-unfolding : unfolding
unfold : (unfold-all : 𝔹) {- if ff we unfold just the head -}
→ (unfold-lift : 𝔹) {- if tt we unfold lifting types -}
→ (dampen-after-head-beta : 𝔹) {- if tt we will not unfold definitions after a head beta reduction -}
→ (erase : 𝔹) -- if tt erase the term as we unfold
→ unfolding
unfolding-get-erased : unfolding → 𝔹
unfolding-get-erased no-unfolding = ff
unfolding-get-erased (unfold _ _ _ e) = e
unfolding-set-erased : unfolding → 𝔹 → unfolding
unfolding-set-erased no-unfolding e = no-unfolding
unfolding-set-erased (unfold b1 b2 b3 _) e = unfold b1 b2 b3 e
unfold-all : unfolding
unfold-all = unfold tt tt ff tt
unfold-head : unfolding
unfold-head = unfold ff tt ff tt
unfold-head-no-lift : unfolding
unfold-head-no-lift = unfold ff ff ff ff
unfold-head-one : unfolding
unfold-head-one = unfold ff tt tt tt
unfold-dampen : (after-head-beta : 𝔹) → unfolding → unfolding
unfold-dampen _ no-unfolding = no-unfolding
unfold-dampen _ (unfold tt b b' e) = unfold tt b b e -- we do not dampen unfolding when unfolding everywhere
unfold-dampen tt (unfold ff b tt e) = no-unfolding
unfold-dampen tt (unfold ff b ff e) = (unfold ff b ff e)
unfold-dampen ff _ = no-unfolding
unfolding-elab : unfolding → unfolding
unfolding-elab no-unfolding = no-unfolding
unfolding-elab (unfold b b' b'' _) = unfold b b' b'' ff
conv-t : Set → Set
conv-t T = ctxt → T → T → 𝔹
{-# TERMINATING #-}
-- main entry point
-- does not assume erased
conv-term : conv-t term
conv-type : conv-t type
conv-kind : conv-t kind
-- assume erased
conv-terme : conv-t term
conv-argse : conv-t (𝕃 term)
conv-typee : conv-t type
conv-kinde : conv-t kind
-- call hnf, then the conv-X-norm functions
conv-term' : conv-t term
conv-type' : conv-t type
hnf : {ed : exprd} → ctxt → (u : unfolding) → ⟦ ed ⟧ → (is-head : 𝔹) → ⟦ ed ⟧
-- assume head normalized inputs
conv-term-norm : conv-t term
conv-type-norm : conv-t type
conv-kind-norm : conv-t kind
hnf-optClass : ctxt → unfolding → optClass → optClass
-- hnf-tk : ctxt → unfolding → tk → tk
-- does not assume erased
conv-tk : conv-t tk
conv-liftingType : conv-t liftingType
conv-optClass : conv-t optClass
-- conv-optType : conv-t optType
conv-tty* : conv-t (𝕃 tty)
-- assume erased
conv-tke : conv-t tk
conv-liftingTypee : conv-t liftingType
conv-optClasse : conv-t optClass
-- -- conv-optTypee : conv-t optType
conv-ttye* : conv-t (𝕃 tty)
conv-term Γ t t' = conv-terme Γ (erase t) (erase t')
conv-terme Γ t t' with decompose-apps t | decompose-apps t'
conv-terme Γ t t' | Var _ x , args | Var _ x' , args' =
if ctxt-eq-rep Γ x x' && conv-argse Γ args args' then tt else
conv-term' Γ t t'
conv-terme Γ t t' | _ | _ = conv-term' Γ t t'
conv-argse Γ [] [] = tt
conv-argse Γ (a :: args) (a' :: args') = conv-terme Γ a a' && conv-argse Γ args args'
conv-argse Γ _ _ = ff
conv-type Γ t t' = conv-typee Γ (erase t) (erase t')
conv-typee Γ t t' with decompose-tpapps t | decompose-tpapps t'
conv-typee Γ t t' | TpVar _ x , args | TpVar _ x' , args' =
if ctxt-eq-rep Γ x x' && conv-tty* Γ args args' then tt else
conv-type' Γ t t'
conv-typee Γ t t' | _ | _ = conv-type' Γ t t'
conv-kind Γ k k' = conv-kinde Γ (erase k) (erase k')
conv-kinde Γ k k' = conv-kind-norm Γ (hnf Γ unfold-head k tt) (hnf Γ unfold-head k' tt)
conv-term' Γ t t' = conv-term-norm Γ (hnf Γ unfold-head t tt) (hnf Γ unfold-head t' tt)
conv-type' Γ t t' = conv-type-norm Γ (hnf Γ unfold-head t tt) (hnf Γ unfold-head t' tt)
-- is-head is only used in hnf{TYPE}
hnf{TERM} Γ no-unfolding e hd = erase-term e
hnf{TERM} Γ u (Parens _ t _) hd = hnf Γ u t hd
hnf{TERM} Γ u (App t1 Erased t2) hd = hnf Γ u t1 hd
hnf{TERM} Γ u (App t1 NotErased t2) hd with hnf Γ u t1 hd
hnf{TERM} Γ u (App _ NotErased t2) hd | Lam _ _ _ x _ t1 = hnf Γ (unfold-dampen tt u) (subst Γ t2 x t1) hd
hnf{TERM} Γ u (App _ NotErased t2) hd | t1 = App t1 NotErased (hnf Γ (unfold-dampen ff u) t2 hd)
hnf{TERM} Γ u (Lam _ Erased _ _ _ t) hd = hnf Γ u t hd
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd with hnf (ctxt-var-decl x Γ) u t hd
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd | (App t' NotErased (Var _ x')) with x =string x' && ~ (is-free-in skip-erased x t')
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd | (App t' NotErased (Var _ x')) | tt = t' -- eta-contraction
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd | (App t' NotErased (Var _ x')) | ff =
Lam posinfo-gen NotErased posinfo-gen x NoClass (App t' NotErased (Var posinfo-gen x'))
hnf{TERM} Γ u (Lam _ NotErased _ x oc t) hd | t' = Lam posinfo-gen NotErased posinfo-gen x NoClass t'
hnf{TERM} Γ u (Let _ (DefTerm _ x _ t) t') hd = hnf Γ u (subst Γ t x t') hd
hnf{TERM} Γ u (Let _ (DefType _ x _ _) t') hd = hnf (ctxt-var-decl x Γ) u t' hd
hnf{TERM} Γ (unfold _ _ _ _) (Var _ x) hd with ctxt-lookup-term-var-def Γ x
hnf{TERM} Γ (unfold _ _ _ _) (Var _ x) hd | nothing = Var posinfo-gen x
hnf{TERM} Γ (unfold ff _ _ e) (Var _ x) hd | just t = erase-if e t -- definitions should be stored in hnf
hnf{TERM} Γ (unfold tt b b' e) (Var _ x) hd | just t = hnf Γ (unfold tt b b' e) t hd -- this might not be fully normalized, only head-normalized
hnf{TERM} Γ u (AppTp t tp) hd = hnf Γ u t hd
hnf{TERM} Γ u (Sigma _ t) hd = hnf Γ u t hd
hnf{TERM} Γ u (Epsilon _ _ _ t) hd = hnf Γ u t hd
hnf{TERM} Γ u (IotaPair _ t1 t2 _ _) hd = hnf Γ u t1 hd
hnf{TERM} Γ u (IotaProj t _ _) hd = hnf Γ u t hd
hnf{TERM} Γ u (Phi _ eq t₁ t₂ _) hd = hnf Γ u t₂ hd
hnf{TERM} Γ u (Rho _ _ _ t _ t') hd = hnf Γ u t' hd
hnf{TERM} Γ u (Chi _ T t') hd = hnf Γ u t' hd
hnf{TERM} Γ u (Delta _ T t') hd = hnf Γ u t' hd
hnf{TERM} Γ u (Theta _ u' t ls) hd = hnf Γ u (lterms-to-term u' t ls) hd
hnf{TERM} Γ u (Beta _ _ (SomeTerm t _)) hd = hnf Γ u t hd
hnf{TERM} Γ u (Beta _ _ NoTerm) hd = id-term
hnf{TERM} Γ u (Open _ _ t) hd = hnf Γ u t hd
hnf{TERM} Γ u x hd = x
hnf{TYPE} Γ no-unfolding e _ = e
hnf{TYPE} Γ u (TpParens _ t _) hd = hnf Γ u t hd
hnf{TYPE} Γ u (NoSpans t _) hd = hnf Γ u t hd
hnf{TYPE} Γ (unfold b b' _ _) (TpVar _ x) ff = TpVar posinfo-gen x
hnf{TYPE} Γ (unfold b b' _ _) (TpVar _ x) tt with ctxt-lookup-type-var-def Γ x
hnf{TYPE} Γ (unfold b b' _ _) (TpVar _ x) tt | just tp = tp
hnf{TYPE} Γ (unfold b b' _ _) (TpVar _ x) tt | nothing = TpVar posinfo-gen x
hnf{TYPE} Γ u (TpAppt tp t) hd with hnf Γ u tp hd
hnf{TYPE} Γ u (TpAppt _ t) hd | TpLambda _ _ x _ tp = hnf Γ u (subst Γ t x tp) hd
hnf{TYPE} Γ u (TpAppt _ t) hd | tp = TpAppt tp (erase-if (unfolding-get-erased u) t)
hnf{TYPE} Γ u (TpApp tp tp') hd with hnf Γ u tp hd
hnf{TYPE} Γ u (TpApp _ tp') hd | TpLambda _ _ x _ tp = hnf Γ u (subst Γ tp' x tp) hd
hnf{TYPE} Γ u (TpApp _ tp') hd | tp with hnf Γ u tp' hd
hnf{TYPE} Γ u (TpApp _ _) hd | tp | tp' = try-pull-lift-types tp tp'
{- given (T1 T2), with T1 and T2 types, see if we can pull a lifting operation from the heads of T1 and T2 to
surround the entire application. If not, just return (T1 T2). -}
where try-pull-lift-types : type → type → type
try-pull-lift-types tp1 tp2 with decompose-tpapps tp1 | decompose-tpapps (hnf Γ u tp2 tt)
try-pull-lift-types tp1 tp2 | Lft _ _ X t l , args1 | Lft _ _ X' t' l' , args2 =
if conv-tty* Γ args1 args2 then
try-pull-term-in Γ t l (length args1) [] []
else
TpApp tp1 tp2
where try-pull-term-in : ctxt → term → liftingType → ℕ → 𝕃 var → 𝕃 liftingType → type
try-pull-term-in Γ t (LiftParens _ l _) n vars ltps = try-pull-term-in Γ t l n vars ltps
try-pull-term-in Γ t (LiftArrow _ l) 0 vars ltps =
recompose-tpapps
(Lft posinfo-gen posinfo-gen X
(Lam* vars (hnf Γ no-unfolding (App t NotErased (App* t' (map (λ v → NotErased , mvar v) vars))) tt))
(LiftArrow* ltps l) , args1)
try-pull-term-in Γ (Lam _ _ _ x _ t) (LiftArrow l1 l2) (suc n) vars ltps =
try-pull-term-in (ctxt-var-decl x Γ) t l2 n (x :: vars) (l1 :: ltps)
try-pull-term-in Γ t (LiftArrow l1 l2) (suc n) vars ltps =
let x = fresh-var "x" (ctxt-binds-var Γ) empty-renamectxt in
try-pull-term-in (ctxt-var-decl x Γ) (App t NotErased (mvar x)) l2 n (x :: vars) (l1 :: ltps)
try-pull-term-in Γ t l n vars ltps = TpApp tp1 tp2
try-pull-lift-types tp1 tp2 | _ | _ = TpApp tp1 tp2
hnf{TYPE} Γ u (Abs _ b _ x atk tp) _ with Abs posinfo-gen b posinfo-gen x atk (hnf (ctxt-var-decl x Γ) u tp ff)
hnf{TYPE} Γ u (Abs _ b _ x atk tp) _ | tp' with to-abs tp'
hnf{TYPE} Γ u (Abs _ _ _ _ _ _) _ | tp'' | just (mk-abs b x atk tt {- x is free in tp -} tp) = Abs posinfo-gen b posinfo-gen x atk tp
hnf{TYPE} Γ u (Abs _ _ _ _ _ _) _ | tp'' | just (mk-abs b x (Tkk k) ff tp) = Abs posinfo-gen b posinfo-gen x (Tkk k) tp
hnf{TYPE} Γ u (Abs _ _ _ _ _ _) _ | tp'' | just (mk-abs b x (Tkt tp') ff tp) = TpArrow tp' b tp
hnf{TYPE} Γ u (Abs _ _ _ _ _ _) _ | tp'' | nothing = tp''
hnf{TYPE} Γ u (TpArrow tp1 arrowtype tp2) _ = TpArrow (hnf Γ u tp1 ff) arrowtype (hnf Γ u tp2 ff)
hnf{TYPE} Γ u (TpEq _ t1 t2 _) _
= TpEq posinfo-gen (erase t1) (erase t2) posinfo-gen
hnf{TYPE} Γ u (TpLambda _ _ x atk tp) _ =
TpLambda posinfo-gen posinfo-gen x (hnf Γ u atk ff) (hnf (ctxt-var-decl x Γ) u tp ff)
hnf{TYPE} Γ u @ (unfold b tt b'' b''') (Lft _ _ y t l) _ =
let t = hnf (ctxt-var-decl y Γ) u t tt in
do-lift Γ (Lft posinfo-gen posinfo-gen y t l) y l (λ t → hnf{TERM} Γ unfold-head t ff) t
-- We need hnf{TYPE} to preserve types' well-kindedness, so we must check if
-- the defined term is being checked against a type and use chi to make sure
-- that wherever it is substituted, the term will have the same directionality.
-- For example, "[e ◂ {a ≃ b} = ρ e' - β] - A (ρ e - a)", would otherwise
-- head-normalize to A (ρ (ρ e' - β) - a), which wouldn't check because it
-- synthesizes the type of "ρ e' - β" (which in turn fails to synthesize the type
-- of "β"). Similar issues could happen if the term is synthesized and it uses a ρ,
-- and then substitutes into a place where it would be checked against a type.
hnf{TYPE} Γ u (TpLet _ (DefTerm _ x ot t) T) hd =
hnf Γ u (subst Γ (Chi posinfo-gen ot t) x T) hd
-- Note that if we ever remove the requirement that type-lambdas have a classifier,
-- we would need to introduce a type-level chi to do the same thing as above.
-- Currently, synthesizing or checking a type should not make a difference.
hnf{TYPE} Γ u (TpLet _ (DefType _ x k T) T') hd = hnf Γ u (subst Γ T x T') hd
hnf{TYPE} Γ u x _ = x
hnf{KIND} Γ no-unfolding e hd = e
hnf{KIND} Γ u (KndParens _ k _) hd = hnf Γ u k hd
hnf{KIND} Γ (unfold _ _ _ _) (KndVar _ x ys) _ with ctxt-lookup-kind-var-def Γ x
... | nothing = KndVar posinfo-gen x ys
... | just (ps , k) = fst $ subst-params-args Γ ps ys k {- do-subst ys ps k
where do-subst : args → params → kind → kind
do-subst (ArgsCons (TermArg _ t) ys) (ParamsCons (Decl _ _ _ x _ _) ps) k = do-subst ys ps (subst Γ t x k)
do-subst (ArgsCons (TypeArg t) ys) (ParamsCons (Decl _ _ _ x _ _) ps) k = do-subst ys ps (subst Γ t x k)
do-subst _ _ k = k -- should not happen -}
hnf{KIND} Γ u (KndPi _ _ x atk k) hd =
if is-free-in check-erased x k then
(KndPi posinfo-gen posinfo-gen x atk k)
else
tk-arrow-kind atk k
hnf{KIND} Γ u x hd = x
hnf{LIFTINGTYPE} Γ u x hd = x
hnf{TK} Γ u (Tkk k) _ = Tkk (hnf Γ u k tt)
hnf{TK} Γ u (Tkt tp) _ = Tkt (hnf Γ u tp ff)
hnf{QUALIF} Γ u x hd = x
hnf{ARG} Γ u x hd = x
hnf-optClass Γ u NoClass = NoClass
hnf-optClass Γ u (SomeClass atk) = SomeClass (hnf Γ u atk ff)
{- this function reduces a term to "head-applicative" normal form,
which avoids unfolding definitions if they would lead to a top-level
lambda-abstraction or top-level application headed by a variable for which we
do not have a (global) definition. -}
{-# TERMINATING #-}
hanf : ctxt → (e : 𝔹) → term → term
hanf Γ e t with hnf Γ (unfolding-set-erased unfold-head-one e) t tt
hanf Γ e t | t' with decompose-apps t'
hanf Γ e t | t' | (Var _ x) , [] = t'
hanf Γ e t | t' | (Var _ x) , args with ctxt-lookup-term-var-def Γ x
hanf Γ e t | t' | (Var _ x) , args | nothing = t'
hanf Γ e t | t' | (Var _ x) , args | just _ = hanf Γ e t'
hanf Γ e t | t' | h , args {- h could be a Lambda if args is [] -} = t
-- unfold across the term-type barrier
hnf-term-type : ctxt → (e : 𝔹) → type → type
hnf-term-type Γ e (TpEq _ t1 t2 _) = TpEq posinfo-gen (hanf Γ e t1) (hanf Γ e t2) posinfo-gen
hnf-term-type Γ e (TpAppt tp t) = hnf Γ (unfolding-set-erased unfold-head e) (TpAppt tp (hanf Γ e t)) tt
hnf-term-type Γ e tp = hnf Γ unfold-head tp tt
conv-term-norm Γ (Var _ x) (Var _ x') = ctxt-eq-rep Γ x x'
-- hnf implements erasure for terms, so we can ignore some subterms for App and Lam cases below
conv-term-norm Γ (App t1 m t2) (App t1' m' t2') = conv-term-norm Γ t1 t1' && conv-term Γ t2 t2'
conv-term-norm Γ (Lam _ l _ x oc t) (Lam _ l' _ x' oc' t') = conv-term (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) t t'
conv-term-norm Γ (Hole _) _ = tt
conv-term-norm Γ _ (Hole _) = tt
-- conv-term-norm Γ (Beta _ _ NoTerm) (Beta _ _ NoTerm) = tt
-- conv-term-norm Γ (Beta _ _ (SomeTerm t _)) (Beta _ _ (SomeTerm t' _)) = conv-term Γ t t'
-- conv-term-norm Γ (Beta _ _ _) (Beta _ _ _) = ff
{- it can happen that a term is equal to a lambda abstraction in head-normal form,
if that lambda-abstraction would eta-contract following some further beta-reductions.
We implement this here by implicitly eta-expanding the variable and continuing
the comparison.
A simple example is
λ v . t ((λ a . a) v) ≃ t
-}
conv-term-norm Γ (Lam _ l _ x oc t) t' =
let x' = fresh-var x (ctxt-binds-var Γ) empty-renamectxt in
conv-term (ctxt-rename x x' Γ) t (App t' NotErased (Var posinfo-gen x'))
conv-term-norm Γ t' (Lam _ l _ x oc t) =
let x' = fresh-var x (ctxt-binds-var Γ) empty-renamectxt in
conv-term (ctxt-rename x x' Γ) (App t' NotErased (Var posinfo-gen x')) t
conv-term-norm Γ _ _ = ff
conv-type-norm Γ (TpVar _ x) (TpVar _ x') = ctxt-eq-rep Γ x x'
conv-type-norm Γ (TpApp t1 t2) (TpApp t1' t2') = conv-type-norm Γ t1 t1' && conv-type Γ t2 t2'
conv-type-norm Γ (TpAppt t1 t2) (TpAppt t1' t2') = conv-type-norm Γ t1 t1' && conv-term Γ t2 t2'
conv-type-norm Γ (Abs _ b _ x atk tp) (Abs _ b' _ x' atk' tp') =
eq-maybeErased b b' && conv-tk Γ atk atk' && conv-type (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) tp tp'
conv-type-norm Γ (TpArrow tp1 a1 tp2) (TpArrow tp1' a2 tp2') = eq-maybeErased a1 a2 && conv-type Γ tp1 tp1' && conv-type Γ tp2 tp2'
conv-type-norm Γ (TpArrow tp1 a tp2) (Abs _ b _ _ (Tkt tp1') tp2') = eq-maybeErased a b && conv-type Γ tp1 tp1' && conv-type Γ tp2 tp2'
conv-type-norm Γ (Abs _ b _ _ (Tkt tp1) tp2) (TpArrow tp1' a tp2') = eq-maybeErased a b && conv-type Γ tp1 tp1' && conv-type Γ tp2 tp2'
conv-type-norm Γ (Iota _ _ x m tp) (Iota _ _ x' m' tp') =
conv-type Γ m m' && conv-type (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) tp tp'
conv-type-norm Γ (TpEq _ t1 t2 _) (TpEq _ t1' t2' _) = conv-term Γ t1 t1' && conv-term Γ t2 t2'
conv-type-norm Γ (Lft _ _ x t l) (Lft _ _ x' t' l') =
conv-liftingType Γ l l' && conv-term (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) t t'
conv-type-norm Γ (TpLambda _ _ x atk tp) (TpLambda _ _ x' atk' tp') =
conv-tk Γ atk atk' && conv-type (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) tp tp'
conv-type-norm Γ _ _ = ff
{- even though hnf turns Pi-kinds where the variable is not free in the body into arrow kinds,
we still need to check off-cases, because normalizing the body of a kind could cause the
bound variable to be erased (hence allowing it to match an arrow kind). -}
conv-kind-norm Γ (KndArrow k k₁) (KndArrow k' k'') = conv-kind Γ k k' && conv-kind Γ k₁ k''
conv-kind-norm Γ (KndArrow k k₁) (KndPi _ _ x (Tkk k') k'') = conv-kind Γ k k' && conv-kind Γ k₁ k''
conv-kind-norm Γ (KndArrow k k₁) _ = ff
conv-kind-norm Γ (KndPi _ _ x (Tkk k₁) k) (KndArrow k' k'') = conv-kind Γ k₁ k' && conv-kind Γ k k''
conv-kind-norm Γ (KndPi _ _ x atk k) (KndPi _ _ x' atk' k'') =
conv-tk Γ atk atk' && conv-kind (ctxt-rename x x' (ctxt-var-decl-if x' Γ)) k k''
conv-kind-norm Γ (KndPi _ _ x (Tkt t) k) (KndTpArrow t' k'') = conv-type Γ t t' && conv-kind Γ k k''
conv-kind-norm Γ (KndPi _ _ x (Tkt t) k) _ = ff
conv-kind-norm Γ (KndPi _ _ x (Tkk k') k) _ = ff
conv-kind-norm Γ (KndTpArrow t k) (KndTpArrow t' k') = conv-type Γ t t' && conv-kind Γ k k'
conv-kind-norm Γ (KndTpArrow t k) (KndPi _ _ x (Tkt t') k') = conv-type Γ t t' && conv-kind Γ k k'
conv-kind-norm Γ (KndTpArrow t k) _ = ff
conv-kind-norm Γ (Star x) (Star x') = tt
conv-kind-norm Γ (Star x) _ = ff
conv-kind-norm Γ _ _ = ff -- should not happen, since the kinds are in hnf
conv-tk Γ tk tk' = conv-tke Γ (erase-tk tk) (erase-tk tk')
conv-tke Γ (Tkk k) (Tkk k') = conv-kind Γ k k'
conv-tke Γ (Tkt t) (Tkt t') = conv-type Γ t t'
conv-tke Γ _ _ = ff
conv-liftingType Γ l l' = conv-liftingTypee Γ (erase l) (erase l')
conv-liftingTypee Γ l l' = conv-kind Γ (liftingType-to-kind l) (liftingType-to-kind l')
conv-optClass Γ NoClass NoClass = tt
conv-optClass Γ (SomeClass x) (SomeClass x') = conv-tk Γ (erase-tk x) (erase-tk x')
conv-optClass Γ _ _ = ff
conv-optClasse Γ NoClass NoClass = tt
conv-optClasse Γ (SomeClass x) (SomeClass x') = conv-tk Γ x x'
conv-optClasse Γ _ _ = ff
-- conv-optType Γ NoType NoType = tt
-- conv-optType Γ (SomeType x) (SomeType x') = conv-type Γ x x'
-- conv-optType Γ _ _ = ff
conv-tty* Γ [] [] = tt
conv-tty* Γ (tterm t :: args) (tterm t' :: args')
= conv-term Γ (erase t) (erase t') && conv-tty* Γ args args'
conv-tty* Γ (ttype t :: args) (ttype t' :: args')
= conv-type Γ (erase t) (erase t') && conv-tty* Γ args args'
conv-tty* Γ _ _ = ff
conv-ttye* Γ [] [] = tt
conv-ttye* Γ (tterm t :: args) (tterm t' :: args') = conv-term Γ t t' && conv-ttye* Γ args args'
conv-ttye* Γ (ttype t :: args) (ttype t' :: args') = conv-type Γ t t' && conv-ttye* Γ args args'
conv-ttye* Γ _ _ = ff
hnf-qualif-term : ctxt → term → term
hnf-qualif-term Γ t = hnf Γ unfold-head (qualif-term Γ t) tt
hnf-qualif-type : ctxt → type → type
hnf-qualif-type Γ t = hnf Γ unfold-head (qualif-type Γ t) tt
hnf-qualif-kind : ctxt → kind → kind
hnf-qualif-kind Γ t = hnf Γ unfold-head (qualif-kind Γ t) tt
ctxt-params-def : params → ctxt → ctxt
ctxt-params-def ps Γ@(mk-ctxt (fn , mn , _ , q) syms i symb-occs d) =
mk-ctxt (fn , mn , ps' , q) syms i symb-occs d
where ps' = qualif-params Γ ps
ctxt-kind-def : posinfo → var → params → kind → ctxt → ctxt
ctxt-kind-def pi v ps2 k Γ@(mk-ctxt (fn , mn , ps1 , q) (syms , mn-fn) i symb-occs d) = mk-ctxt
(fn , mn , ps1 , qualif-insert-params q (mn # v) v ps1)
(trie-insert-append2 syms fn mn v , mn-fn)
(trie-insert i (mn # v) (kind-def (append-params ps1 $ qualif-params Γ ps2) k' , fn , pi))
symb-occs
d
where
k' = hnf Γ unfold-head (qualif-kind Γ k) tt
-- assumption: classifier (i.e. kind) already qualified
ctxt-datatype-def : posinfo → var → params → kind → defDatatype → ctxt → ctxt
ctxt-datatype-def pi v pa k dd Γ@(mk-ctxt (fn , mn , ps , q) (syms , mn-fn) i symb-occs d) = mk-ctxt
(fn , mn , ps , q')
((trie-insert-append2 syms fn mn v) , mn-fn)
(trie-insert i v' (datatype-def pa k , fn , pi))
symb-occs
(trie-insert d v' dd)
where
v' = mn # v
q' = qualif-insert-params q v' v ps
-- assumption: classifier (i.e. kind) already qualified
ctxt-type-def : posinfo → defScope → opacity → var → type → kind → ctxt → ctxt
ctxt-type-def pi s op v t k Γ@(mk-ctxt (fn , mn , ps , q) (syms , mn-fn) i symb-occs d) = mk-ctxt
(fn , mn , ps , q')
((if (s iff localScope) then syms else trie-insert-append2 syms fn mn v) , mn-fn)
(trie-insert i v' (type-def (def-params s ps) op t' k , fn , pi))
symb-occs
d
where
t' = hnf Γ unfold-head (qualif-type Γ t) tt
v' = if s iff localScope then pi % v else mn # v
q' = qualif-insert-params q v' v ps
ctxt-const-def : posinfo → var → type → ctxt → ctxt
ctxt-const-def pi c t Γ@(mk-ctxt mod@(fn , mn , ps , q) (syms , mn-fn) i symb-occs d) = mk-ctxt
(fn , mn , ps , q')
((trie-insert-append2 syms fn mn c) , mn-fn)
(trie-insert i c' (const-def t , fn , pi))
symb-occs
d
where
c' = mn # c
q' = qualif-insert-params q c' c ps
-- assumption: classifier (i.e. type) already qualified
ctxt-term-def : posinfo → defScope → opacity → var → term → type → ctxt → ctxt
ctxt-term-def pi s op v t tp Γ@(mk-ctxt (fn , mn , ps , q) (syms , mn-fn) i symb-occs d) = mk-ctxt
(fn , mn , ps , q')
((if (s iff localScope) then syms else trie-insert-append2 syms fn mn v) , mn-fn)
(trie-insert i v' (term-def (def-params s ps) op t' tp , fn , pi))
symb-occs
d
where
t' = hnf Γ unfold-head (qualif-term Γ t) tt
v' = if s iff localScope then pi % v else mn # v
q' = qualif-insert-params q v' v ps
ctxt-term-udef : posinfo → defScope → opacity → var → term → ctxt → ctxt
ctxt-term-udef pi s op v t Γ@(mk-ctxt (fn , mn , ps , q) (syms , mn-fn) i symb-occs d) = mk-ctxt
(fn , mn , ps , qualif-insert-params q v' v ps)
((if (s iff localScope) then syms else trie-insert-append2 syms fn mn v) , mn-fn)
(trie-insert i v' (term-udef (def-params s ps) op t' , fn , pi))
symb-occs
d
where
t' = hnf Γ unfold-head (qualif-term Γ t) tt
v' = if s iff localScope then pi % v else mn # v
|
algebraic-stack_agda0000_doc_8719 | {-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Paths
open import lib.types.Sigma
open import lib.types.Span
open import lib.types.Pointed
open import lib.types.Pushout
module lib.types.Join where
module _ {i j} (A : Type i) (B : Type j) where
*-span : Span
*-span = span A B (A × B) fst snd
infix 80 _*_
_*_ : Type _
_*_ = Pushout *-span
module JoinElim {i j} {A : Type i} {B : Type j} {k} {P : A * B → Type k}
(left* : (a : A) → P (left a)) (right* : (b : B) → P (right b))
(glue* : (ab : A × B) → left* (fst ab) == right* (snd ab) [ P ↓ glue ab ])
= PushoutElim left* right* glue*
open JoinElim public using () renaming (f to Join-elim)
module JoinRec {i j} {A : Type i} {B : Type j} {k} {D : Type k}
(left* : (a : A) → D) (right* : (b : B) → D)
(glue* : (ab : A × B) → left* (fst ab) == right* (snd ab))
= PushoutRec left* right* glue*
open JoinRec public using () renaming (f to Join-rec)
module _ {i j} (X : Ptd i) (Y : Ptd j) where
*-⊙span : ⊙Span
*-⊙span = ⊙span X Y (X ⊙× Y) ⊙fst ⊙snd
infix 80 _⊙*_
_⊙*_ : Ptd _
_⊙*_ = ⊙Pushout *-⊙span
module _ {i i' j j'} {A : Type i} {A' : Type i'} {B : Type j} {B' : Type j'} where
equiv-* : A ≃ A' → B ≃ B' → A * B ≃ A' * B'
equiv-* eqA eqB = equiv to from to-from from-to where
module To = JoinRec {D = A' * B'} (left ∘ –> eqA) (right ∘ –> eqB) (λ{(a , b) → glue (–> eqA a , –> eqB b)})
module From = JoinRec {D = A * B} (left ∘ <– eqA) (right ∘ <– eqB) (λ{(a , b) → glue (<– eqA a , <– eqB b)})
to : A * B → A' * B'
to = To.f
from : A' * B' → A * B
from = From.f
to-from : ∀ y → to (from y) == y
to-from = Join-elim (ap left ∘ <–-inv-r eqA) (ap right ∘ <–-inv-r eqB) to-from-glue where
to-from-glue : ∀ (ab : A' × B')
→ ap left (<–-inv-r eqA (fst ab)) == ap right (<–-inv-r eqB (snd ab)) [ (λ y → to (from y) == y) ↓ glue ab ]
to-from-glue (a , b) = ↓-app=idf-in $
ap left (<–-inv-r eqA a) ∙' glue (a , b)
=⟨ htpy-natural'-app=cst (λ a → glue (a , b)) (<–-inv-r eqA a) ⟩
glue (–> eqA (<– eqA a) , b)
=⟨ ! $ htpy-natural-cst=app (λ b → glue (–> eqA (<– eqA a) , b)) (<–-inv-r eqB b) ⟩
glue (–> eqA (<– eqA a) , –> eqB (<– eqB b)) ∙ ap right (<–-inv-r eqB b)
=⟨ ! $ To.glue-β (<– eqA a , <– eqB b) |in-ctx (_∙ ap right (<–-inv-r eqB b)) ⟩
ap to (glue (<– eqA a , <– eqB b)) ∙ ap right (<–-inv-r eqB b)
=⟨ ! $ From.glue-β (a , b) |in-ctx (λ p → ap to p ∙ ap right (<–-inv-r eqB b)) ⟩
ap to (ap from (glue (a , b))) ∙ ap right (<–-inv-r eqB b)
=⟨ ! $ ap-∘ to from (glue (a , b)) |in-ctx (_∙ ap right (<–-inv-r eqB b)) ⟩
ap (to ∘ from) (glue (a , b)) ∙ ap right (<–-inv-r eqB b)
∎
from-to : ∀ x → from (to x) == x
from-to = Join-elim (ap left ∘ <–-inv-l eqA) (ap right ∘ <–-inv-l eqB) from-to-glue where
from-to-glue : ∀ (ab : A × B)
→ ap left (<–-inv-l eqA (fst ab)) == ap right (<–-inv-l eqB (snd ab)) [ (λ x → from (to x) == x) ↓ glue ab ]
from-to-glue (a , b) = ↓-app=idf-in $
ap left (<–-inv-l eqA a) ∙' glue (a , b)
=⟨ htpy-natural'-app=cst (λ a → glue (a , b)) (<–-inv-l eqA a) ⟩
glue (<– eqA (–> eqA a) , b)
=⟨ ! $ htpy-natural-cst=app (λ b → glue (<– eqA (–> eqA a) , b)) (<–-inv-l eqB b) ⟩
glue (<– eqA (–> eqA a) , <– eqB (–> eqB b)) ∙ ap right (<–-inv-l eqB b)
=⟨ ! $ From.glue-β (–> eqA a , –> eqB b) |in-ctx (_∙ ap right (<–-inv-l eqB b)) ⟩
ap from (glue (–> eqA a , –> eqB b)) ∙ ap right (<–-inv-l eqB b)
=⟨ ! $ To.glue-β (a , b) |in-ctx (λ p → ap from p ∙ ap right (<–-inv-l eqB b)) ⟩
ap from (ap to (glue (a , b))) ∙ ap right (<–-inv-l eqB b)
=⟨ ! $ ap-∘ from to (glue (a , b)) |in-ctx (_∙ ap right (<–-inv-l eqB b)) ⟩
ap (from ∘ to) (glue (a , b)) ∙ ap right (<–-inv-l eqB b)
∎
module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} where
⊙equiv-⊙* : X ⊙≃ X' → Y ⊙≃ Y' → X ⊙* Y ⊙≃ X' ⊙* Y'
⊙equiv-⊙* ⊙eqX ⊙eqY = ⊙≃-in (equiv-* (fst (⊙≃-out ⊙eqX)) (fst (⊙≃-out ⊙eqY))) (ap left (snd (⊙≃-out ⊙eqX)))
|
algebraic-stack_agda0000_doc_8736 | {-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Category.Monoidal.Core using (Monoidal)
open import Categories.Category.Monoidal.Symmetric
open import Data.Sum
module Categories.Category.Monoidal.CompactClosed {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where
open import Level
open import Categories.Functor.Bifunctor
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.Category.Monoidal.Rigid
open Category C
open Commutation C
record CompactClosed : Set (levelOfTerm M) where
field
symmetric : Symmetric M
rigid : LeftRigid M ⊎ RightRigid M
|
algebraic-stack_agda0000_doc_8737 | {-# OPTIONS --rewriting #-}
data Unit : Set where
unit : Unit
_+_ : Unit → Unit → Unit
unit + x = x
data _≡_ (x : Unit) : Unit → Set where
refl : x ≡ x
{-# BUILTIN REWRITE _≡_ #-}
postulate
f : Unit → Unit
fu : f unit ≡ unit
{-# REWRITE fu #-}
g : Unit → Unit
g unit = unit
data D (h : Unit → Unit) (x : Unit) : Set where
wrap : Unit → D h x
run : ∀ {h x} → D h x → Unit
run (wrap x) = x
postulate
d₁ : ∀ n x y (p : D y n) → x (run p + n) ≡ y (run p + n) → D x n
d₂ : ∀ s n → D s n
d₂ _ _ = wrap unit
d₃ : D (λ _ → unit) unit
d₃ = d₁ _ (λ _ → unit) (λ n → f (g n)) (d₂ (λ n → f (g n)) _) refl
|
algebraic-stack_agda0000_doc_8738 | module Yoneda where
open import Level
open import Data.Product
open import Relation.Binary
import Relation.Binary.SetoidReasoning as SetR
open Setoid renaming (_≈_ to eqSetoid)
open import Basic
open import Category
import Functor
import Nat
open Category.Category
open Functor.Functor
open Nat.Nat
open Nat.Export
yoneda : ∀{C₀ C₁ ℓ} (C : Category C₀ C₁ ℓ) → Functor.Functor C PSh[ C ]
yoneda C = record {
fobj = λ x → Hom[ C ][-, x ] ;
fmapsetoid = λ {A} {B} → record { mapping = λ f → HomNat[ C ][-, f ] ; preserveEq = λ {x} {y} x₁ x₂ → begin⟨ C ⟩
Map.mapping (component HomNat[ C ][-, x ] _) x₂ ≈⟨ refl-hom C ⟩
C [ x ∘ x₂ ] ≈⟨ ≈-composite C x₁ (refl-hom C) ⟩
C [ y ∘ x₂ ] ≈⟨ refl-hom C ⟩
Map.mapping (component HomNat[ C ][-, y ] _) x₂
∎ } ;
preserveId = λ x → leftId C ;
preserveComp = λ x → assoc C
}
YonedaLemma : ∀{C₀ C₁ ℓ} {C : Category C₀ C₁ ℓ} {F : Obj PSh[ C ]} {X : Obj C} → Setoids [ Homsetoid [ op C , Setoids ] (fobj (yoneda C) X) F ≅ LiftSetoid {C₁} {suc (suc ℓ) ⊔ (suc (suc C₁) ⊔ suc C₀)} {ℓ} {C₀ ⊔ C₁ ⊔ ℓ} (fobj F X) ]
YonedaLemma {C₀} {C₁} {ℓ} {C} {F} {X} = record {
map-→ = nat→obj ;
map-← = obj→nat ;
proof = obj→obj≈id , nat→nat≈id }
where
nat→obj : Map.Map (Homsetoid [ op C , Setoids ] (fobj (yoneda C) X) F) (LiftSetoid (fobj F X))
nat→obj = record {
mapping = λ α → lift (Map.mapping (component α X) (id C)) ;
preserveEq = λ x≈y → lift (x≈y (id C)) }
obj→nat : Map.Map (LiftSetoid (fobj F X)) (Homsetoid [ op C , Setoids ] (fobj (yoneda C) X) F)
obj→nat = record {
mapping = λ a → record {
component = component-map a ;
naturality = λ {c} {d} {f} x → SetR.begin⟨ fobj F d ⟩
Map.mapping (Setoids [ component-map a d ∘ fmap (fobj (yoneda C) X) f ]) x SetR.≈⟨ refl (fobj F d) ⟩
Map.mapping (Map.mapping (fmapsetoid F) (C [ x ∘ f ])) (lower a) SetR.≈⟨ (preserveComp F) (lower a) ⟩
Map.mapping (Map.mapping (fmapsetoid F) f) (Map.mapping (Map.mapping (fmapsetoid F) x) (lower a)) SetR.≈⟨ refl (fobj F d) ⟩
Map.mapping (Setoids [ fmap F f ∘ component-map a c ]) x
SetR.∎} ;
preserveEq = λ {x} {y} x≈y f → SetR.begin⟨ fobj F _ ⟩
Map.mapping (component-map x _) f SetR.≈⟨ refl (fobj F _) ⟩
Map.mapping (Map.mapping (fmapsetoid F) f) (lower x) SetR.≈⟨ Map.preserveEq (fmap F f) (lower x≈y) ⟩
Map.mapping (Map.mapping (fmapsetoid F) f) (lower y) SetR.≈⟨ refl (fobj F _) ⟩
Map.mapping (component-map y _) f
SetR.∎}
where
component-map = λ a b → record {
mapping = λ u → Map.mapping (fmap F u) (lower a) ;
preserveEq = λ {x} {y} x≈y → SetR.begin⟨ fobj F b ⟩
Map.mapping (fmap F x) (lower a) SetR.≈⟨ (Functor.preserveEq F x≈y) (lower a) ⟩
Map.mapping (fmap F y) (lower a)
SetR.∎
}
obj→obj≈id : Setoids [ Setoids [ nat→obj ∘ obj→nat ] ≈ id Setoids ]
obj→obj≈id = λ x → lift (SetR.begin⟨ fobj F X ⟩
lower (Map.mapping (Setoids [ nat→obj ∘ obj→nat ]) x) SetR.≈⟨ refl (fobj F X) ⟩
Map.mapping (Map.mapping (fmapsetoid F) (id C)) (lower x) SetR.≈⟨ (preserveId F) (lower x) ⟩
lower x SetR.≈⟨ refl (fobj F X) ⟩
lower (Map.mapping {A = LiftSetoid {ℓ′ = ℓ} (fobj F X)} (id Setoids) x)
SetR.∎)
nat→nat≈id : Setoids [ Setoids [ obj→nat ∘ nat→obj ] ≈ id Setoids ]
nat→nat≈id α f = SetR.begin⟨ fobj F _ ⟩
Map.mapping (component (Map.mapping (Setoids [ obj→nat ∘ nat→obj ]) α) _) f SetR.≈⟨ refl (fobj F _) ⟩
Map.mapping (Setoids [ fmap F f ∘ component α X ]) (id C) SetR.≈⟨ lemma (id C) ⟩
Map.mapping (Setoids [ component α (dom C f) ∘ fmap (fobj (yoneda C) X) f ]) (id C) SetR.≈⟨ Map.preserveEq (component α (dom C f)) (leftId C) ⟩
Map.mapping (component α (dom C f)) f SetR.≈⟨ refl (fobj F _) ⟩
Map.mapping (component (Map.mapping (id Setoids {Homsetoid [ (op C) , Setoids ] _ _}) α) (dom C f)) f
SetR.∎
where
lemma : Setoids [ Setoids [ fmap F f ∘ component α X ] ≈ Setoids [ component α (dom C f) ∘ fmap (fobj (yoneda C) X) f ] ]
lemma = sym-hom Setoids {f = Setoids [ component α (dom C f) ∘ fmap (fobj (yoneda C) X) f ]} {g = Setoids [ fmap F f ∘ component α X ]} (naturality α)
|
algebraic-stack_agda0000_doc_8739 | ------------------------------------------------------------------------
-- "Equational" reasoning combinator setup
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
open import Labelled-transition-system
module Similarity.Weak.Equational-reasoning-instances
{ℓ} {lts : LTS ℓ} where
open import Bisimilarity lts
open import Bisimilarity.Weak lts
import Bisimilarity.Weak.Equational-reasoning-instances
open import Equational-reasoning
open import Expansion lts
import Expansion.Equational-reasoning-instances
open import Similarity lts
open import Similarity.Weak lts
instance
reflexive≼ : ∀ {i} → Reflexive [ i ]_≼_
reflexive≼ = is-reflexive reflexive-≼
reflexive≼′ : ∀ {i} → Reflexive [ i ]_≼′_
reflexive≼′ = is-reflexive reflexive-≼′
convert≼≼ : ∀ {i} → Convertible [ i ]_≼_ [ i ]_≼_
convert≼≼ = is-convertible id
convert≼′≼ : ∀ {i} → Convertible _≼′_ [ i ]_≼_
convert≼′≼ = is-convertible λ p≼′q → force p≼′q
convert≼≼′ : ∀ {i} → Convertible [ i ]_≼_ [ i ]_≼′_
convert≼≼′ {i} = is-convertible lemma
where
lemma : ∀ {p q} → [ i ] p ≼ q → [ i ] p ≼′ q
force (lemma p≼q) = p≼q
convert≼′≼′ : ∀ {i} → Convertible [ i ]_≼′_ [ i ]_≼′_
convert≼′≼′ = is-convertible id
convert≤≼ : ∀ {i} → Convertible [ i ]_≤_ [ i ]_≼_
convert≤≼ = is-convertible ≤⇒≼
convert≤′≼ : ∀ {i} → Convertible _≤′_ [ i ]_≼_
convert≤′≼ = is-convertible (convert ∘ ≤⇒≼′)
convert≤≼′ : ∀ {i} → Convertible [ i ]_≤_ [ i ]_≼′_
convert≤≼′ {i} = is-convertible lemma
where
lemma : ∀ {p q} → [ i ] p ≤ q → [ i ] p ≼′ q
force (lemma p≤q) = convert p≤q
convert≤′≼′ : ∀ {i} → Convertible [ i ]_≤′_ [ i ]_≼′_
convert≤′≼′ = is-convertible ≤⇒≼′
convert≈≼ : ∀ {i} → Convertible [ i ]_≈_ [ i ]_≼_
convert≈≼ = is-convertible ≈⇒≼
convert≈′≼ : ∀ {i} → Convertible _≈′_ [ i ]_≼_
convert≈′≼ = is-convertible (convert ∘ ≈⇒≼′)
convert≈≼′ : ∀ {i} → Convertible [ i ]_≈_ [ i ]_≼′_
convert≈≼′ {i} = is-convertible lemma
where
lemma : ∀ {p q} → [ i ] p ≈ q → [ i ] p ≼′ q
force (lemma p≈q) = convert p≈q
convert≈′≼′ : ∀ {i} → Convertible [ i ]_≈′_ [ i ]_≼′_
convert≈′≼′ = is-convertible ≈⇒≼′
convert∼≼ : ∀ {i} → Convertible [ i ]_∼_ [ i ]_≼_
convert∼≼ = is-convertible (≈⇒≼ ∘ convert {a = ℓ})
convert∼′≼ : ∀ {i} → Convertible _∼′_ [ i ]_≼_
convert∼′≼ = is-convertible (convert ∘ ≈⇒≼′ ∘ convert {a = ℓ})
convert∼≼′ : ∀ {i} → Convertible [ i ]_∼_ [ i ]_≼′_
convert∼≼′ {i} = is-convertible lemma
where
lemma : ∀ {p q} → [ i ] p ∼ q → [ i ] p ≼′ q
force (lemma p∼q) = ≈⇒≼ (convert {a = ℓ} p∼q)
convert∼′≼′ : ∀ {i} → Convertible [ i ]_∼′_ [ i ]_≼′_
convert∼′≼′ = is-convertible (≈⇒≼′ ∘ convert {a = ℓ})
trans≼≼ : ∀ {i} → Transitive′ [ i ]_≼_ _≼_
trans≼≼ = is-transitive transitive-≼
trans≼′≼ : Transitive′ _≼′_ _≼_
trans≼′≼ = is-transitive transitive-≼′
trans≼′≼′ : ∀ {i} → Transitive′ [ i ]_≼′_ _≼′_
trans≼′≼′ = is-transitive (λ p≼q → transitive-≼′ p≼q ∘ convert)
trans≼≼′ : ∀ {i} → Transitive′ [ i ]_≼_ _≼′_
trans≼≼′ = is-transitive (λ p≼q → transitive-≼ p≼q ∘ convert)
trans≳≼ : ∀ {i} → Transitive [ i ]_≳_ [ i ]_≼_
trans≳≼ = is-transitive transitive-≳≼
trans≳′≼ : ∀ {i} → Transitive _≳′_ [ i ]_≼_
trans≳′≼ = is-transitive (transitive-≳≼ ∘ convert {a = ℓ})
trans≳′≼′ : ∀ {i} → Transitive [ i ]_≳′_ [ i ]_≼′_
trans≳′≼′ = is-transitive transitive-≳≼′
trans≳≼′ : ∀ {i} → Transitive [ i ]_≳_ [ i ]_≼′_
trans≳≼′ = is-transitive (transitive-≳≼′ ∘ convert {a = ℓ})
|
algebraic-stack_agda0000_doc_8740 | {-# OPTIONS --safe --warning=error --without-K #-}
open import Numbers.Naturals.Semiring
open import Functions
open import LogicalFormulae
open import Groups.Definition
open import Rings.Definition
open import Rings.IntegralDomains.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Orders.Archimedean
module Fields.FieldOfFractions.Archimedean {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) {c : _} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) where
open import Groups.Cyclic.Definition
open import Fields.FieldOfFractions.Setoid I
open import Fields.FieldOfFractions.Group I
open import Fields.FieldOfFractions.Addition I
open import Fields.FieldOfFractions.Ring I
open import Fields.FieldOfFractions.Order I order
open import Fields.FieldOfFractions.Field I
open import Fields.Orders.Partial.Archimedean {F = fieldOfFractions} record { oRing = fieldOfFractionsPOrderedRing }
open import Rings.Orders.Partial.Lemmas pRing
open import Rings.Orders.Total.Lemmas
open Setoid S
open Equivalence eq
open Ring R
open Group additiveGroup
open TotallyOrderedRing order
open SetoidTotalOrder total
private
denomPower : (n : ℕ) → fieldOfFractionsSet.denom (positiveEltPower fieldOfFractionsGroup record { num = 1R ; denom = 1R ; denomNonzero = IntegralDomain.nontrivial I } n) ∼ 1R
denomPower zero = reflexive
denomPower (succ n) = transitive identIsIdent (denomPower n)
denomPlus : {a : A} .(a!=0 : a ∼ 0R → False) (n1 n2 : A) → Setoid._∼_ fieldOfFractionsSetoid (fieldOfFractionsPlus record { num = n1 ; denom = a ; denomNonzero = a!=0 } record { num = n2 ; denom = a ; denomNonzero = a!=0 }) (record { num = n1 + n2 ; denom = a ; denomNonzero = a!=0 })
denomPlus {a} a!=0 n1 n2 = transitive *Commutative (transitive (*WellDefined reflexive (transitive (+WellDefined *Commutative reflexive) (symmetric *DistributesOver+))) *Associative)
d : (a : fieldOfFractionsSet) → fieldOfFractionsSet.denom a ∼ 0R → False
d record { num = num ; denom = denom ; denomNonzero = denomNonzero } bad = exFalso (denomNonzero bad)
simpPower : (n : ℕ) → Setoid._∼_ fieldOfFractionsSetoid (positiveEltPower fieldOfFractionsGroup record { num = Ring.1R R ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I} n) record { num = positiveEltPower (Ring.additiveGroup R) (Ring.1R R) n ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I }
simpPower zero = Equivalence.reflexive (Setoid.eq fieldOfFractionsSetoid) {Group.0G fieldOfFractionsGroup}
simpPower (succ n) = Equivalence.transitive (Setoid.eq fieldOfFractionsSetoid) {record { denomNonzero = d (fieldOfFractionsPlus (record { num = 1R ; denom = 1R ; denomNonzero = λ t → IntegralDomain.nontrivial I t }) (positiveEltPower fieldOfFractionsGroup _ n)) }} {record { denomNonzero = λ t → IntegralDomain.nontrivial I (transitive (symmetric identIsIdent) t) }} {record { denomNonzero = IntegralDomain.nontrivial I }} (Group.+WellDefined fieldOfFractionsGroup {record { num = Ring.1R R ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I }} {positiveEltPower fieldOfFractionsGroup record { num = Ring.1R R ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I } n} {record { num = Ring.1R R ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I }} {record { num = positiveEltPower (Ring.additiveGroup R) (Ring.1R R) n ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I }} (Equivalence.reflexive (Setoid.eq fieldOfFractionsSetoid) {record { num = Ring.1R R ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I}}) (simpPower n)) (transitive (transitive (transitive *Commutative (transitive identIsIdent (+WellDefined identIsIdent identIsIdent))) (symmetric identIsIdent)) (*WellDefined (symmetric identIsIdent) reflexive))
lemma : (n : ℕ) {num denom : A} .(d!=0 : denom ∼ 0G → False) → (num * denom) < positiveEltPower additiveGroup 1R n → fieldOfFractionsComparison (record { num = num ; denom = denom ; denomNonzero = d!=0}) record { num = positiveEltPower additiveGroup (Ring.1R R) n ; denom = 1R ; denomNonzero = IntegralDomain.nontrivial I }
lemma n {num} {denom} d!=0 numdenom<n with totality 0G denom
... | inl (inl 0<denom) with totality 0G 1R
... | inl (inl 0<1) = {!!}
... | inl (inr x) = exFalso (1<0False order x)
... | inr x = exFalso (IntegralDomain.nontrivial I (symmetric x))
lemma n {num} {denom} d!=0 numdenom<n | inl (inr denom<0) with totality 0G 1R
... | inl (inl 0<1) = {!!}
... | inl (inr 1<0) = exFalso (1<0False order 1<0)
... | inr 0=1 = exFalso (IntegralDomain.nontrivial I (symmetric 0=1))
lemma n {num} {denom} d!=0 numdenom<n | inr 0=denom = exFalso (d!=0 (symmetric 0=denom))
fieldOfFractionsArchimedean : Archimedean (toGroup R pRing) → ArchimedeanField
fieldOfFractionsArchimedean arch (record { num = num ; denom = denom ; denomNonzero = denom!=0 }) 0<q with totality 0G denom ,, totality 0G 1R
... | inl (inl 0<denom) ,, inl (inl 0<1) rewrite refl { x = 0} = {!!}
... | inl (inl 0<denom) ,, inl (inr x) = exFalso {!!}
... | inl (inl 0<denom) ,, inr x = exFalso {!!}
... | inl (inr denom<0) ,, inl (inl 0<1) = 0 , {!!}
where
t : {!!}
t = {!!}
... | inl (inr denom<0) ,, inl (inr x) = exFalso {!!}
... | inl (inr denom<0) ,, inr x = exFalso {!!}
... | inr x ,, snd = exFalso (denom!=0 (symmetric x))
--... | N , pr = N , SetoidPartialOrder.<WellDefined fieldOfFractionsOrder {record { denomNonzero = denom!=0 }} {record { denomNonzero = denom!=0 }} {record { denomNonzero = λ t → nonempty (symmetric t) }} {record { denomNonzero = d (positiveEltPower fieldOfFractionsGroup record { num = 1R ; denom = 1R ; denomNonzero = λ t → nonempty (symmetric t) } N) }} (Equivalence.reflexive (Setoid.eq fieldOfFractionsSetoid) { record { denomNonzero = denom!=0 } }) (Equivalence.symmetric (Setoid.eq fieldOfFractionsSetoid) {record { denomNonzero = λ t → d (positiveEltPower fieldOfFractionsGroup record { num = 1R ; denom = 1R ; denomNonzero = λ t → nonempty (symmetric t) } N) t }} {record { denomNonzero = λ t → nonempty (symmetric t) }} (simpPower N)) (lemma N denom!=0 pr)
fieldOfFractionsArchimedean' : Archimedean (toGroup R pRing) → Archimedean (toGroup fieldOfFractionsRing fieldOfFractionsPOrderedRing)
fieldOfFractionsArchimedean' arch = archFieldToGrp (reciprocalPositive fieldOfFractionsOrderedRing) (fieldOfFractionsArchimedean arch)
|
algebraic-stack_agda0000_doc_8741 | ------------------------------------------------------------------------
-- Vectors parameterised on types in Set₁
------------------------------------------------------------------------
-- I want universe polymorphism.
module Data.Vec1 where
infixr 5 _∷_
open import Data.Nat
open import Data.Vec using (Vec; []; _∷_)
open import Data.Fin
------------------------------------------------------------------------
-- The type
data Vec₁ (a : Set₁) : ℕ → Set₁ where
[] : Vec₁ a zero
_∷_ : ∀ {n} (x : a) (xs : Vec₁ a n) → Vec₁ a (suc n)
------------------------------------------------------------------------
-- Some operations
map : ∀ {a b n} → (a → b) → Vec₁ a n → Vec₁ b n
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
map₀₁ : ∀ {a b n} → (a → b) → Vec a n → Vec₁ b n
map₀₁ f [] = []
map₀₁ f (x ∷ xs) = f x ∷ map₀₁ f xs
map₁₀ : ∀ {a b n} → (a → b) → Vec₁ a n → Vec b n
map₁₀ f [] = []
map₁₀ f (x ∷ xs) = f x ∷ map₁₀ f xs
lookup : ∀ {a n} → Fin n → Vec₁ a n → a
lookup zero (x ∷ xs) = x
lookup (suc i) (x ∷ xs) = lookup i xs
|
algebraic-stack_agda0000_doc_8742 |
open import Common.Prelude
open import Common.Reflection
open import Common.Equality
postulate
trustme : ∀ {a} {A : Set a} {x y : A} → x ≡ y
magic : List (Arg Type) → Term → Tactic
magic _ _ = give (def (quote trustme) [])
id : ∀ {a} {A : Set a} → A → A
id x = x
science : List (Arg Type) → Term → Tactic
science _ _ = give (def (quote id) [])
by-magic : ∀ n → n + 4 ≡ 3
by-magic n = tactic magic
by-science : ∀ n → 0 + n ≡ n
by-science n = tactic science | refl
|
algebraic-stack_agda0000_doc_8743 | module Issue274 where
-- data ⊥ : Set where
record U : Set where
constructor roll
field ap : U → U
-- lemma : U → ⊥
-- lemma (roll u) = lemma (u (roll u))
-- bottom : ⊥
-- bottom = lemma (roll λ x → x)
|
algebraic-stack_agda0000_doc_8744 | {-# OPTIONS --without-K #-}
open import HoTT
module cohomology.Choice where
unchoose : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : A → Type j}
→ Trunc n (Π A B) → Π A (Trunc n ∘ B)
unchoose = Trunc-rec (Π-level (λ _ → Trunc-level)) (λ f → [_] ∘ f)
has-choice : ∀ {i j} (n : ℕ₋₂) (A : Type i) (B : A → Type j) → Type (lmax i j)
has-choice {i} {j} n A B = is-equiv (unchoose {n = n} {A} {B})
{- Binary Choice -}
module _ {k} where
pick-Bool : ∀ {j} {C : Lift {j = k} Bool → Type j}
→ (C (lift true)) → (C (lift false)) → Π (Lift Bool) C
pick-Bool x y (lift true) = x
pick-Bool x y (lift false) = y
pick-Bool-η : ∀ {j} {C : Lift Bool → Type j} (f : Π (Lift Bool) C)
→ pick-Bool (f (lift true)) (f (lift false)) == f
pick-Bool-η {C = C} f = λ= lemma
where
lemma : (b : Lift Bool) →
pick-Bool {C = C} (f (lift true)) (f (lift false)) b == f b
lemma (lift true) = idp
lemma (lift false) = idp
module _ {i} {n : ℕ₋₂} {A : Lift {j = k} Bool → Type i} where
choose-Bool : Π (Lift Bool) (Trunc n ∘ A) → Trunc n (Π (Lift Bool) A)
choose-Bool f = Trunc-rec Trunc-level
(λ ft → Trunc-rec Trunc-level
(λ ff → [ pick-Bool ft ff ] )
(f (lift false)))
(f (lift true))
choose-Bool-squash : (f : Π (Lift Bool) A)
→ choose-Bool (λ b → [ f b ]) == [ f ]
choose-Bool-squash f = ap [_] (pick-Bool-η f)
private
unc-c : ∀ f → unchoose (choose-Bool f) == f
unc-c f = transport
(λ h → unchoose (choose-Bool h) == h)
(pick-Bool-η f)
(Trunc-elim
{P = λ tft →
unchoose (choose-Bool (pick-Bool tft (f (lift false))))
== pick-Bool tft (f (lift false))}
(λ _ → =-preserves-level _ (Π-level (λ _ → Trunc-level)))
(λ ft → Trunc-elim
{P = λ tff →
unchoose (choose-Bool (pick-Bool [ ft ] tff ))
== pick-Bool [ ft ] tff}
(λ _ → =-preserves-level _ (Π-level (λ _ → Trunc-level)))
(λ ff → ! (pick-Bool-η _))
(f (lift false)))
(f (lift true)))
c-unc : ∀ tg → choose-Bool (unchoose tg) == tg
c-unc = Trunc-elim
{P = λ tg → choose-Bool (unchoose tg) == tg}
(λ _ → =-preserves-level _ Trunc-level)
(λ g → ap [_] (pick-Bool-η g))
Bool-has-choice : has-choice n (Lift Bool) A
Bool-has-choice = is-eq unchoose choose-Bool unc-c c-unc
|
algebraic-stack_agda0000_doc_8745 | {-# OPTIONS --without-K #-}
module Data.Tuple where
open import Data.Tuple.Base public
import Data.Product as P
Pair→× : ∀ {a b A B} → Pair {a} {b} A B → A P.× B
Pair→× (fst , snd) = fst P., snd
×→Pair : ∀ {a b A B} → P._×_ {a} {b} A B → Pair A B
×→Pair (fst P., snd) = fst , snd
|
algebraic-stack_agda0000_doc_8746 | module Type.NbE where
open import Context
open import Type.Core
open import Function
open import Data.Empty
open import Data.Sum.Base
infix 3 _⊢ᵗⁿᵉ_ _⊢ᵗⁿᶠ_ _⊨ᵗ_
infixl 9 _[_]ᵗ
mutual
Starⁿᵉ : Conᵏ -> Set
Starⁿᵉ Θ = Θ ⊢ᵗⁿᵉ ⋆
Starⁿᶠ : Conᵏ -> Set
Starⁿᶠ Θ = Θ ⊢ᵗⁿᶠ ⋆
data _⊢ᵗⁿᵉ_ Θ : Kind -> Set where
Varⁿᵉ : ∀ {σ} -> σ ∈ Θ -> Θ ⊢ᵗⁿᵉ σ
_∙ⁿᵉ_ : ∀ {σ τ} -> Θ ⊢ᵗⁿᵉ σ ⇒ᵏ τ -> Θ ⊢ᵗⁿᶠ σ -> Θ ⊢ᵗⁿᵉ τ
_⇒ⁿᵉ_ : Starⁿᵉ Θ -> Starⁿᵉ Θ -> Starⁿᵉ Θ
πⁿᵉ : ∀ σ -> Starⁿᵉ (Θ ▻ σ) -> Starⁿᵉ Θ
μⁿᵉ : ∀ {κ} -> Θ ⊢ᵗⁿᶠ (κ ⇒ᵏ ⋆) ⇒ᵏ κ ⇒ᵏ ⋆ -> Θ ⊢ᵗⁿᶠ κ -> Starⁿᵉ Θ
data _⊢ᵗⁿᶠ_ Θ : Kind -> Set where
Neⁿᶠ : ∀ {σ} -> Θ ⊢ᵗⁿᵉ σ -> Θ ⊢ᵗⁿᶠ σ
Lamⁿᶠ_ : ∀ {σ τ} -> Θ ▻ σ ⊢ᵗⁿᶠ τ -> Θ ⊢ᵗⁿᶠ σ ⇒ᵏ τ
mutual
embᵗⁿᵉ : ∀ {Θ σ} -> Θ ⊢ᵗⁿᵉ σ -> Θ ⊢ᵗ σ
embᵗⁿᵉ (Varⁿᵉ v) = Var v
embᵗⁿᵉ (φ ∙ⁿᵉ α) = embᵗⁿᵉ φ ∙ embᵗⁿᶠ α
embᵗⁿᵉ (α ⇒ⁿᵉ β) = embᵗⁿᵉ α ⇒ embᵗⁿᵉ β
embᵗⁿᵉ (πⁿᵉ σ α) = π σ (embᵗⁿᵉ α)
embᵗⁿᵉ (μⁿᵉ ψ α) = μ (embᵗⁿᶠ ψ) (embᵗⁿᶠ α)
embᵗⁿᶠ : ∀ {Θ σ} -> Θ ⊢ᵗⁿᶠ σ -> Θ ⊢ᵗ σ
embᵗⁿᶠ (Neⁿᶠ α) = embᵗⁿᵉ α
embᵗⁿᶠ (Lamⁿᶠ β) = Lam (embᵗⁿᶠ β)
mutual
renᵗⁿᵉ : ∀ {Θ Ξ σ} -> Θ ⊆ Ξ -> Θ ⊢ᵗⁿᵉ σ -> Ξ ⊢ᵗⁿᵉ σ
renᵗⁿᵉ ι (Varⁿᵉ v) = Varⁿᵉ (renᵛ ι v)
renᵗⁿᵉ ι (φ ∙ⁿᵉ α) = renᵗⁿᵉ ι φ ∙ⁿᵉ renᵗⁿᶠ ι α
renᵗⁿᵉ ι (α ⇒ⁿᵉ β) = renᵗⁿᵉ ι α ⇒ⁿᵉ renᵗⁿᵉ ι β
renᵗⁿᵉ ι (πⁿᵉ σ α) = πⁿᵉ σ (renᵗⁿᵉ (keep ι) α)
renᵗⁿᵉ ι (μⁿᵉ ψ α) = μⁿᵉ (renᵗⁿᶠ ι ψ) (renᵗⁿᶠ ι α)
renᵗⁿᶠ : ∀ {Θ Ξ σ} -> Θ ⊆ Ξ -> Θ ⊢ᵗⁿᶠ σ -> Ξ ⊢ᵗⁿᶠ σ
renᵗⁿᶠ ι (Neⁿᶠ α) = Neⁿᶠ (renᵗⁿᵉ ι α)
renᵗⁿᶠ ι (Lamⁿᶠ β) = Lamⁿᶠ (renᵗⁿᶠ (keep ι) β)
mutual
_⊨ᵗ_ : Conᵏ -> Kind -> Set
Θ ⊨ᵗ σ = Θ ⊢ᵗⁿᵉ σ ⊎ Kripke Θ σ
Kripke : Conᵏ -> Kind -> Set
Kripke Θ ⋆ = ⊥
Kripke Θ (σ ⇒ᵏ τ) = ∀ {Ξ} -> Θ ⊆ Ξ -> Ξ ⊨ᵗ σ -> Ξ ⊨ᵗ τ
Neˢ : ∀ {σ Θ} -> Θ ⊢ᵗⁿᵉ σ -> Θ ⊨ᵗ σ
Neˢ = inj₁
Varˢ : ∀ {σ Θ} -> σ ∈ Θ -> Θ ⊨ᵗ σ
Varˢ = Neˢ ∘ Varⁿᵉ
renᵗˢ : ∀ {σ Θ Δ} -> Θ ⊆ Δ -> Θ ⊨ᵗ σ -> Δ ⊨ᵗ σ
renᵗˢ ι (inj₁ α) = inj₁ (renᵗⁿᵉ ι α)
renᵗˢ {⋆} ι (inj₂ ())
renᵗˢ {σ ⇒ᵏ τ} ι (inj₂ k) = inj₂ λ κ -> k (κ ∘ ι)
readbackᵗ : ∀ {σ Θ} -> Θ ⊨ᵗ σ -> Θ ⊢ᵗⁿᶠ σ
readbackᵗ (inj₁ α) = Neⁿᶠ α
readbackᵗ {⋆} (inj₂ ())
readbackᵗ {σ ⇒ᵏ τ} (inj₂ k) = Lamⁿᶠ (readbackᵗ (k topᵒ (Varˢ vz)))
_∙ˢ_ : ∀ {Θ σ τ} -> Θ ⊨ᵗ σ ⇒ᵏ τ -> Θ ⊨ᵗ σ -> Θ ⊨ᵗ τ
inj₁ f ∙ˢ x = Neˢ (f ∙ⁿᵉ readbackᵗ x)
inj₂ k ∙ˢ x = k idᵒ x
groundⁿᵉ : ∀ {Θ} -> Θ ⊨ᵗ ⋆ -> Θ ⊢ᵗⁿᵉ ⋆
groundⁿᵉ (inj₁ α) = α
groundⁿᵉ (inj₂ ())
environmentᵗˢ : Environment _⊨ᵗ_
environmentᵗˢ = record
{ varᵈ = Varˢ
; renᵈ = renᵗˢ
}
module _ where
open Environment environmentᵗˢ
mutual
evalᵗ : ∀ {Θ Ξ σ} -> Ξ ⊢ᵉ Θ -> Θ ⊢ᵗ σ -> Ξ ⊨ᵗ σ
evalᵗ ρ (Var v) = lookupᵉ v ρ
evalᵗ ρ (Lam β) = inj₂ λ ι α -> evalᵗ (renᵉ ι ρ ▷ α) β
evalᵗ ρ (φ ∙ α) = evalᵗ ρ φ ∙ˢ evalᵗ ρ α
evalᵗ ρ (α ⇒ β) = inj₁ $ groundⁿᵉ (evalᵗ ρ α) ⇒ⁿᵉ groundⁿᵉ (evalᵗ ρ β)
evalᵗ ρ (π σ α) = inj₁ $ πⁿᵉ σ ∘ groundⁿᵉ $ evalᵗ (keepᵉ ρ) α
evalᵗ ρ (μ ψ α) = inj₁ $ μⁿᵉ (nfᵗ ρ ψ) (nfᵗ ρ α)
nfᵗ : ∀ {Θ Ξ σ} -> Ξ ⊢ᵉ Θ -> Θ ⊢ᵗ σ -> Ξ ⊢ᵗⁿᶠ σ
nfᵗ ρ = readbackᵗ ∘ evalᵗ ρ
normalize : ∀ {Θ σ} -> Θ ⊢ᵗ σ -> Θ ⊢ᵗ σ
normalize = embᵗⁿᶠ ∘ nfᵗ idᵉ
_[_]ᵗ : ∀ {Θ σ τ} -> Θ ▻ σ ⊢ᵗ τ -> Θ ⊢ᵗ σ -> Θ ⊢ᵗ τ
β [ α ]ᵗ = normalize $ Lam β ∙ α
{-# DISPLAY normalize (Lam β ∙ α) = β [ α ]ᵗ #-}
|
algebraic-stack_agda0000_doc_8747 | postulate
_→_ : Set
|
algebraic-stack_agda0000_doc_8748 | {-# OPTIONS --safe --no-termination-check #-}
module Issue2442-conflicting where
|
algebraic-stack_agda0000_doc_8749 | {-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.Function2
open import lib.types.Group
open import lib.types.Sigma
open import lib.types.Truncation
open import lib.groups.Homomorphism
open import lib.groups.Isomorphism
open import lib.groups.SubgroupProp
module lib.groups.Subgroup where
module _ {i j} {G : Group i} (P : SubgroupProp G j) where
private
module G = Group G
module P = SubgroupProp P
subgroup-struct : GroupStructure P.SubEl
subgroup-struct = record {M} where
module M where
ident : P.SubEl
ident = G.ident , P.ident
inv : P.SubEl → P.SubEl
inv (g , p) = G.inv g , P.inv p
comp : P.SubEl → P.SubEl → P.SubEl
comp (g₁ , p₁) (g₂ , p₂) = G.comp g₁ g₂ , P.comp p₁ p₂
abstract
unit-l : ∀ g → comp ident g == g
unit-l (g , _) = Subtype=-out P.subEl-prop (G.unit-l g)
assoc : ∀ g₁ g₂ g₃ → comp (comp g₁ g₂) g₃ == comp g₁ (comp g₂ g₃)
assoc (g₁ , _) (g₂ , _) (g₃ , _) = Subtype=-out P.subEl-prop (G.assoc g₁ g₂ g₃)
inv-l : ∀ g → comp (inv g) g == ident
inv-l (g , _) = Subtype=-out P.subEl-prop (G.inv-l g)
Subgroup : Group (lmax i j)
Subgroup = group _ SubEl-level subgroup-struct
where abstract SubEl-level = Subtype-level P.subEl-prop G.El-level
module Subgroup {i j} {G : Group i} (P : SubgroupProp G j) where
private
module P = SubgroupProp P
module G = Group G
grp = Subgroup P
open Group grp public
El=-out : ∀ {s₁ s₂ : El} → fst s₁ == fst s₂ → s₁ == s₂
El=-out = Subtype=-out P.subEl-prop
inject : Subgroup P →ᴳ G
inject = record {f = fst; pres-comp = λ _ _ → idp}
inject-lift : ∀ {j} {H : Group j} (φ : H →ᴳ G)
→ Π (Group.El H) (P.prop ∘ GroupHom.f φ)
→ (H →ᴳ Subgroup P)
inject-lift {H = H} φ P-all = record {M} where
module H = Group H
module φ = GroupHom φ
module M where
f : H.El → P.SubEl
f h = φ.f h , P-all h
abstract
pres-comp : ∀ h₁ h₂ → f (H.comp h₁ h₂) == Group.comp (Subgroup P) (f h₁) (f h₂)
pres-comp h₁ h₂ = Subtype=-out P.subEl-prop (φ.pres-comp h₁ h₂)
full-subgroup : ∀ {i j} {G : Group i} {P : SubgroupProp G j}
→ is-fullᴳ P → Subgroup P ≃ᴳ G
full-subgroup {G = G} {P} full = Subgroup.inject P , is-eq _ from to-from from-to where
from : Group.El G → Subgroup.El P
from g = g , full g
abstract
from-to : ∀ p → from (fst p) == p
from-to p = Subtype=-out (SubgroupProp.subEl-prop P) idp
to-from : ∀ g → fst (from g) == g
to-from g = idp
module _ {i} {j} {G : Group i} {H : Group j} (φ : G →ᴳ H) where
private
module G = Group G
module H = Group H
module φ = GroupHom φ
module Ker = Subgroup (ker-propᴳ φ)
Ker = Ker.grp
module Im = Subgroup (im-propᴳ φ)
Im = Im.grp
im-lift : G →ᴳ Im
im-lift = Im.inject-lift φ (λ g → [ g , idp ])
im-lift-is-surj : is-surjᴳ im-lift
im-lift-is-surj (_ , s) = Trunc-fmap
(λ {(g , p) → (g , Subtype=-out (_ , λ _ → Trunc-level) p)}) s
module _ {i j k} {G : Group i} (P : SubgroupProp G j)
(Q : SubgroupProp G k) where
-- FIXME looks like a bad name
Subgroup-fmap-r : P ⊆ᴳ Q → Subgroup P →ᴳ Subgroup Q
Subgroup-fmap-r P⊆Q = group-hom (Σ-fmap-r P⊆Q)
(λ _ _ → Subtype=-out (SubgroupProp.subEl-prop Q) idp)
Subgroup-emap-r : P ⊆ᴳ Q → Q ⊆ᴳ P → Subgroup P ≃ᴳ Subgroup Q
Subgroup-emap-r P⊆Q Q⊆P = Subgroup-fmap-r P⊆Q ,
is-eq _ (Σ-fmap-r Q⊆P)
(λ _ → Subtype=-out (SubgroupProp.subEl-prop Q) idp)
(λ _ → Subtype=-out (SubgroupProp.subEl-prop P) idp)
|
algebraic-stack_agda0000_doc_8750 | module Lemmachine.Resource.Configure where
open import Lemmachine.Request
open import Lemmachine.Response
open import Lemmachine.Resource
open import Lemmachine.Resource.Universe
open import Data.Bool
open import Data.Maybe
open import Data.Product
open import Data.List
open import Data.Function using (const)
private
update : (code : Code) → El code → Resource → Resource
update resourceExists f c = record {
resourceExists = f
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update serviceAvailable f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = f
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update isAuthorized f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = f
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update forbidden f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = f
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update allowMissingPost f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = f
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update malformedRequest f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = f
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update uriTooLong f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = f
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update knownContentType f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = f
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update validContentHeaders f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = f
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update validEntityLength f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = f
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update options f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = f
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update allowedMethods f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = f
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update knownMethods f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = f
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update deleteResource f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = f
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update deleteCompleted f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = f
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update postIsCreate f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = f
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update createPath f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = f
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update processPost f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = f
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update contentTypesProvided f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = f
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update languageAvailable f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = f
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update contentTypesAccepted f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = f
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update charsetsProvided f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = f
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update encodingsProvided f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = f
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update variances f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = f
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update isConflict f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = f
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update multipleChoices f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = f
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update previouslyExisted f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = f
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update movedPermanently f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = f
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update movedTemporarily f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = f
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update lastModified f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = f
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update expires f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = f
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update generateETag f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = f
; finishRequest = Resource.finishRequest c
; body = Resource.body c
}
update finishRequest f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = f
; body = Resource.body c
}
update body f c = record {
resourceExists = Resource.resourceExists c
; serviceAvailable = Resource.serviceAvailable c
; isAuthorized = Resource.isAuthorized c
; forbidden = Resource.forbidden c
; allowMissingPost = Resource.allowMissingPost c
; malformedRequest = Resource.malformedRequest c
; uriTooLong = Resource.uriTooLong c
; knownContentType = Resource.knownContentType c
; validContentHeaders = Resource.validContentHeaders c
; validEntityLength = Resource.validEntityLength c
; options = Resource.options c
; allowedMethods = Resource.allowedMethods c
; knownMethods = Resource.knownMethods c
; deleteResource = Resource.deleteResource c
; deleteCompleted = Resource.deleteCompleted c
; postIsCreate = Resource.postIsCreate c
; createPath = Resource.createPath c
; processPost = Resource.processPost c
; contentTypesProvided = Resource.contentTypesProvided c
; languageAvailable = Resource.languageAvailable c
; contentTypesAccepted = Resource.contentTypesAccepted c
; charsetsProvided = Resource.charsetsProvided c
; encodingsProvided = Resource.encodingsProvided c
; variances = Resource.variances c
; isConflict = Resource.isConflict c
; multipleChoices = Resource.multipleChoices c
; previouslyExisted = Resource.previouslyExisted c
; movedPermanently = Resource.movedPermanently c
; movedTemporarily = Resource.movedTemporarily c
; lastModified = Resource.lastModified c
; expires = Resource.expires c
; generateETag = Resource.generateETag c
; finishRequest = Resource.finishRequest c
; body = f
}
default : Resource
default = record {
resourceExists = const true
; serviceAvailable = const true
; isAuthorized = const true
; forbidden = const false
; allowMissingPost = const false
; malformedRequest = const false
; uriTooLong = const false
; knownContentType = const true
; validContentHeaders = const true
; validEntityLength = const true
; options = const []
; allowedMethods = const (HEAD ∷ GET ∷ [])
; knownMethods = const (HEAD ∷ GET ∷ PUT ∷ DELETE ∷ POST ∷ TRACE ∷ CONNECT ∷ OPTIONS ∷ [])
; deleteResource = const false
; deleteCompleted = const true
; postIsCreate = const false
; createPath = const nothing
; processPost = const false
; contentTypesProvided = const [ "text/html" ]
; languageAvailable = const true
; contentTypesAccepted = const []
; charsetsProvided = const []
; encodingsProvided = const [ "identity" , "defaultEncoder" ]
; variances = const []
; isConflict = const false
; multipleChoices = const false
; previouslyExisted = const false
; movedPermanently = const nothing
; movedTemporarily = const nothing
; lastModified = const nothing
; expires = const nothing
; generateETag = const nothing
; finishRequest = const true
; body = defaultHtml
}
configure : Resource → Hooks → Resource
configure base [] = base
configure base ((code , f) ∷ cfs) = update code f (configure base cfs)
toResource : Hooks → Resource
toResource props = configure default props
|
algebraic-stack_agda0000_doc_8751 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Finite sets, based on AVL trees
------------------------------------------------------------------------
open import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_)
module Data.AVL.Sets
{k ℓ} {Key : Set k} {_<_ : Rel Key ℓ}
(isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_)
where
import Data.AVL as AVL
open import Data.Bool
open import Data.List as List using (List)
open import Data.Maybe as Maybe
open import Data.Product as Prod using (_×_; _,_; proj₁)
open import Data.Unit
open import Function
open import Level
-- The set type. (Note that Set is a reserved word.)
private
open module S = AVL (const ⊤) isStrictTotalOrder
public using () renaming (Tree to ⟨Set⟩)
-- Repackaged functions.
empty : ⟨Set⟩
empty = S.empty
singleton : Key → ⟨Set⟩
singleton k = S.singleton k _
insert : Key → ⟨Set⟩ → ⟨Set⟩
insert k = S.insert k _
delete : Key → ⟨Set⟩ → ⟨Set⟩
delete = S.delete
_∈?_ : Key → ⟨Set⟩ → Bool
_∈?_ = S._∈?_
headTail : ⟨Set⟩ → Maybe (Key × ⟨Set⟩)
headTail s = Maybe.map (Prod.map proj₁ id) (S.headTail s)
initLast : ⟨Set⟩ → Maybe (⟨Set⟩ × Key)
initLast s = Maybe.map (Prod.map id proj₁) (S.initLast s)
fromList : List Key → ⟨Set⟩
fromList = S.fromList ∘ List.map (λ k → (k , _))
toList : ⟨Set⟩ → List Key
toList = List.map proj₁ ∘ S.toList
|
algebraic-stack_agda0000_doc_16640 | {- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Function
open import Data.Unit
open import Data.List as List
open import Data.Char
open import Data.Nat as ℕ
open import Data.Product
open import Data.String
open import Relation.Nullary using (Dec; yes; no)
open import Category.Functor
open import Reflection
open import Optics.Functorial
module Optics.Reflection where
private
tcMapM : {A B : Set} → (A → TC B) → List A → TC (List B)
tcMapM f [] = return []
tcMapM f (x ∷ xs) = do
y ← f x
ys ← tcMapM f xs
return (y ∷ ys)
count : ℕ → List ℕ
count 0 = []
count (suc n) = 0 ∷ List.map suc (count n)
List-last : {A : Set} → A → List A → A
List-last d [] = d
List-last d (x ∷ []) = x
List-last d (x ∷ xs) = List-last d xs
ai : {A : Set} → A → Arg A
ai x = arg (arg-info visible relevant) x
record MetaLens : Set where
constructor ml
field
mlName : Name
mlType : Type
mkDef : Term
-- Example call:
-- Let:
-- > record Test : Set where
-- > constructor test
-- > field
-- > firstField : ℕ
-- > secondField : Maybe String
--
-- Then; consider the call:
--
-- > go Test test [x , y] 2 secondField
--
-- What we want to generate is:
--
--
-- > secondField : Lens Name (Maybe String)
-- > secondField = lens (λ { F rf f (test x y)
-- > → (RawFunctor._<$>_ rf)
-- > (λ y' → test x y') (f y)
-- > })
--
-- Which is captured by the MetaLens
go : Name → Name → List String → ℕ → (Name × Arg Name) → TC MetaLens
go rec cName vars curr (lensName , (arg _ fld)) = do
-- Get the type of the field; in our case: Mabe String
tyFld ← (getType fld >>= parseTy)
-- compute the full lens type: Lens Test (Maybe String)
let finalTy = def (quote Lens) (ai (def rec []) ∷ ai tyFld ∷ [])
-- compute the clause of the lens:
return (ml lensName finalTy genTerm)
where
parseTy : Type → TC Type
parseTy (pi _ (abs _ t)) = parseTy t
parseTy (var (suc x) i) = return (var x i)
parseTy r = return r
-- We might be at field 0; but our de Bruijn index depends
-- on the total of fields
curr' : ℕ
curr' = List.length vars ∸ suc curr
testxy : Pattern
testxy = Pattern.con cName (List.map (ai ∘ Pattern.var) vars)
myabs : Term → Term
myabs t = pat-lam (Clause.clause (ai (Pattern.var "F") ∷ ai (Pattern.var "rf") ∷ ai (Pattern.var "f") ∷ ai testxy ∷ []) t ∷ []) []
myvar : ℕ → List (Arg Term) → Term
myvar n args = var (List.length vars + n) args
RawFunctor-<$>-var2 : Term → Term → Term
RawFunctor-<$>-var2 testxy' fy =
let rawf = quote RawFunctor._<$>_
in def rawf (ai (myvar 1 []) ∷ (ai testxy') ∷ (ai fy) ∷ [])
f-varN : Term
f-varN = myvar 0 (ai (var curr' []) ∷ [])
xy' : List (Arg Term)
xy' = let xs = reverse (count (List.length vars))
in List.map (λ m → ai (var (suc+set0 m) [])) xs
where
suc+set0 : ℕ → ℕ
suc+set0 m = case m ℕ.≟ curr' of
λ { (no _) → suc m
; (yes _) → zero
}
testxy' : Term
testxy' = lam visible (abs "y'" (con cName xy'))
-- We will now generate the RHS of second field: lens (λ { F rf ⋯
genTerm : Term
genTerm = con (quote lens) (ai (myabs (RawFunctor-<$>-var2 testxy' f-varN)) ∷ [])
mkLensFrom : Name → Definition → List Name → TC (List MetaLens)
mkLensFrom rec (record-type c fs) lnames = do
let xs = count (List.length fs)
let vars = List.map (flip Data.String.replicate 'v' ∘ suc) xs
tcMapM (uncurry (go rec c vars)) (List.zip xs (List.zip lnames fs))
mkLensFrom _ _ _ = typeError (strErr "Not a record" ∷ [])
defineLens : MetaLens → TC ⊤
defineLens (ml n ty trm)
= do -- typeError (nameErr n ∷ strErr "%%" ∷ termErr ty ∷ strErr "%%" ∷ termErr trm ∷ [])
declareDef (arg (arg-info visible relevant) n) ty
defineFun n (Clause.clause [] trm ∷ [])
mkLens : Name → List Name → TC ⊤
mkLens rec lenses = do
r ← getDefinition rec
res ← mkLensFrom rec r lenses
tcMapM defineLens res
return tt
-- usage will be: unquoteDecl = mkLens RecordName
|
algebraic-stack_agda0000_doc_16641 | {-
This second-order signature was created from the following second-order syntax description:
syntax CommRing | CR
type
* : 0-ary
term
zero : * | 𝟘
add : * * -> * | _⊕_ l20
one : * | 𝟙
mult : * * -> * | _⊗_ l30
neg : * -> * | ⊖_ r50
theory
(𝟘U⊕ᴸ) a |> add (zero, a) = a
(𝟘U⊕ᴿ) a |> add (a, zero) = a
(⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c))
(⊕C) a b |> add(a, b) = add(b, a)
(𝟙U⊗ᴸ) a |> mult (one, a) = a
(𝟙U⊗ᴿ) a |> mult (a, one) = a
(⊗A) a b c |> mult (mult(a, b), c) = mult (a, mult(b, c))
(⊗D⊕ᴸ) a b c |> mult (a, add (b, c)) = add (mult(a, b), mult(a, c))
(⊗D⊕ᴿ) a b c |> mult (add (a, b), c) = add (mult(a, c), mult(b, c))
(𝟘X⊗ᴸ) a |> mult (zero, a) = zero
(𝟘X⊗ᴿ) a |> mult (a, zero) = zero
(⊖N⊕ᴸ) a |> add (neg (a), a) = zero
(⊖N⊕ᴿ) a |> add (a, neg (a)) = zero
(⊗C) a b |> mult(a, b) = mult(b, a)
-}
module CommRing.Signature where
open import SOAS.Context
open import SOAS.Common
open import SOAS.Syntax.Signature *T public
open import SOAS.Syntax.Build *T public
-- Operator symbols
data CRₒ : Set where
zeroₒ addₒ oneₒ multₒ negₒ : CRₒ
-- Term signature
CR:Sig : Signature CRₒ
CR:Sig = sig λ
{ zeroₒ → ⟼₀ *
; addₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
; oneₒ → ⟼₀ *
; multₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
; negₒ → (⊢₀ *) ⟼₁ *
}
open Signature CR:Sig public
|
algebraic-stack_agda0000_doc_16642 | module examplesPaperJFP.Console where
open import examplesPaperJFP.NativeIOSafe
open import examplesPaperJFP.BasicIO hiding (main)
open import examplesPaperJFP.ConsoleInterface public
IOConsole : Set → Set
IOConsole = IO ConsoleInterface
--IOConsole+ : Set → Set
--IOConsole+ = IO+ ConsoleInterface
translateIOConsoleLocal : (c : ConsoleCommand) → NativeIO (ConsoleResponse c)
translateIOConsoleLocal (putStrLn s) = nativePutStrLn s
translateIOConsoleLocal getLine = nativeGetLine
translateIOConsole : {A : Set} → IOConsole A → NativeIO A
translateIOConsole = translateIO translateIOConsoleLocal
main : NativeIO Unit
main = nativePutStrLn "Console"
|
algebraic-stack_agda0000_doc_16643 | open import Signature
import Program
-- | Herbrand model that takes the distinction between inductive
-- and coinductive clauses into account.
module Herbrand (Σ : Sig) (V : Set) (P : Program.Program Σ V) where
open import Function
open import Data.Empty
open import Data.Product as Prod renaming (Σ to ⨿)
open import Data.Sum as Sum
open import Relation.Unary hiding (_⇒_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Program Σ V
open import Terms Σ
mutual
record Herbrand-ν (t : T∞ ⊥) : Set where
coinductive
field
bw-closed :
(∀ (i : dom-ν P) {σ} →
(t ~ app∞ σ (χ (geth-ν P i))) →
∀ (j : dom (getb-ν P i)) →
(app∞ σ (χ (get (getb-ν P i) j))) ∈ Herbrand-ν)
⊎ (t ∈ Herbrand-μ)
data Herbrand-μ : T∞ ⊥ → Set where
fw-closed : (t : T∞ ⊥) → (t ∈ Herbrand-μ) → (i : dom-μ P) (σ : Subst∞ V ⊥) →
t ≡ app∞ σ (χ (geth-μ P i)) → (j : dom (getb-μ P i)) →
Herbrand-μ (app∞ σ (χ (get (getb-μ P i) j)))
coind-μ : {t : T∞ ⊥} → t ∈ Herbrand-ν → Herbrand-μ t
open Herbrand-ν public
|
algebraic-stack_agda0000_doc_16644 | {-# OPTIONS --cubical --safe #-}
module Cubical.Data.Bool.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Empty
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
-- Obtain the booleans
open import Agda.Builtin.Bool public
infixr 6 _and_
infixr 5 _or_
not : Bool → Bool
not true = false
not false = true
_or_ : Bool → Bool → Bool
false or false = false
false or true = true
true or false = true
true or true = true
_and_ : Bool → Bool → Bool
false and false = false
false and true = false
true and false = false
true and true = true
caseBool : ∀ {ℓ} → {A : Type ℓ} → (a0 aS : A) → Bool → A
caseBool att aff true = att
caseBool att aff false = aff
_≟_ : Discrete Bool
false ≟ false = yes refl
false ≟ true = no λ p → subst (caseBool ⊥ Bool) p true
true ≟ false = no λ p → subst (caseBool Bool ⊥) p true
true ≟ true = yes refl
Dec→Bool : ∀ {ℓ} {A : Type ℓ} → Dec A → Bool
Dec→Bool (yes p) = true
Dec→Bool (no ¬p) = false
|
algebraic-stack_agda0000_doc_16645 | {-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.QuotientRing where
open import Cubical.Foundations.Prelude
open import Cubical.HITs.SetQuotients hiding (_/_)
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.QuotientRing renaming (_/_ to _/Ring_) hiding (asRing)
private
variable
ℓ : Level
_/_ : (R : CommRing ℓ) → (I : IdealsIn R) → CommRing ℓ
R / I =
fst asRing , commringstr _ _ _ _ _
(iscommring (RingStr.isRing (snd asRing))
(elimProp2 (λ _ _ → squash/ _ _)
commEq))
where
asRing = (CommRing→Ring R) /Ring (CommIdeal→Ideal I)
_·/_ : fst asRing → fst asRing → fst asRing
_·/_ = RingStr._·_ (snd asRing)
commEq : (x y : fst R) → ([ x ] ·/ [ y ]) ≡ ([ y ] ·/ [ x ])
commEq x y i = [ CommRingStr.·Comm (snd R) x y i ]
[_]/ : {R : CommRing ℓ} {I : IdealsIn R} → (a : fst R) → fst (R / I)
[ a ]/ = [ a ]
|
algebraic-stack_agda0000_doc_16646 | {-# OPTIONS --rewriting #-}
module RingSolving where
open import Data.Nat hiding (_≟_)
open import Data.Nat.Properties hiding (_≟_)
import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality
open import Agda.Builtin.Equality.Rewrite
open import Function
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
module _ (A : Set) where
infixr 5 _+H_
infixr 6 _*H_
infixr 5 _:+_
infixr 6 _:*_
infixr 5 _+A_
infixr 6 _*A_
postulate
#0 : A
#1 : A
_+A_ : A → A → A
_*A_ : A → A → A
data Poly : Set where
con : A → Poly
var : Poly
_:+_ : Poly → Poly → Poly
_:*_ : Poly → Poly → Poly
data Horner : Set where
PC : A → Horner
PX : A → Horner → Horner
scalMapHorner : (A → A) → Horner → Horner
scalMapHorner f (PC x) = PC (f x)
scalMapHorner f (PX x xs) = PX (f x) (scalMapHorner f xs)
postulate
extensionality : {S : Set}{T : S -> Set}
{f g : (x : S) -> T x} ->
((x : S) -> f x ≡ g x) ->
f ≡ g
postulate
+A-id-l : ∀ m → #0 +A m ≡ m
*A-id-l : ∀ m → #1 *A m ≡ m
+A-id-r : ∀ m → m +A #0 ≡ m
*A-id-r : ∀ m → m *A #1 ≡ m
+A-assoc : ∀ m n p → (m +A n) +A p ≡ m +A n +A p
*A-assoc : ∀ m n p → (m *A n) *A p ≡ m *A n *A p
+A-comm : ∀ m n → m +A n ≡ n +A m
*A-comm : ∀ m n → m *A n ≡ n *A m
*A-+A-distrib : ∀ m n p → m *A (n +A p) ≡ m *A n +A m *A p
*A-annhiliate-r : ∀ m → m *A #0 ≡ #0
*A-annhiliate-l : ∀ m → #0 *A m ≡ #0
*A-+A-distrib′ : ∀ m n p → (m +A n) *A p ≡ m *A p +A n *A p
*A-+A-distrib′ m n p =
begin
(m +A n) *A p ≡⟨ *A-comm (m +A n) p ⟩
p *A (m +A n) ≡⟨ *A-+A-distrib p m n ⟩
p *A m +A p *A n ≡⟨ cong₂ (_+A_) (*A-comm p m) (*A-comm p n) ⟩
m *A p +A n *A p
∎
where open ≡-Reasoning
{-# REWRITE +A-id-l *A-id-l +A-id-r *A-id-r *A-annhiliate-r *A-annhiliate-l +A-assoc *A-assoc *A-+A-distrib #-}
_+H_ : Horner → Horner → Horner
_+H_ (PC x) (PC y) = PC (x +A y)
_+H_ (PC x) (PX y ys) = PX (x +A y) ys
_+H_ (PX x xs) (PC y) = PX (x +A y) xs
_+H_ (PX x xs) (PX y ys) = PX (x +A y) (_+H_ xs ys)
is-lt : (m : ℕ) → (n : ℕ) → n ⊔ (m Data.Nat.+ suc n) ≡ m Data.Nat.+ suc n
is-lt m n = m≤n⇒m⊔n≡n $
begin
n ≤⟨ n≤1+n n ⟩
suc n ≤⟨ m≤n+m (suc n) m ⟩
m Data.Nat.+ suc n
∎
where open ≤-Reasoning
_*H_ : Horner → Horner → Horner
_*H_ (PC x) y = scalMapHorner (x *A_) y
_*H_ (PX x xs) y = (scalMapHorner (x *A_) y) +H (PX #0 (xs *H y))
evaluate : Horner → A → A
evaluate (PC x) v = x
evaluate (PX x xs) v = x +A (v *A evaluate xs v)
varH : Horner
varH = PX #0 $ PC #1
conH : A → Horner
conH = PC
construct : Poly → A → A
construct (con x) a = x
construct var a = a
construct (p :+ p2) a = construct p a +A construct p2 a
construct (p :* p2) a = construct p a *A construct p2 a
normalize : Poly → Horner
normalize (con x) = conH x
normalize var = varH
normalize (x :+ y) = normalize x +H normalize y
normalize (x :* y) = normalize x *H normalize y
swap : ∀ m n j k → (m +A n) +A (j +A k) ≡ (m +A j) +A (n +A k)
swap m n j k =
begin
(m +A n) +A (j +A k) ≡⟨ +A-assoc m n (j +A k) ⟩
m +A (n +A (j +A k)) ≡⟨ cong (m +A_) $ sym $ +A-assoc n j k ⟩
m +A ((n +A j) +A k) ≡⟨ cong (\ φ → m +A (φ +A k)) $ +A-comm n j ⟩
m +A ((j +A n) +A k) ≡⟨ cong (m +A_) $ +A-assoc j n k ⟩
m +A (j +A (n +A k)) ≡⟨ sym $ +A-assoc m j (n +A k) ⟩
(m +A j) +A (n +A k)
∎
where open Eq.≡-Reasoning
swap2-+A : ∀ m n p → m +A (n +A p) ≡ n +A (m +A p)
swap2-+A m n p =
begin
m +A (n +A p) ≡⟨ +A-assoc m n p ⟩
(m +A n) +A p ≡⟨ cong ( _+A p) $ +A-comm m n ⟩
(n +A m) +A p ≡⟨ sym $ +A-assoc n m p ⟩
n +A (m +A p)
∎
where open Eq.≡-Reasoning
swap2-*A : ∀ m n p → m *A (n *A p) ≡ n *A (m *A p)
swap2-*A m n p =
begin
m *A (n *A p) ≡⟨ *A-assoc m n p ⟩
(m *A n) *A p ≡⟨ cong ( _*A p) $ *A-comm m n ⟩
(n *A m) *A p ≡⟨ sym $ *A-assoc n m p ⟩
n *A (m *A p)
∎
where open Eq.≡-Reasoning
+A-+H-homo : ∀ j k a → evaluate j a +A evaluate k a ≡ evaluate (j +H k) a
+A-+H-homo (PC x) (PC x₁) a = refl
+A-+H-homo (PC x) (PX x₁ k) a = refl
+A-+H-homo (PX x x₁) (PC x₂) a =
begin
x +A ((a *A evaluate x₁ a) +A x₂) ≡⟨ cong (x +A_) $ +A-comm (a *A evaluate x₁ a) x₂ ⟩
x +A (x₂ +A (a *A evaluate x₁ a))
∎
where open Eq.≡-Reasoning
+A-+H-homo (PX x x₁) (PX x₂ y) a rewrite +A-+H-homo x₁ y a =
begin
(x +A (a *A evaluate x₁ a)) +A (x₂ +A (a *A evaluate y a)) ≡⟨ swap x (a *A evaluate x₁ a) x₂ (a *A evaluate y a) ⟩
(x +A x₂) +A ((a *A evaluate x₁ a) +A (a *A evaluate y a)) ≡⟨ cong (\φ → (x +A x₂) +A φ) (sym $ *A-+A-distrib a (evaluate x₁ a) (evaluate y a)) ⟩
(x +A x₂) +A (a *A (evaluate x₁ a +A evaluate y a)) ≡⟨ cong (\φ → (x +A x₂) +A (a *A φ)) (+A-+H-homo x₁ y a) ⟩
(x +A x₂) +A (a *A evaluate (x₁ +H y) a)
∎
where open Eq.≡-Reasoning
scale-evaluate : ∀ x k a → x *A evaluate k a ≡ evaluate (scalMapHorner (x *A_) k) a
scale-evaluate x (PC x₁) a = refl
scale-evaluate x (PX x₁ k) a =
begin
x *A evaluate (PX x₁ k) a ≡⟨⟩
x *A (x₁ +A (a *A evaluate k a)) ≡⟨ *A-+A-distrib x x₁ (a *A evaluate k a) ⟩
(x *A x₁) +A (x *A (a *A evaluate k a)) ≡⟨ cong ((x *A x₁) +A_) $ swap2-*A x a $ evaluate k a ⟩
(x *A x₁) +A (a *A (x *A evaluate k a)) ≡⟨ cong (\ φ → (x *A x₁) +A (a *A φ)) $ scale-evaluate x k a ⟩
(x *A x₁) +A (a *A evaluate (scalMapHorner (x *A_) k) a) ≡⟨⟩
evaluate (PX (x *A x₁) (scalMapHorner (x *A_) k)) a ≡⟨⟩
evaluate (scalMapHorner (x *A_) (PX x₁ k)) a
∎
where open Eq.≡-Reasoning
*A-*H-homo : ∀ j k a → evaluate j a *A evaluate k a ≡ evaluate (j *H k) a
*A-*H-homo (PC x) k a = scale-evaluate x k a
*A-*H-homo (PX x j) k a =
begin
evaluate (PX x j) a *A evaluate k a ≡⟨⟩
(x +A a *A evaluate j a) *A evaluate k a ≡⟨ *A-+A-distrib′ x (a *A evaluate j a) (evaluate k a) ⟩
x *A (evaluate k a) +A (a *A evaluate j a) *A evaluate k a ≡⟨ cong₂ _+A_ (scale-evaluate x k a) (cong (a *A_) (*A-*H-homo j k a)) ⟩
evaluate (scalMapHorner (_*A_ x) k) a +A evaluate (PX #0 (j *H k)) a ≡⟨ +A-+H-homo (scalMapHorner (_*A_ x) k) (PX #0 (j *H k)) a ⟩
evaluate (scalMapHorner (_*A_ x) k +H PX #0 (j *H k)) a ≡⟨⟩
evaluate (PX x j *H k) a
∎
where open Eq.≡-Reasoning
isoToConstruction : (x : Poly) → (a : A) → construct x a ≡ evaluate (normalize x) a
isoToConstruction (con x) a = refl
isoToConstruction var a = refl
isoToConstruction (x :+ y) a
rewrite isoToConstruction x a
| isoToConstruction y a
| +A-+H-homo (normalize x) (normalize y) a
= refl
isoToConstruction (x :* y) a
rewrite isoToConstruction x a
| isoToConstruction y a
| *A-*H-homo (normalize x) (normalize y) a
= refl
solve : (x y : Poly) → normalize x ≡ normalize y → (a : A) → construct x a ≡ construct y a
solve x y eq a =
begin
construct x a ≡⟨ isoToConstruction x a ⟩
evaluate (normalize x) a ≡⟨ cong (\φ → evaluate φ a) eq ⟩
evaluate (normalize y) a ≡⟨ sym $ isoToConstruction y a ⟩
construct y a
∎
where open Eq.≡-Reasoning
test-a : Poly
test-a = (var :+ con #1) :* (var :+ con #1)
test-b : Poly
test-b = var :* var :+ two :* var :+ con #1
where
two = con #1 :+ con #1
blah : (x : A) → (x +A #1) *A (x +A #1) ≡ (x *A x) +A (#1 +A #1) *A x +A #1
blah x = solve test-a test-b refl x
|
algebraic-stack_agda0000_doc_16647 | import Lvl
open import Data.Boolean
open import Type
module Data.List.Sorting.Functions {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where
open import Data.List
import Data.List.Functions as List
-- Inserts an element to a sorted list so that the resulting list is still sorted.
insert : T → List(T) → List(T)
insert x ∅ = List.singleton(x)
insert x (y ⊰ l) = if(x ≤? y) then (x ⊰ y ⊰ l) else (y ⊰ insert x l)
-- Merges two sorted lists so that the resulting list is still sorted.
merge : List(T) → List(T) → List(T)
merge = List.foldᵣ insert
-- Merges a list of sorted lists so that the resulting list is still sorted.
mergeAll : List(List(T)) → List(T)
mergeAll = List.foldᵣ merge ∅
open import Data.Tuple
open import Data.Option
import Data.Option.Functions as Option
-- Extracts a smallest element from a list.
extractMinimal : List(T) → Option(T ⨯ List(T))
extractMinimal ∅ = None
extractMinimal (x ⊰ ∅) = Some(x , ∅)
extractMinimal (x ⊰ l@(_ ⊰ _)) = Option.map(\{(la , las) → if(x ≤? la) then (x , l) else (la , x ⊰ las)}) (extractMinimal l)
|
algebraic-stack_agda0000_doc_16648 | {-# OPTIONS --without-K #-}
module Types where
-- Universe levels
postulate -- Universe levels
Level : Set
zero : Level
suc : Level → Level
max : Level → Level → Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX max #-}
-- Empty type
data ⊥ {i} : Set i where -- \bot
abort : ∀ {i j} {P : ⊥ {i} → Set j} → ((x : ⊥) → P x)
abort ()
abort-nondep : ∀ {i j} {A : Set j} → (⊥ {i} → A)
abort-nondep ()
¬ : ∀ {i} (A : Set i) → Set i
¬ A = A → ⊥ {zero}
-- Unit type
record unit {i} : Set i where
constructor tt
⊤ = unit -- \top
-- Booleans
data bool {i} : Set i where
true : bool
false : bool
-- Dependent sum
record Σ {i j} (A : Set i) (P : A → Set j) : Set (max i j) where -- \Sigma
constructor _,_
field
π₁ : A -- \pi\_1
π₂ : P (π₁) -- \pi\_2
open Σ public
-- Disjoint sum
data _⊔_ {i j} (A : Set i) (B : Set j) : Set (max i j) where -- \sqcup
inl : A → A ⊔ B
inr : B → A ⊔ B
-- Product
_×_ : ∀ {i j} (A : Set i) (B : Set j) → Set (max i j) -- \times
A × B = Σ A (λ _ → B)
-- Dependent product
Π : ∀ {i j} (A : Set i) (P : A → Set j) → Set (max i j)
Π A P = (x : A) → P x
-- Natural numbers
data ℕ : Set where -- \bn
O : ℕ
S : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO O #-}
{-# BUILTIN SUC S #-}
-- Truncation index (isomorphic to the type of integers ≥ -2)
data ℕ₋₂ : Set where
⟨-2⟩ : ℕ₋₂
S : (n : ℕ₋₂) → ℕ₋₂
⟨-1⟩ : ℕ₋₂
⟨-1⟩ = S ⟨-2⟩
⟨0⟩ : ℕ₋₂
⟨0⟩ = S ⟨-1⟩
_-1 : ℕ → ℕ₋₂
O -1 = ⟨-1⟩
(S n) -1 = S (n -1)
⟨_⟩ : ℕ → ℕ₋₂
⟨ n ⟩ = S (n -1)
⟨1⟩ = ⟨ 1 ⟩
⟨2⟩ = ⟨ 2 ⟩
_+2+_ : ℕ₋₂ → ℕ₋₂ → ℕ₋₂
⟨-2⟩ +2+ n = n
S m +2+ n = S (m +2+ n)
-- Integers
data ℤ : Set where -- \bz
O : ℤ
pos : (n : ℕ) → ℤ
neg : (n : ℕ) → ℤ
-- Lifting
record lift {i} (j : Level) (A : Set i) : Set (max i j) where
constructor ↑ -- \u
field
↓ : A -- \d
open lift public
|
algebraic-stack_agda0000_doc_16649 | ------------------------------------------------------------------------------
-- Auxiliary properties of the McCarthy 91 function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.McCarthy91.AuxiliaryPropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesATP using ( x<y→y≤z→x<z )
open import FOTC.Data.Nat.PropertiesATP
using ( +-N
; ∸-N
)
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP
using ( x<x+1 )
open import FOTC.Program.McCarthy91.ArithmeticATP
open import FOTC.Program.McCarthy91.McCarthy91
------------------------------------------------------------------------------
--- Auxiliary properties
postulate x>100→x<f₉₁-x+11 : ∀ {n} → N n → n > 100' → n < f₉₁ n + 11'
{-# ATP prove x>100→x<f₉₁-x+11 +-N ∸-N x<y→y≤z→x<z x<x+1 x+1≤x∸10+11 #-}
-- Case n ≡ 100 can be proved automatically
postulate f₉₁-100 : f₉₁ 100' ≡ 91'
{-# ATP prove f₉₁-100 100+11>100 100+11∸10>100 101≡100+11∸10 91≡100+11∸10∸10 #-}
postulate f₉₁x+11<f₉₁x+11 : ∀ n →
n ≯ 100' →
f₉₁ (n + 11') < f₉₁ (f₉₁ (n + 11')) + 11' →
f₉₁ (n + 11') < f₉₁ n + 11'
{-# ATP prove f₉₁x+11<f₉₁x+11 #-}
postulate f₉₁-x≯100-helper : ∀ m n →
m ≯ 100' →
f₉₁ (m + 11') ≡ n →
f₉₁ n ≡ 91' →
f₉₁ m ≡ 91'
{-# ATP prove f₉₁-x≯100-helper #-}
postulate
f₉₁-110 : f₉₁ (99' + 11') ≡ 100'
f₉₁-109 : f₉₁ (98' + 11') ≡ 99'
f₉₁-108 : f₉₁ (97' + 11') ≡ 98'
f₉₁-107 : f₉₁ (96' + 11') ≡ 97'
f₉₁-106 : f₉₁ (95' + 11') ≡ 96'
f₉₁-105 : f₉₁ (94' + 11') ≡ 95'
f₉₁-104 : f₉₁ (93' + 11') ≡ 94'
f₉₁-103 : f₉₁ (92' + 11') ≡ 93'
f₉₁-102 : f₉₁ (91' + 11') ≡ 92'
f₉₁-101 : f₉₁ (90' + 11') ≡ 91'
{-# ATP prove f₉₁-110 99+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-109 98+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-108 97+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-107 96+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-106 95+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-105 94+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-104 93+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-103 92+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-102 91+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-101 90+11>100 x+11∸10≡Sx #-}
postulate
f₉₁-99 : f₉₁ 99' ≡ 91'
f₉₁-98 : f₉₁ 98' ≡ 91'
f₉₁-97 : f₉₁ 97' ≡ 91'
f₉₁-96 : f₉₁ 96' ≡ 91'
f₉₁-95 : f₉₁ 95' ≡ 91'
f₉₁-94 : f₉₁ 94' ≡ 91'
f₉₁-93 : f₉₁ 93' ≡ 91'
f₉₁-92 : f₉₁ 92' ≡ 91'
f₉₁-91 : f₉₁ 91' ≡ 91'
f₉₁-90 : f₉₁ 90' ≡ 91'
{-# ATP prove f₉₁-99 f₉₁-x≯100-helper f₉₁-110 f₉₁-100 #-}
{-# ATP prove f₉₁-98 f₉₁-x≯100-helper f₉₁-109 f₉₁-99 #-}
{-# ATP prove f₉₁-97 f₉₁-x≯100-helper f₉₁-108 f₉₁-98 #-}
{-# ATP prove f₉₁-96 f₉₁-x≯100-helper f₉₁-107 f₉₁-97 #-}
{-# ATP prove f₉₁-95 f₉₁-x≯100-helper f₉₁-106 f₉₁-96 #-}
{-# ATP prove f₉₁-94 f₉₁-x≯100-helper f₉₁-105 f₉₁-95 #-}
{-# ATP prove f₉₁-93 f₉₁-x≯100-helper f₉₁-104 f₉₁-94 #-}
{-# ATP prove f₉₁-92 f₉₁-x≯100-helper f₉₁-103 f₉₁-93 #-}
{-# ATP prove f₉₁-91 f₉₁-x≯100-helper f₉₁-102 f₉₁-92 #-}
{-# ATP prove f₉₁-90 f₉₁-x≯100-helper f₉₁-101 f₉₁-91 #-}
f₉₁-x≡y : ∀ {m n o} → f₉₁ m ≡ n → o ≡ m → f₉₁ o ≡ n
f₉₁-x≡y h refl = h
|
algebraic-stack_agda0000_doc_16650 | {-# OPTIONS --allow-unsolved-metas #-}
module ExtractFunction where
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
plus : Nat -> Nat -> Nat
plus = {! !}
function1 : (x : Nat) -> (y : Nat) -> Nat
function1 x y = plus x y
pickTheFirst : Nat -> Bool -> Nat
pickTheFirst x y = x
function2 : Nat -> Bool -> Nat
function2 x y = pickTheFirst x y
|
algebraic-stack_agda0000_doc_16651 | {-# OPTIONS --without-K #-}
open import Base
open import Algebra.Groups
open import Integers
open import Homotopy.Truncation
open import Homotopy.Pointed
open import Homotopy.PathTruncation
open import Homotopy.Connected
-- Definitions and properties of homotopy groups
module Homotopy.HomotopyGroups {i} where
-- Loop space
Ω : (X : pType i) → pType i
Ω X = ⋆[ ⋆ X ≡ ⋆ X , refl ]
Ω-pregroup : (X : pType i) → pregroup i
Ω-pregroup X = record
{ carrier = (⋆ X) ≡ (⋆ X)
; _∙_ = _∘_
; e = refl
; _′ = !
; assoc = concat-assoc
; right-unit = refl-right-unit
; left-unit = λ _ → refl
; right-inverse = opposite-right-inverse
; left-inverse = opposite-left-inverse
}
Ωⁿ-pregroup : (n : ℕ) ⦃ ≢0 : n ≢ O ⦄ (X : pType i) → pregroup i
Ωⁿ-pregroup O ⦃ ≢0 ⦄ X = abort-nondep (≢0 refl)
Ωⁿ-pregroup 1 X = Ω-pregroup X
Ωⁿ-pregroup (S (S n)) X = Ωⁿ-pregroup (S n) (Ω X)
-- Homotopy groups
πⁿ-group : (n : ℕ) ⦃ >0 : n ≢ O ⦄ (X : pType i) → group i
πⁿ-group n X = π₀-pregroup (Ωⁿ-pregroup n X)
fundamental-group : (X : pType i) → group i
fundamental-group X = πⁿ-group 1 ⦃ ℕ-S≢O 0 ⦄ X
-- Homotopy groups of loop space
πⁿ-group-from-πⁿΩ : (n : ℕ) ⦃ ≢0 : n ≢ 0 ⦄ (X : pType i)
→ πⁿ-group (S n) X ≡ πⁿ-group n (Ω X)
πⁿ-group-from-πⁿΩ O ⦃ ≢0 ⦄ X = abort-nondep (≢0 refl)
πⁿ-group-from-πⁿΩ 1 X = refl
πⁿ-group-from-πⁿΩ (S (S n)) X = refl
-- Homotopy groups of spaces of a given h-level
abstract
truncated-πⁿ-group : (n : ℕ) ⦃ ≢0 : n ≢ 0 ⦄ (X : pType i)
(p : is-truncated (n -1) ∣ X ∣)
→ πⁿ-group n X ≡ unit-group
truncated-πⁿ-group O ⦃ ≢0 ⦄ X p = abort-nondep (≢0 refl)
truncated-πⁿ-group 1 X p =
unit-group-unique _
(proj refl ,
π₀-extend ⦃ p = λ x → truncated-is-truncated-S _ (π₀-is-set _ _ _) ⦄
(λ x → ap proj (π₁ (p _ _ _ _))))
truncated-πⁿ-group (S (S n)) X p =
truncated-πⁿ-group (S n) (Ω X) (λ x y → p _ _ x y)
Ωⁿ : (n : ℕ) (X : pType i) → pType i
Ωⁿ 0 X = X
Ωⁿ (S n) X = Ω (Ωⁿ n X)
πⁿ : (n : ℕ) (X : pType i) → pType i
πⁿ n X = τ⋆ ⟨0⟩ (Ωⁿ n X)
other-πⁿ : (n : ℕ) (X : pType i) → pType i
other-πⁿ n X = Ωⁿ n (τ⋆ ⟨ n ⟩ X)
ap-Ω-equiv : (X Y : pType i) (e : X ≃⋆ Y)
→ Ω X ≃⋆ Ω Y
ap-Ω-equiv X Y e = transport (λ u → Ω X ≃⋆ Ω u) (pType-eq e) (id-equiv⋆ _)
τ⋆Ω-is-Ωτ⋆S : (n : ℕ₋₂) (X : pType i)
→ τ⋆ n (Ω X) ≃⋆ Ω (τ⋆ (S n) X)
τ⋆Ω-is-Ωτ⋆S n X = (τ-path-equiv-path-τ-S , refl)
τ⋆kΩⁿ-is-Ωⁿτ⋆n+k : (k n : ℕ) (X : pType i)
→ τ⋆ ⟨ k ⟩ (Ωⁿ n X) ≃⋆ Ωⁿ n (τ⋆ ⟨ n + k ⟩ X)
τ⋆kΩⁿ-is-Ωⁿτ⋆n+k k O X = id-equiv⋆ _
τ⋆kΩⁿ-is-Ωⁿτ⋆n+k k (S n) X =
equiv-compose⋆ (τ⋆Ω-is-Ωτ⋆S _ _) (ap-Ω-equiv _ _
(equiv-compose⋆ (τ⋆kΩⁿ-is-Ωⁿτ⋆n+k (S k) n _)
(transport (λ u → Ωⁿ n (τ⋆ ⟨ n + S k ⟩ X) ≃⋆ Ωⁿ n (τ⋆ ⟨ u ⟩ X))
(+S-is-S+ n k) (id-equiv⋆ _))))
πⁿ-is-other-πⁿ : (n : ℕ) (X : pType i) → πⁿ n X ≃⋆ other-πⁿ n X
πⁿ-is-other-πⁿ n X =
transport (λ u → πⁿ n X ≃⋆ Ωⁿ n (τ⋆ ⟨ u ⟩ X)) (+0-is-id n)
(τ⋆kΩⁿ-is-Ωⁿτ⋆n+k 0 n X)
contr-is-contr-Ω : (X : pType i) → (is-contr⋆ X → is-contr⋆ (Ω X))
contr-is-contr-Ω X p = ≡-is-truncated ⟨-2⟩ p
contr-is-contr-Ωⁿ : (n : ℕ) (X : pType i) → (is-contr⋆ X) → is-contr⋆ (Ωⁿ n X)
contr-is-contr-Ωⁿ O X p = p
contr-is-contr-Ωⁿ (S n) X p = contr-is-contr-Ω _ (contr-is-contr-Ωⁿ n X p)
connected-other-πⁿ : (k n : ℕ) (lt : k < S n) (X : pType i)
→ (is-connected⋆ ⟨ n ⟩ X → is-contr⋆ (other-πⁿ k X))
connected-other-πⁿ k n lt X p =
contr-is-contr-Ωⁿ k _ (connected⋆-lt k n lt X p)
connected-πⁿ : (k n : ℕ) (lt : k < S n) (X : pType i)
→ (is-connected⋆ ⟨ n ⟩ X → is-contr⋆ (πⁿ k X))
connected-πⁿ k n lt X p =
equiv-types-truncated _ (π₁ (πⁿ-is-other-πⁿ k X) ⁻¹)
(connected-other-πⁿ k n lt X p)
|
algebraic-stack_agda0000_doc_16652 | {-# OPTIONS -W ignore #-}
module Issue2596b where
-- This warning will be ignored
{-# REWRITE #-}
-- but this error will still be raised
f : Set
f = f
|
algebraic-stack_agda0000_doc_16653 | {-# OPTIONS --without-K #-}
module hott.level.sets.core where
open import sum
open import equality.core
open import sets.unit
open import sets.empty
open import hott.level.core
⊤-contr : ∀ {i} → contr (⊤ {i})
⊤-contr = tt , λ { tt → refl }
⊥-prop : ∀ {i} → h 1 (⊥ {i})
⊥-prop x _ = ⊥-elim x
|
algebraic-stack_agda0000_doc_16654 | {-# OPTIONS --without-K #-}
module equality.core where
open import sum
open import level using ()
open import function.core
infix 4 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
sym : ∀ {i} {A : Set i} {x y : A}
→ x ≡ y → y ≡ x
sym refl = refl
_·_ : ∀ {i}{X : Set i}{x y z : X}
→ x ≡ y → y ≡ z → x ≡ z
refl · p = p
infixl 9 _·_
ap : ∀ {i j}{A : Set i}{B : Set j}{x y : A}
→ (f : A → B) → x ≡ y → f x ≡ f y
ap f refl = refl
ap₂ : ∀ {i j k}{A : Set i}{B : Set j}{C : Set k}
{x x' : A}{y y' : B}
→ (f : A → B → C)
→ x ≡ x' → y ≡ y' → f x y ≡ f x' y'
ap₂ f refl refl = refl
subst : ∀ {i j} {A : Set i}{x y : A}
→ (B : A → Set j) → x ≡ y
→ B x → B y
subst B refl = id
subst₂ : ∀ {i j k} {A : Set i}{x x' : A}
{B : Set j}{y y' : B}
→ (C : A → B → Set k)
→ x ≡ x' → y ≡ y'
→ C x y → C x' y'
subst₂ C refl refl = id
singleton : ∀ {i}{A : Set i} → A → Set i
singleton {A = A} a = Σ A λ a' → a ≡ a'
singleton' : ∀ {i}{A : Set i} → A → Set i
singleton' {A = A} a = Σ A λ a' → a' ≡ a
J' : ∀ {i j}{X : Set i}{x : X}
→ (P : (y : X) → x ≡ y → Set j)
→ P x refl
→ (y : X)
→ (p : x ≡ y)
→ P y p
J' P u y refl = u
J : ∀ {i j}{X : Set i}
→ (P : (x y : X) → x ≡ y → Set j)
→ ((x : X) → P x x refl)
→ (x y : X)
→ (p : x ≡ y)
→ P x y p
J P u x y p = J' (P x) (u x) y p
|
algebraic-stack_agda0000_doc_16655 | -- The ATP pragma with the role <hint> can be used with functions.
module ATPHint where
postulate
D : Set
data _≡_ (x : D) : D → Set where
refl : x ≡ x
sym : ∀ {m n} → m ≡ n → n ≡ m
sym refl = refl
{-# ATP hint sym #-}
|
algebraic-stack_agda0000_doc_224 | module Ord where
data Nat : Set where
Z : Nat
S : Nat -> Nat
data Ord : Set where
z : Ord
lim : (Nat -> Ord) -> Ord
zp : Ord -> Ord
zp z = z
zp (lim f) = lim (\x -> zp (f x))
|
algebraic-stack_agda0000_doc_225 | -- 2018-11-02, Jesper:
-- Problem reported by Martin Escardo
-- Example by Guillaume Brunerie
-- C-c C-s was generating postfix projections
-- even with --postfix-projections disabled.
open import Agda.Builtin.Equality
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
open _×_
postulate
A B : Set
p : A × B
eta : p ≡ ({!!} , snd p)
eta = refl
-- C-c C-s should fill the hole with 'fst p'.
|
algebraic-stack_agda0000_doc_226 |
module Lib.IO where
open import Lib.List
open import Lib.Prelude
{-# IMPORT System.Environment #-}
FilePath = String
postulate
IO : Set -> Set
getLine : IO String
putStrLn : String -> IO Unit
putStr : String -> IO Unit
bindIO : {A B : Set} -> IO A -> (A -> IO B) -> IO B
returnIO : {A : Set} -> A -> IO A
getArgs : IO (List String)
readFile : FilePath -> IO String
writeFile : FilePath -> String -> IO Unit
{-# BUILTIN IO IO #-}
{-# COMPILED_TYPE IO IO #-}
{-# COMPILED putStr putStr #-}
{-# COMPILED putStrLn putStrLn #-}
{-# COMPILED bindIO (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-}
{-# COMPILED returnIO (\_ -> return :: a -> IO a) #-}
-- we need to throw away the type argument to return and bind
-- and resolve the overloading explicitly (since Alonzo
-- output is sprinkled with unsafeCoerce#).
{-# COMPILED getLine getLine #-}
{-# COMPILED getArgs System.Environment.getArgs #-}
{-# COMPILED readFile readFile #-}
{-# COMPILED writeFile writeFile #-}
mapM : {A B : Set} -> (A -> IO B) -> List A -> IO (List B)
mapM f [] = returnIO []
mapM f (x :: xs) = bindIO (f x) \y -> bindIO (mapM f xs) \ys -> returnIO (y :: ys)
mapM₋ : {A : Set} -> (A -> IO Unit) -> List A -> IO Unit
mapM₋ f xs = bindIO (mapM f xs) \_ -> returnIO unit
|
algebraic-stack_agda0000_doc_227 | {-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Nat where
-- Skeleton of FinSetoid as a Category
open import Level
open import Data.Fin.Base using (Fin; inject+; raise; splitAt; join)
open import Data.Fin.Properties
open import Data.Nat.Base using (ℕ; _+_)
open import Data.Sum using (inj₁; inj₂; [_,_]′)
open import Data.Sum.Properties
open import Relation.Binary.PropositionalEquality
using (_≗_; _≡_; refl; sym; trans; cong; module ≡-Reasoning; inspect; [_])
open import Function using (id; _∘′_)
open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory)
open import Categories.Category.Core using (Category)
open import Categories.Category.Duality using (Cocartesian⇒coCartesian)
open import Categories.Object.Coproduct
open import Categories.Object.Duality using (Coproduct⇒coProduct)
open import Categories.Object.Product
Nat : Category 0ℓ 0ℓ 0ℓ
Nat = record
{ Obj = ℕ
; _⇒_ = λ m n → (Fin m → Fin n)
; _≈_ = _≗_
; id = id
; _∘_ = _∘′_
; assoc = λ _ → refl
; sym-assoc = λ _ → refl
; identityˡ = λ _ → refl
; identityʳ = λ _ → refl
; identity² = λ _ → refl
; equiv = record
{ refl = λ _ → refl
; sym = λ x≡y z → sym (x≡y z)
; trans = λ x≡y y≡z w → trans (x≡y w) (y≡z w)
}
; ∘-resp-≈ = λ {_ _ _ f h g i} f≗h g≗i x → trans (f≗h (g x)) (cong h (g≗i x))
}
-- For other uses, it is important to choose coproducts
-- in theory, it should be strictly associative... but it's not, and won't be for any choice.
Coprod : (m n : ℕ) → Coproduct Nat m n
Coprod m n = record
{ A+B = m + n
; i₁ = inject+ n
; i₂ = raise m
; [_,_] = λ l r z → [ l , r ]′ (splitAt m z)
; inject₁ = λ {_ f g} x → cong [ f , g ]′ (splitAt-inject+ m n x)
; inject₂ = λ {_ f g} x → cong [ f , g ]′ (splitAt-raise m n x)
; unique = uniq
}
where
open ≡-Reasoning
uniq : {o : ℕ} {h : Fin (m + n) → Fin o} {f : Fin m → Fin o} {g : Fin n → Fin o} →
h ∘′ inject+ n ≗ f → h ∘′ raise m ≗ g → (λ z → [ f , g ]′ (splitAt m z)) ≗ h
uniq {_} {h} {f} {g} h≗f h≗g w = begin
[ f , g ]′ (splitAt m w) ≡⟨ [,]-cong (λ x → sym (h≗f x)) (λ x → sym (h≗g x)) (splitAt m w) ⟩
[ h ∘′ inject+ n , h ∘′ raise m ]′ (splitAt m w) ≡˘⟨ [,]-∘-distr h (splitAt m w) ⟩
h ([ inject+ n , raise m ]′ (splitAt m w)) ≡⟨ cong h (join-splitAt m n w) ⟩
h w ∎
Nat-Cocartesian : Cocartesian Nat
Nat-Cocartesian = record
{ initial = record
{ ⊥ = 0
; ⊥-is-initial = record
{ ! = λ ()
; !-unique = λ _ ()
}
}
; coproducts = record { coproduct = λ {m} {n} → Coprod m n }
}
-- And Natop is what is used a lot, so record some things here too
Natop : Category 0ℓ 0ℓ 0ℓ
Natop = Category.op Nat
Natop-Product : (m n : ℕ) → Product Natop m n
Natop-Product m n = Coproduct⇒coProduct Nat (Coprod m n)
Natop-Cartesian : CartesianCategory 0ℓ 0ℓ 0ℓ
Natop-Cartesian = record
{ U = Natop
; cartesian = Cocartesian⇒coCartesian Nat Nat-Cocartesian
}
|
algebraic-stack_agda0000_doc_228 | -- Path induction
{-# OPTIONS --without-K --safe #-}
module Experiment.PropositionalEq where
open import Level renaming (zero to lzero; suc to lsuc)
open import Relation.Binary.PropositionalEquality
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
open import Relation.Binary
private
variable
a c : Level
A : Set a
-- HoTT 1.12.1
-- Path induction
PathInd : (C : (x y : A) → x ≡ y → Set c) →
(∀ x → C x x refl) → ∀ x y (p : x ≡ y) → C x y p
PathInd C c x .x refl = c x
PathInd-refl : ∀ (C : (x y : A) → x ≡ y → Set c) (c : ∀ x → C x x refl) x →
PathInd C c x x refl ≡ c x
PathInd-refl C c x = refl
-- Based path induction
BasedPathInd : (a : A) (C : ∀ x → a ≡ x → Set c) → C a refl →
∀ x (p : a ≡ x) → C x p
BasedPathInd a C c .a refl = c
BasedPathInd-refl : ∀ (a : A) (C : ∀ x → a ≡ x → Set c) (c : C a refl) →
BasedPathInd a C c a refl ≡ c
BasedPathInd-refl _ _ _ = refl
|
algebraic-stack_agda0000_doc_229 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Characters
------------------------------------------------------------------------
module Data.Char where
open import Data.Nat using (ℕ)
import Data.Nat.Properties as NatProp
open import Data.Bool using (Bool; true; false)
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Binary
import Relation.Binary.On as On
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
open import Relation.Binary.PropositionalEquality.TrustMe
open import Data.String.Core using (String; primShowChar)
import Data.Char.Core as Core
open Core public using (Char)
open Core
show : Char → String
show = primShowChar
toNat : Char → ℕ
toNat = primCharToNat
-- Informative equality test.
_≟_ : Decidable {A = Char} _≡_
s₁ ≟ s₂ with primCharEquality s₁ s₂
... | true = yes trustMe
... | false = no whatever
where postulate whatever : _
-- Boolean equality test.
--
-- Why is the definition _==_ = primCharEquality not used? One reason
-- is that the present definition can sometimes improve type
-- inference, at least with the version of Agda that is current at the
-- time of writing: see unit-test below.
infix 4 _==_
_==_ : Char → Char → Bool
c₁ == c₂ = ⌊ c₁ ≟ c₂ ⌋
private
-- The following unit test does not type-check (at the time of
-- writing) if _==_ is replaced by primCharEquality.
data P : (Char → Bool) → Set where
p : (c : Char) → P (_==_ c)
unit-test : P (_==_ 'x')
unit-test = p _
setoid : Setoid _ _
setoid = PropEq.setoid Char
decSetoid : DecSetoid _ _
decSetoid = PropEq.decSetoid _≟_
-- An ordering induced by the toNat function.
strictTotalOrder : StrictTotalOrder _ _ _
strictTotalOrder = On.strictTotalOrder NatProp.strictTotalOrder toNat
|
algebraic-stack_agda0000_doc_230 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" in multiple Setoids
------------------------------------------------------------------------
-- Example use:
--
-- open import Data.Maybe
-- import Relation.Binary.SetoidReasoning as SetR
--
-- begin⟨ S ⟩
-- x
-- ≈⟨ drop-just (begin⟨ setoid S ⟩
-- just x
-- ≈⟨ justx≈mz ⟩
-- mz
-- ≈⟨ mz≈justy ⟩
-- just y ∎) ⟩
-- y
-- ≈⟨ y≈z ⟩
-- z ∎
open import Relation.Binary.EqReasoning as EqR using (_IsRelatedTo_)
open import Relation.Binary
open import Relation.Binary.Core
open Setoid
module Relation.Binary.SetoidReasoning where
infix 1 begin⟨_⟩_
infixr 2 _≈⟨_⟩_ _≡⟨_⟩_
infix 2 _∎
begin⟨_⟩_ : ∀ {c l} (S : Setoid c l) → {x y : Carrier S} → _IsRelatedTo_ S x y → _≈_ S x y
begin⟨_⟩_ S p = EqR.begin_ S p
_∎ : ∀ {c l} {S : Setoid c l} → (x : Carrier S) → _IsRelatedTo_ S x x
_∎ {S = S} = EqR._∎ S
_≈⟨_⟩_ : ∀ {c l} {S : Setoid c l} → (x : Carrier S) → {y z : Carrier S} → _≈_ S x y → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z
_≈⟨_⟩_ {S = S} = EqR._≈⟨_⟩_ S
_≡⟨_⟩_ : ∀ {c l} {S : Setoid c l} → (x : Carrier S) → {y z : Carrier S} → x ≡ y → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z
_≡⟨_⟩_ {S = S} = EqR._≡⟨_⟩_ S
|
algebraic-stack_agda0000_doc_231 | {-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Pushout
open import Homotopy.VanKampen.Guide
module Homotopy.VanKampen.Code {i} (d : pushout-diag i)
(l : legend i (pushout-diag.C d)) where
open pushout-diag d
open legend l
open import Homotopy.Truncation
open import Homotopy.PathTruncation
-- Code from A.
import Homotopy.VanKampen.SplitCode d l as SC
import Homotopy.VanKampen.Code.LemmaPackA d l as C
-- Code from B. Code flipped.
import Homotopy.VanKampen.SplitCode (pushout-diag-flip d) l as SCF
import Homotopy.VanKampen.Code.LemmaPackA (pushout-diag-flip d) l as CF
P : Set i
P = pushout d
module _ where
-- Things that can be directly re-exported
-- FIXME Ideally, this should be ‵SC'.
-- Somehow that doesn′t work.
open import Homotopy.VanKampen.SplitCode d l
public using () renaming
( code to a-code
; code-a to a-code-a
; code-b to a-code-b
; code-rec to a-code-rec
; code-rec-nondep to a-code-rec-nondep
; code-is-set to a-code-is-set
; code-a-is-set to a-code-a-is-set
; code-b-is-set to a-code-b-is-set
)
module _ {a₁ : A} where
open import Homotopy.VanKampen.SplitCode d l a₁
public using () renaming
( code-a-refl-refl to a-code-a-refl-refl
; code-b-refl-refl to a-code-b-refl-refl
; code-ab-swap to a-code-ab-swap
; trans-a to trans-a-code-a
; trans-ba to trans-a-code-ba
; trans-ab to trans-a-code-ab
; a⇒b to aa⇒ab
; b⇒a to ab⇒aa
)
a-a : ∀ {a₁} {a₂} → a₁ ≡₀ a₂ → a-code-a a₁ a₂
a-a = SC.a _
infixl 6 a-a
syntax a-a co = ⟧a co
a-ba : ∀ {a₁} {a₂} n → a-code-b a₁ (g $ loc n) → f (loc n) ≡₀ a₂ → a-code-a a₁ a₂
a-ba = SC.ba _
infixl 6 a-ba
syntax a-ba n co p = co ab⟦ n ⟧a p
a-ab : ∀ {a₁} {b₂} n → a-code-a a₁ (f $ loc n) → g (loc n) ≡₀ b₂ → a-code-b a₁ b₂
a-ab = SC.ab _
infixl 6 a-ab
syntax a-ab n co p = co aa⟦ n ⟧b p
module _ where
-- Things that can be directly re-exported
open import Homotopy.VanKampen.SplitCode (pushout-diag-flip d) l
public using () renaming
( code-a to b-code-b
; code-b to b-code-a
; code-rec to b-code-rec
; code-rec-nondep to b-code-rec-nondep
; code-a-is-set to b-code-b-is-set
; code-b-is-set to b-code-a-is-set
)
b-code : B → P → Set i
b-code b = SCF.code b ◯ pushout-flip
module _ {b₁ : B} where
open import Homotopy.VanKampen.SplitCode (pushout-diag-flip d) l b₁
public using () renaming
( code-a-refl-refl to b-code-b-refl-refl
; code-b-refl-refl to b-code-a-refl-refl
; code-ab-swap to b-code-ba-swap
; trans-a to trans-b-code-b
; trans-ba to trans-b-code-ab
; trans-ab to trans-b-code-ba
; a⇒b to bb⇒ba
; b⇒a to ba⇒bb
)
b-b : ∀ {b₁} {b₂} → b₁ ≡₀ b₂ → b-code-b b₁ b₂
b-b = SCF.a _
infixl 6 b-b
syntax b-b co = ⟧b co
b-ab : ∀ {b₁} {b₂} n → b-code-a b₁ (f $ loc n) → g (loc n) ≡₀ b₂ → b-code-b b₁ b₂
b-ab = SCF.ba _
infixl 6 b-ab
syntax b-ab c co p = co ba⟦ c ⟧b p
b-ba : ∀ {b₁} {a₂} n → b-code-b b₁ (g $ loc n) → f (loc n) ≡₀ a₂ → b-code-a b₁ a₂
b-ba = SCF.ab _
infixl 6 b-ba
syntax b-ba c co p = co bb⟦ c ⟧a p
b-code-is-set : ∀ b₁ p₂ → is-set (b-code b₁ p₂)
b-code-is-set b₁ = SCF.code-is-set b₁ ◯ pushout-flip
-- Tail flipping
open import Homotopy.VanKampen.Code.LemmaPackA d l public
using () renaming
( aa⇒ba to aa⇒ba
; ab⇒bb to ab⇒bb
; ap⇒bp to ap⇒bp
)
open import Homotopy.VanKampen.Code.LemmaPackA (pushout-diag-flip d) l public
using () renaming
( aa⇒ba to bb⇒ab
; ab⇒bb to ba⇒aa
)
-- Tail drifting
open import Homotopy.VanKampen.Code.LemmaPackB d l public
using () renaming
( trans-q-code-a to trans-q-a-code-a
; trans-!q-code-a to trans-!q-a-code-a
; trans-q-code-ba to trans-q-a-code-ba
; trans-q-code-ab to trans-q-a-code-ab
)
open import Homotopy.VanKampen.Code.LemmaPackB (pushout-diag-flip d) l public
using () renaming
( trans-q-code-a to trans-q-b-code-b
; trans-!q-code-a to trans-!q-b-code-b
; trans-q-code-ba to trans-q-b-code-ab
; trans-q-code-ab to trans-q-b-code-ba
)
bp⇒ap : ∀ n {p} → b-code (g $ loc n) p → a-code (f $ loc n) p
bp⇒ap n {p} = transport
(λ x → b-code (g $ loc n) p → a-code (f $ loc n) x)
(pushout-flip-flip p)
(CF.ap⇒bp n {pushout-flip p})
private
Laba : name → P → Set i
Laba = λ n p → ∀ (co : a-code (f $ loc n) p) → bp⇒ap n {p} (ap⇒bp n {p} co) ≡ co
private
aba-glue-code : ∀ c {p} → Laba c p
abstract
aba-glue-code n {p} = pushout-rec (Laba n)
(λ _ → C.aba-glue-code-a n)
(λ _ → C.aba-glue-code-b n)
(λ _ → funext λ _ → prop-has-all-paths (a-code-b-is-set (f $ loc n) _ _ _) _ _)
p
private
Lbab : name → P → Set i
Lbab = λ n p → ∀ (co : b-code (g $ loc n) p) → ap⇒bp n {p} (bp⇒ap n {p} co) ≡ co
private
bab-glue-code : ∀ n {p} → Lbab n p
abstract
bab-glue-code n {p} = pushout-rec (Lbab n)
(λ _ → CF.aba-glue-code-b n)
(λ _ → CF.aba-glue-code-a n)
(λ _ → funext λ _ → prop-has-all-paths (b-code-b-is-set (g $ loc n) _ _ _) _ _)
p
private
glue-code-loc : ∀ n p → a-code (f $ loc n) p ≃ b-code (g $ loc n) p
glue-code-loc n p = ap⇒bp n {p} , iso-is-eq
(ap⇒bp n {p}) (bp⇒ap n {p}) (bab-glue-code n {p}) (aba-glue-code n {p})
private
TapbpTa : ∀ n₁ n₂ (r : loc n₁ ≡ loc n₂) {a}
→ a-code-a (f $ loc n₂) a → Set i
TapbpTa n₁ n₂ r {a} co =
transport (λ x → b-code-a x a) (ap g r)
(aa⇒ba n₁ {a} $ transport (λ x → a-code-a x a) (! $ ap f r) co)
≡ aa⇒ba n₂ {a} co
TapbpTb : ∀ n₁ n₂ (r : loc n₁ ≡ loc n₂) {b}
→ a-code-b (f $ loc n₂) b → Set i
TapbpTb n₁ n₂ r {b} co =
transport (λ x → b-code-b x b) (ap g r)
(ab⇒bb n₁ {b} $ transport (λ x → a-code-b x b) (! $ ap f r) co)
≡ ab⇒bb n₂ {b} co
TapbpTp : ∀ n₁ n₂ (r : loc n₁ ≡ loc n₂) {p}
→ a-code (f $ loc n₂) p → Set i
TapbpTp n₁ n₂ r {p} co =
transport (λ x → b-code x p) (ap g r)
(ap⇒bp n₁ {p} $ transport (λ x → a-code x p) (! $ ap f r) co)
≡ ap⇒bp n₂ {p} co
private
ap⇒bp-shift-split : ∀ n₁ n₂ r
→ (∀ {a₂} co → TapbpTa n₁ n₂ r {a₂} co)
× (∀ {b₂} co → TapbpTb n₁ n₂ r {b₂} co)
abstract
ap⇒bp-shift-split n₁ n₂ r = a-code-rec (f $ loc n₂)
(TapbpTa n₁ n₂ r)
⦃ λ _ → ≡-is-set $ b-code-a-is-set _ _ ⦄
(TapbpTb n₁ n₂ r)
⦃ λ _ → ≡-is-set $ b-code-b-is-set _ _ ⦄
(λ {a} p →
transport (λ x → b-code-a x a) (ap g r)
(aa⇒ba n₁ {a} $ transport (λ x → a-code-a x a) (! $ ap f r) $ ⟧a p)
≡⟨ ap (transport (λ x → b-code-a x a) (ap g r) ◯ aa⇒ba n₁ {a})
$ trans-!q-a-code-a (ap f r) p ⟩
transport (λ x → b-code-a x a) (ap g r)
(⟧b refl₀ bb⟦ n₁ ⟧a proj (ap f r) ∘₀ p)
≡⟨ trans-q-b-code-ba (ap g r) _ _ _ ⟩
transport (λ x → b-code-b x (g $ loc n₁)) (ap g r) (⟧b refl₀)
bb⟦ n₁ ⟧a proj (ap f r) ∘₀ p
≡⟨ ap (λ x → x bb⟦ n₁ ⟧a proj (ap f r) ∘₀ p) $ trans-q-b-code-b (ap g r) _ ⟩
⟧b proj (! (ap g r)) ∘₀ refl₀ bb⟦ n₁ ⟧a proj (ap f r) ∘₀ p
≡⟨ ap (λ x → ⟧b x bb⟦ n₁ ⟧a proj (ap f r) ∘₀ p) $ refl₀-right-unit _ ⟩
⟧b proj (! (ap g r)) bb⟦ n₁ ⟧a proj (ap f r) ∘₀ p
≡⟨ ! $ SCF.code-a-shift (g $ loc n₂) n₁ (proj (! (ap g r))) n₂ (proj r) p ⟩
⟧b proj (! (ap g r) ∘ ap g r) bb⟦ n₂ ⟧a p
≡⟨ ap (λ x → ⟧b proj x bb⟦ n₂ ⟧a p) $ opposite-left-inverse $ ap g r ⟩∎
aa⇒ba n₂ {a} (⟧a p)
∎)
(λ {a} n {co} pco p →
transport (λ x → b-code-a x a) (ap g r)
(aa⇒ba n₁ {a} $ transport (λ x → a-code-a x a) (! $ ap f r) $ co ab⟦ n ⟧a p)
≡⟨ ap (transport (λ x → b-code-a x a) (ap g r) ◯ aa⇒ba n₁ {a})
$ trans-q-a-code-ba (! $ ap f r) n co p ⟩
transport (λ x → b-code-a x a) (ap g r)
(ab⇒bb n₁ {g $ loc n} (transport (λ x → a-code-b x (g $ loc n)) (! $ ap f r) co) bb⟦ n ⟧a p)
≡⟨ trans-q-b-code-ba (ap g r) _ _ _ ⟩
transport (λ x → b-code-b x (g $ loc n)) (ap g r)
(ab⇒bb n₁ {g $ loc n} (transport (λ x → a-code-b x (g $ loc n)) (! $ ap f r) co)) bb⟦ n ⟧a p
≡⟨ ap (λ x → x bb⟦ n ⟧a p) pco ⟩∎
ab⇒bb n₂ {g $ loc n} co bb⟦ n ⟧a p
∎)
(λ {b} n {co} pco p →
transport (λ x → b-code-b x b) (ap g r)
(ab⇒bb n₁ {b} $ transport (λ x → a-code-b x b) (! $ ap f r) $ co aa⟦ n ⟧b p)
≡⟨ ap (transport (λ x → b-code-b x b) (ap g r) ◯ ab⇒bb n₁ {b})
$ trans-q-a-code-ab (! $ ap f r) n co p ⟩
transport (λ x → b-code-b x b) (ap g r)
(aa⇒ba n₁ {f $ loc n} (transport (λ x → a-code-a x (f $ loc n)) (! $ ap f r) co) ba⟦ n ⟧b p)
≡⟨ trans-q-b-code-ab (ap g r) _ _ _ ⟩
transport (λ x → b-code-a x (f $ loc n)) (ap g r)
(aa⇒ba n₁ {f $ loc n} (transport (λ x → a-code-a x (f $ loc n)) (! $ ap f r) co)) ba⟦ n ⟧b p
≡⟨ ap (λ x → x ba⟦ n ⟧b p) pco ⟩∎
aa⇒ba n₂ {f $ loc n} co ba⟦ n ⟧b p
∎)
(λ _ _ → prop-has-all-paths (b-code-a-is-set _ _ _ _) _ _)
(λ _ _ → prop-has-all-paths (b-code-b-is-set _ _ _ _) _ _)
(λ _ _ _ _ → prop-has-all-paths (b-code-a-is-set _ _ _ _) _ _)
private
ap⇒bp-shift : ∀ n₁ n₂ r {p} co → TapbpTp n₁ n₂ r {p} co
abstract
ap⇒bp-shift n₁ n₂ r {p} co =
pushout-rec
(λ p → ∀ co → TapbpTp n₁ n₂ r {p} co)
(λ a → π₁ (ap⇒bp-shift-split n₁ n₂ r) {a})
(λ b → π₂ (ap⇒bp-shift-split n₁ n₂ r) {b})
(λ c → funext λ _ → prop-has-all-paths (b-code-is-set (g $ loc n₂) (right $ g c) _ _) _ _)
p co
glue-code-eq-route : ∀ p n₁ n₂ (r : loc n₁ ≡ loc n₂)
→ transport (λ c → a-code (f c) p ≃ b-code (g c) p) r (glue-code-loc n₁ p)
≡ glue-code-loc n₂ p
abstract
glue-code-eq-route p n₁ n₂ r = equiv-eq $ funext λ co →
π₁ (transport (λ c → a-code (f c) p ≃ b-code (g c) p) r (glue-code-loc n₁ p)) co
≡⟨ ap (λ x → x co) $ app-trans
(λ c → a-code (f c) p ≃ b-code (g c) p)
(λ c → a-code (f c) p → b-code (g c) p)
(λ _ → π₁)
r
(glue-code-loc n₁ p) ⟩
transport (λ c → a-code (f c) p → b-code (g c) p) r (ap⇒bp n₁ {p}) co
≡⟨ trans-→ (λ c → a-code (f c) p) (λ c → b-code (g c) p) r (ap⇒bp n₁ {p}) co ⟩
transport (λ c → b-code (g c) p) r (ap⇒bp n₁ {p} $ transport (λ c → a-code (f c) p) (! r) co)
≡⟨ ap (transport (λ c → b-code (g c) p) r ◯ ap⇒bp n₁ {p}) $ ! $ trans-ap (λ x → a-code x p) f (! r) co ⟩
transport (λ c → b-code (g c) p) r (ap⇒bp n₁ {p} $ transport (λ x → a-code x p) (ap f (! r)) co)
≡⟨ ap (λ x → transport (λ c → b-code (g c) p) r $ ap⇒bp n₁ {p}
$ transport (λ x → a-code x p) x co)
$ ap-opposite f r ⟩
transport (λ c → b-code (g c) p) r (ap⇒bp n₁ {p} $ transport (λ x → a-code x p) (! $ ap f r) co)
≡⟨ ! $ trans-ap (λ x → b-code x p) g r _ ⟩
transport (λ x → b-code x p) (ap g r) (ap⇒bp n₁ {p} $ transport (λ x → a-code x p) (! $ ap f r) co)
≡⟨ ap⇒bp-shift n₁ n₂ r {p} co ⟩∎
ap⇒bp n₂ {p} co
∎
glue-code-eq : ∀ c p → a-code (f c) p ≃ b-code (g c) p
glue-code-eq c p = visit-fiber-rec l (λ c → a-code (f c) p ≃ b-code (g c) p)
⦃ λ c → ≃-is-set (a-code-is-set (f c) p) (b-code-is-set (g c) p) ⦄
(λ n → glue-code-loc n p)
(glue-code-eq-route p)
c
code : P → P → Set i
code = pushout-rec-nondep (P → Set i) a-code b-code
(λ c → funext λ p → eq-to-path $ glue-code-eq c p)
open import HLevelBis
abstract
code-is-set : ∀ p₁ p₂ → is-set (code p₁ p₂)
code-is-set = pushout-rec
(λ p₁ → ∀ p₂ → is-set $ code p₁ p₂)
a-code-is-set
b-code-is-set
(λ _ → prop-has-all-paths (Π-is-prop λ _ → is-set-is-prop) _ _)
-- Useful lemma
module _ {a₁ : A} where
open import Homotopy.VanKampen.SplitCode d l a₁
public using () renaming
( trans-code-glue-loc to trans-a-code-glue-loc
; trans-code-!glue-loc to trans-a-code-!glue-loc
)
abstract
trans-b-code-glue-loc : ∀ {b₁} n₂ co → transport (b-code b₁) (glue $ loc n₂) co ≡ ba⇒bb n₂ co
trans-b-code-glue-loc {b₁} n₂ co =
transport (b-code b₁) (glue $ loc n₂) co
≡⟨ ! $ trans-ap (SCF.code b₁) pushout-flip (glue $ loc n₂) co ⟩
transport (SCF.code b₁) (ap pushout-flip (glue $ loc n₂)) co
≡⟨ ap (λ x → transport (SCF.code b₁) x co)
$ pushout-β-glue-nondep _ right left (! ◯ glue) (loc n₂) ⟩
transport (SCF.code b₁) (! (glue $ loc n₂)) co
≡⟨ SCF.trans-code-!glue-loc b₁ n₂ co ⟩∎
ba⇒bb n₂ co
∎
abstract
trans-b-code-!glue-loc : ∀ {b₁} n₂ co → transport (b-code b₁) (! (glue $ loc n₂)) co ≡ bb⇒ba n₂ co
trans-b-code-!glue-loc {b₁} n₂ co =
transport (b-code b₁) (! (glue $ loc n₂)) co
≡⟨ ! $ trans-ap (SCF.code b₁) pushout-flip (! (glue $ loc n₂)) co ⟩
transport (SCF.code b₁) (ap pushout-flip (! (glue $ loc n₂))) co
≡⟨ ap (λ x → transport (SCF.code b₁) x co)
$ pushout-β-!glue-nondep _ right left (! ◯ glue) (loc n₂) ⟩
transport (SCF.code b₁) (! (! (glue $ loc n₂))) co
≡⟨ ap (λ x → transport (SCF.code b₁) x co)
$ opposite-opposite $ glue $ loc n₂ ⟩
transport (SCF.code b₁) (glue $ loc n₂) co
≡⟨ SCF.trans-code-glue-loc b₁ n₂ co ⟩∎
bb⇒ba n₂ co
∎
abstract
trans-glue-code-loc : ∀ n {p} (co : a-code (f $ loc n) p)
→ transport (λ x → code x p) (glue $ loc n) co
≡ ap⇒bp n {p} co
trans-glue-code-loc n {p} co =
transport (λ x → code x p) (glue $ loc n) co
≡⟨ ! $ trans-ap (λ f → f p) code (glue $ loc n) co ⟩
transport (λ f → f p) (ap code (glue $ loc n)) co
≡⟨ ap (λ x → transport (λ f → f p) x co)
$ pushout-β-glue-nondep (P → Set i) a-code b-code
(λ c → funext λ p → eq-to-path $ glue-code-eq c p)
$ loc n ⟩
transport (λ f → f p) (funext λ p → eq-to-path $ glue-code-eq (loc n) p) co
≡⟨ ! $ trans-ap (λ X → X) (λ f → f p)
(funext λ p → eq-to-path $ glue-code-eq (loc n) p) co ⟩
transport (λ X → X) (happly (funext λ p → eq-to-path $ glue-code-eq (loc n) p) p) co
≡⟨ ap (λ x → transport (λ X → X) (x p) co)
$ happly-funext (λ p → eq-to-path $ glue-code-eq (loc n) p) ⟩
transport (λ X → X) (eq-to-path $ glue-code-eq (loc n) p) co
≡⟨ trans-id-eq-to-path (glue-code-eq (loc n) p) co ⟩
π₁ (glue-code-eq (loc n) p) co
≡⟨ ap (λ x → π₁ x co) $
visit-fiber-β-loc l
(λ c → a-code (f c) p ≃ b-code (g c) p)
⦃ λ c → ≃-is-set (a-code-is-set (f c) p) (b-code-is-set (g c) p) ⦄
(λ n → glue-code-loc n p)
(glue-code-eq-route p)
n ⟩∎
ap⇒bp n {p} co
∎
abstract
trans-!glue-code-loc : ∀ n {p} (co : b-code (g $ loc n) p)
→ transport (λ x → code x p) (! $ glue $ loc n) co
≡ bp⇒ap n {p} co
trans-!glue-code-loc n {p} co =
move!-transp-right (λ x → code x p) (glue $ loc n) co (bp⇒ap n {p} co)
$ ! $
transport (λ x → code x p) (glue $ loc n) (bp⇒ap n {p} co)
≡⟨ trans-glue-code-loc n {p} (bp⇒ap n {p} co) ⟩
ap⇒bp n {p} (bp⇒ap n {p} co)
≡⟨ bab-glue-code n {p} co ⟩∎
co
∎
|
algebraic-stack_agda0000_doc_232 | open import Prelude
open import core
module lemmas-consistency where
-- type consistency is symmetric
~sym : {t1 t2 : typ} → t1 ~ t2 → t2 ~ t1
~sym TCRefl = TCRefl
~sym TCHole1 = TCHole2
~sym TCHole2 = TCHole1
~sym (TCArr p1 p2) = TCArr (~sym p1) (~sym p2)
~sym (TCProd h h₁) = TCProd (~sym h) (~sym h₁)
-- type consistency isn't transitive
not-trans : ((t1 t2 t3 : typ) → t1 ~ t2 → t2 ~ t3 → t1 ~ t3) → ⊥
not-trans t with t (b ==> b) ⦇·⦈ b TCHole1 TCHole2
... | ()
-- every pair of types is either consistent or not consistent
~dec : (t1 t2 : typ) → ((t1 ~ t2) + (t1 ~̸ t2))
-- this takes care of all hole cases, so we don't consider them below
~dec _ ⦇·⦈ = Inl TCHole1
~dec ⦇·⦈ b = Inl TCHole2
~dec ⦇·⦈ (q ==> q₁) = Inl TCHole2
~dec ⦇·⦈ (q ⊗ q₁) = Inl TCHole2
-- num cases
~dec b b = Inl TCRefl
~dec b (t2 ==> t3) = Inr ICBaseArr1
-- arrow cases
~dec (t1 ==> t2) b = Inr ICBaseArr2
~dec (t1 ==> t2) (t3 ==> t4) with ~dec t1 t3 | ~dec t2 t4
... | Inl x | Inl y = Inl (TCArr x y)
... | Inl _ | Inr y = Inr (ICArr2 y)
... | Inr x | _ = Inr (ICArr1 x)
~dec b (t2 ⊗ t3) = Inr ICBaseProd1
~dec (t1 ==> t2) (t3 ⊗ t4) = Inr ICProdArr1
~dec (t1 ⊗ t2) b = Inr ICBaseProd2
~dec (t1 ⊗ t2) (t3 ==> t4) = Inr ICProdArr2
~dec (t1 ⊗ t2) (t3 ⊗ t4) with ~dec t1 t3 | ~dec t2 t4
~dec (t1 ⊗ t2) (t3 ⊗ t4) | Inl x | Inl x₁ = Inl (TCProd x x₁)
~dec (t1 ⊗ t2) (t3 ⊗ t4) | Inl x | Inr x₁ = Inr (ICProd2 x₁)
~dec (t1 ⊗ t2) (t3 ⊗ t4) | Inr x | Inl x₁ = Inr (ICProd1 x)
~dec (t1 ⊗ t2) (t3 ⊗ t4) | Inr x | Inr x₁ = Inr (ICProd1 x)
-- no pair of types is both consistent and not consistent
~apart : {t1 t2 : typ} → (t1 ~̸ t2) → (t1 ~ t2) → ⊥
~apart ICBaseArr1 ()
~apart ICBaseArr2 ()
~apart (ICArr1 x) TCRefl = ~apart x TCRefl
~apart (ICArr1 x) (TCArr y y₁) = ~apart x y
~apart (ICArr2 x) TCRefl = ~apart x TCRefl
~apart (ICArr2 x) (TCArr y y₁) = ~apart x y₁
~apart ICBaseProd1 ()
~apart ICBaseProd2 ()
~apart ICProdArr1 ()
~apart ICProdArr2 ()
~apart (ICProd1 h) TCRefl = ~apart h TCRefl
~apart (ICProd1 h) (TCProd h₁ h₂) = ~apart h h₁
~apart (ICProd2 h) TCRefl = ~apart h TCRefl
~apart (ICProd2 h) (TCProd h₁ h₂) = ~apart h h₂
~apart-converse : (τ1 τ2 : typ) → (τ1 ~ τ2 → ⊥) → τ1 ~̸ τ2
~apart-converse τ1 τ2 ne with ~dec τ1 τ2
~apart-converse τ1 τ2 ne | Inl h = abort (ne h)
~apart-converse τ1 τ2 ne | Inr h = h
~decPair : (τ1 τ2 τ3 τ4 : typ) → ((τ1 ⊗ τ2) ~ (τ3 ⊗ τ4) → ⊥) → (τ1 ~ τ3 → ⊥) + (τ2 ~ τ4 → ⊥)
~decPair τ1 τ2 τ3 τ4 inc with ~apart-converse (τ1 ⊗ τ2) (τ3 ⊗ τ4) inc
~decPair τ1 τ2 τ3 τ4 inc | ICProd1 h = Inl (~apart h)
~decPair τ1 τ2 τ3 τ4 inc | ICProd2 h = Inr (~apart h)
~prod1 : ∀{τ1 τ2 τ3 τ4} → (τ1 ⊗ τ2) ~ (τ3 ⊗ τ4) → τ1 ~ τ3
~prod1 TCRefl = TCRefl
~prod1 (TCProd h1 h2) = h1
~prod2 : ∀{τ1 τ2 τ3 τ4} → (τ1 ⊗ τ2) ~ (τ3 ⊗ τ4) → τ2 ~ τ4
~prod2 TCRefl = TCRefl
~prod2 (TCProd h1 h2) = h2
|
algebraic-stack_agda0000_doc_233 | {-# OPTIONS --cubical --safe #-}
module Relation.Nullary.Discrete where
open import Relation.Nullary.Decidable
open import Path
open import Level
Discrete : Type a → Type a
Discrete A = (x y : A) → Dec (x ≡ y)
|
algebraic-stack_agda0000_doc_234 | -- Andreas, 2017-10-04, issue #689, test case by stevana
-- {-# OPTIONS -v tc.data:50 #-}
-- {-# OPTIONS -v tc.force:100 #-}
-- {-# OPTIONS -v tc.constr:50 #-}
-- {-# OPTIONS -v tc.conv.sort:30 #-}
-- {-# OPTIONS -v tc.conv.nat:30 #-}
open import Agda.Primitive
data L {a} (A : Set a) : Set a where
_∷_ : A → L A → L A
data S {a} {A : Set a} : L A → Set₁ where
_∷_ : (x : A) → (xs : L A) → S (x ∷ xs) -- x and xs are forced!
-- Should succeed without unsolved constraints.
-- There was a problem in the forcing analysis which I introduced
-- with apparently improper use of `noConstraints` (still do not know why)
-- for the Big/Small Forced argument analysis.
-- The latter one is obsolete and thus removed.
|
algebraic-stack_agda0000_doc_235 | module Data.Num.Injection where
open import Data.Num.Core
open import Data.Nat hiding (compare)
open import Data.Nat.Properties
open import Data.Nat.Properties.Simple
open import Data.Nat.Properties.Extra
open import Data.Fin as Fin
using (Fin; fromℕ≤; inject≤)
renaming (zero to z; suc to s)
open import Data.Fin.Properties
using (toℕ-fromℕ≤; to-from; bounded; inject≤-lemma)
renaming (toℕ-injective to Fin→ℕ-injective; _≟_ to _Fin≟_)
open import Data.Fin.Properties.Extra
open import Data.Sum
open import Data.Product
open import Data.Empty using (⊥)
open import Data.Unit using (⊤; tt)
open import Function
open import Function.Injection
open Injection
-- open import Function.Equality using (_⟶_; _⟨$⟩_)
open import Relation.Nullary.Decidable
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_)
open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl)
open StrictTotalOrder strictTotalOrder using (compare)
data InjCond : ℕ → ℕ → ℕ → Set where
Ordinary : ∀ {b d o} → (b≥d : b ≥ d) → (o≥1 : o ≥ 1) → InjCond b d o
Digitless : ∀ {b d o} → (d≡0 : d ≡ 0) → InjCond b 0 o -- having no digits at all
data NonInjCond : ℕ → ℕ → ℕ → Set where
Redundant : ∀ {b d o} → (d>b : d > b) → NonInjCond b d o -- having to many digits
WithZeros : ∀ {b d o} → (o≡0 : o ≡ 0) → (d≢0 : d ≢ 0) → NonInjCond b d 0 -- with leading zeroes
data InjectionView : ℕ → ℕ → ℕ → Set where
Inj : ∀ {b d o} → InjCond b d o → InjectionView b d o
NonInj : ∀ {b d o} → NonInjCond b d o → InjectionView b d o
injectionView : (b d o : ℕ) → InjectionView b d o
injectionView b zero zero = Inj (Digitless refl)
injectionView b (suc d) zero = NonInj (WithZeros refl (λ ()))
injectionView b d (suc o) with d ≤? b
injectionView b d (suc o) | yes p = Inj (Ordinary p (s≤s z≤n))
injectionView b d (suc o) | no ¬p = NonInj (Redundant (≰⇒> ¬p))
IsInjective : ℕ → ℕ → ℕ → Set
IsInjective b d o with injectionView b d o
IsInjective b d o | Inj _ = ⊤
IsInjective b d o | NonInj _ = ⊥
InjCond⇒IsInj : ∀ {b d o} → InjCond b d o → IsInjective b d o
InjCond⇒IsInj {b} {d} {o} cond with injectionView b d o
InjCond⇒IsInj _ | Inj _ = tt
InjCond⇒IsInj (Ordinary b≥d o≥1) | NonInj (Redundant d>b) = contradiction b≥d (>⇒≰ d>b)
InjCond⇒IsInj (Ordinary b≥d ()) | NonInj (WithZeros o≡0 d≢0)
InjCond⇒IsInj (Digitless d≡0) | NonInj (Redundant ())
InjCond⇒IsInj (Digitless d≡0) | NonInj (WithZeros refl d≢0) = contradiction refl d≢0
-- InjCond⇒b≥1 : ∀ {b d o} → InjCond b (suc d) o → b ≥ 1
-- InjCond⇒b≥1 {zero} (bijCond b≥d: o≥1:) = contradiction b≥d: (>⇒≰ (s≤s z≤n))
-- InjCond⇒b≥1 {suc b} (bijCond b≥d: o≥1:) = s≤s z≤n
--
NonInjCond⇏IsInj : ∀ {b d o} → NonInjCond b d o → ¬ IsInjective b d o
NonInjCond⇏IsInj {b} {d} {o} reason claim with injectionView b d o
NonInjCond⇏IsInj (Redundant d>b) claim | Inj (Ordinary b≥d o≥1) = contradiction b≥d (>⇒≰ d>b)
NonInjCond⇏IsInj (Redundant ()) claim | Inj (Digitless d≡0)
NonInjCond⇏IsInj (WithZeros o≡0 d≢0) claim | Inj (Ordinary b≥d ())
NonInjCond⇏IsInj (WithZeros o≡0 d≢0) claim | Inj (Digitless d≡0) = contradiction refl d≢0
NonInjCond⇏IsInj reason () | NonInj _
Digit-toℕ-injective : ∀ {d} o (x y : Fin d)
→ Digit-toℕ x o ≡ Digit-toℕ y o -- o + toℕ x ≡ o + toℕ y
→ x ≡ y
Digit-toℕ-injective {_} o x y eq =
Fin→ℕ-injective -- cancels `Fin.toℕ`
$ cancel-+-left o -- cancels `o +`
$ eq
n∷-mono-strict : ∀ {b d o} (x y : Fin d) (xs ys : Num b d o)
→ InjCond b d o
→ toℕ xs < toℕ ys
→ toℕ (x ∷ xs) < toℕ (y ∷ ys)
n∷-mono-strict {b} {_} {o} () () xs ys (Digitless d≡0) ⟦xs⟧<⟦ys⟧
n∷-mono-strict {b} {d} {o} x y xs ys (Ordinary b≥d o≥1) ⟦xs⟧<⟦ys⟧ =
start
suc (Digit-toℕ x o) + toℕ xs * b
≤⟨ +n-mono (toℕ xs * b) $
start
suc (Digit-toℕ x o)
≈⟨ sym (+-suc o (Fin.toℕ x)) ⟩
-- push `o` to the left
o + suc (Fin.toℕ x)
≤⟨ n+-mono o $
start
suc (Fin.toℕ x)
≤⟨ bounded x ⟩
d
≤⟨ b≥d ⟩
b
≤⟨ n≤m+n (Fin.toℕ y) b ⟩
Fin.toℕ y + b
□ ⟩
o + (Fin.toℕ y + b)
≈⟨ sym (+-assoc o (Fin.toℕ y) b) ⟩
Digit-toℕ y o + b
□ ⟩
Digit-toℕ y o + b + toℕ xs * b
≈⟨ +-assoc (Digit-toℕ y o) b (toℕ xs * b) ⟩
Digit-toℕ y o + (b + toℕ xs * b)
≤⟨ n+-mono (Digit-toℕ y o) (*n-mono b ⟦xs⟧<⟦ys⟧) ⟩ -- replace `xs` with `ys`
Digit-toℕ y o + toℕ ys * b
□
∷ns-mono-strict : ∀ {b d o} (x y : Fin d) (xs ys : Num b d o)
→ toℕ xs ≡ toℕ ys
→ Digit-toℕ x o < Digit-toℕ y o
→ toℕ (x ∷ xs) < toℕ (y ∷ ys)
∷ns-mono-strict {b} {d} {o} x y xs ys ⟦xs⟧≡⟦ys⟧ ⟦x⟧<⟦y⟧ = start
suc (Digit-toℕ x o + toℕ xs * b)
≈⟨ cong (λ w → suc (Digit-toℕ x o + w * b)) ⟦xs⟧≡⟦ys⟧ ⟩
suc (Digit-toℕ x o + toℕ ys * b)
≤⟨ +n-mono (toℕ ys * b) ⟦x⟧<⟦y⟧ ⟩
Digit-toℕ y o + toℕ ys * b
□
toℕ-injective-⟦x∷xs⟧>0-lemma : ∀ {b d o}
→ o ≥ 1
→ (x : Fin d)
→ (xs : Num b d o)
→ toℕ (x ∷ xs) > 0
toℕ-injective-⟦x∷xs⟧>0-lemma {b} {d} {o} o≥1 x xs =
start
suc zero
≤⟨ o≥1 ⟩
o
≤⟨ m≤m+n o (Fin.toℕ x) ⟩
o + Fin.toℕ x
≤⟨ m≤m+n (o + Fin.toℕ x) (toℕ xs * b) ⟩
o + Fin.toℕ x + toℕ xs * b
□
toℕ-injective : ∀ {b d o}
→ {isInj : IsInjective b d o}
→ (xs ys : Num b d o)
→ toℕ xs ≡ toℕ ys
→ xs ≡ ys
toℕ-injective {b} {d} {o} xs ys eq with injectionView b d o
toℕ-injective ∙ ∙ eq | Inj (Ordinary b≥d o≥1) = refl
toℕ-injective ∙ (y ∷ ys) eq | Inj (Ordinary b≥d o≥1) = contradiction eq (<⇒≢ (toℕ-injective-⟦x∷xs⟧>0-lemma o≥1 y ys))
toℕ-injective (x ∷ xs) ∙ eq | Inj (Ordinary b≥d o≥1) = contradiction eq (>⇒≢ (toℕ-injective-⟦x∷xs⟧>0-lemma o≥1 x xs))
toℕ-injective {b} {zero} {o} (() ∷ xs) (y ∷ ys) eq | Inj cond
toℕ-injective {b} {suc d} {o} (x ∷ xs) (y ∷ ys) eq | Inj cond with compare (toℕ xs) (toℕ ys)
toℕ-injective {b} {suc d} {o} (x ∷ xs) (y ∷ ys) eq | Inj cond | tri< ⟦xs⟧<⟦ys⟧ _ _ = contradiction eq (<⇒≢ (n∷-mono-strict x y xs ys cond ⟦xs⟧<⟦ys⟧))
toℕ-injective {b} {suc d} {o} (x ∷ xs) (y ∷ ys) eq | Inj cond | tri≈ _ ⟦xs⟧≡⟦ys⟧ _ with compare (Digit-toℕ x o) (Digit-toℕ y o)
toℕ-injective {b} {suc d} {o} (x ∷ xs) (y ∷ ys) eq | Inj cond | tri≈ _ ⟦xs⟧≡⟦ys⟧ _ | tri< ⟦x⟧<⟦y⟧ _ _ = contradiction eq (<⇒≢ (∷ns-mono-strict x y xs ys ⟦xs⟧≡⟦ys⟧ ⟦x⟧<⟦y⟧))
toℕ-injective {b} {suc d} {o} (x ∷ xs) (y ∷ ys) eq | Inj cond | tri≈ _ ⟦xs⟧≡⟦ys⟧ _ | tri≈ _ ⟦x⟧≡⟦y⟧ _ = cong₂ _∷_ (Digit-toℕ-injective o x y ⟦x⟧≡⟦y⟧) (toℕ-injective {isInj = InjCond⇒IsInj cond} xs ys ⟦xs⟧≡⟦ys⟧)
toℕ-injective {b} {suc d} {o} (x ∷ xs) (y ∷ ys) eq | Inj cond | tri≈ _ ⟦xs⟧≡⟦ys⟧ _ | tri> _ _ ⟦x⟧>⟦y⟧ = contradiction eq (>⇒≢ (∷ns-mono-strict y x ys xs (sym ⟦xs⟧≡⟦ys⟧) ⟦x⟧>⟦y⟧))
toℕ-injective {b} {suc d} {o} (x ∷ xs) (y ∷ ys) eq | Inj cond | tri> _ _ ⟦xs⟧>⟦ys⟧ = contradiction eq (>⇒≢ ((n∷-mono-strict y x ys xs cond ⟦xs⟧>⟦ys⟧)))
toℕ-injective ∙ ∙ eq | Inj (Digitless d≡0) = refl
toℕ-injective ∙ (() ∷ ys) eq | Inj (Digitless d≡0)
toℕ-injective (() ∷ xs) ys eq | Inj (Digitless d≡0)
toℕ-injective {isInj = ()} xs ys eq | NonInj reason
InjCond⇒Injective : ∀ {b} {d} {o} → InjCond b d o → Injective (Num⟶ℕ b d o)
InjCond⇒Injective condition {x} {y} = toℕ-injective {isInj = InjCond⇒IsInj condition} x y
NonInjCond⇏Injective : ∀ {b} {d} {o} → NonInjCond b d o → ¬ (Injective (Num⟶ℕ b d o))
NonInjCond⇏Injective {zero} {zero} (Redundant ()) claim
NonInjCond⇏Injective {zero} {suc d} {o} (Redundant d>b) claim =
contradiction
(claim
{z ∷ ∙}
{z ∷ z ∷ ∙}
⟦1∷∙⟧≡⟦1∷1∷∙⟧)
(λ ())
where ⟦1∷∙⟧≡⟦1∷1∷∙⟧ : toℕ {zero} {suc d} {o} (z ∷ ∙) ≡ toℕ {zero} {suc d} {o} (z ∷ z ∷ ∙)
⟦1∷∙⟧≡⟦1∷1∷∙⟧ = cong (λ w → o + 0 + w) (sym (*-right-zero (o + 0 + 0)))
NonInjCond⇏Injective {suc b} {zero} (Redundant ()) claim
NonInjCond⇏Injective {suc b} {suc zero} (Redundant (s≤s ())) claim
NonInjCond⇏Injective {suc b} {suc (suc d)} {o} (Redundant d>b) claim =
contradiction
(claim
{z ∷ s z ∷ ∙}
{fromℕ≤ d>b ∷ z ∷ ∙}
⟦1∷2⟧≡⟦b+1∷1⟧)
(λ ())
where ⟦1∷2⟧≡⟦b+1∷1⟧ : toℕ {suc b} {suc (suc d)} {o} (z ∷ s z ∷ ∙) ≡ toℕ {suc b} {suc (suc d)} {o} (fromℕ≤ {suc b} d>b ∷ z ∷ ∙)
⟦1∷2⟧≡⟦b+1∷1⟧ =
begin
o + zero + (o + suc zero + zero) * suc b
≡⟨ cong (λ x → x + (o + suc zero + zero) * suc b) (+-right-identity o) ⟩
o + (o + suc zero + zero) * suc b
≡⟨ cong (λ x → o + (x + zero) * suc b) (+-suc o zero) ⟩
o + (suc (o + zero) + zero) * suc b
≡⟨ refl ⟩
o + (suc b + (o + zero + zero) * suc b)
≡⟨ sym (+-assoc o (suc b) ((o + zero + zero) * suc b)) ⟩
o + suc b + (o + zero + zero) * suc b
≡⟨ cong (λ x → o + x + (o + zero + zero) * suc b) (sym (toℕ-fromℕ≤ d>b)) ⟩
o + Fin.toℕ (fromℕ≤ d>b) + (o + zero + zero) * suc b
∎
NonInjCond⇏Injective {b} {zero} {_} (WithZeros o≡0 d≢0) claim = contradiction refl d≢0
NonInjCond⇏Injective {b} {suc d} {_} (WithZeros o≡0 d≢0) claim =
contradiction
(claim
{z ∷ ∙}
{∙}
⟦0∷∙⟧≡⟦∙⟧)
(λ ())
where ⟦0∷∙⟧≡⟦∙⟧ : toℕ {b} {suc d} {0} (z ∷ ∙) ≡ toℕ {b} {suc d} {0} ∙
⟦0∷∙⟧≡⟦∙⟧ = refl
Injective? : ∀ b d o → Dec (Injective (Num⟶ℕ b d o))
Injective? b d o with injectionView b d o
Injective? b d o | Inj condition = yes (InjCond⇒Injective condition)
Injective? b d o | NonInj reason = no (NonInjCond⇏Injective reason)
-- begin
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ∎
|
algebraic-stack_agda0000_doc_236 | module Lambda where
open import Prelude
open import Star
open import Examples
open import Modal
-- Environments
record TyAlg (ty : Set) : Set where
field
nat : ty
_⟶_ : ty -> ty -> ty
data Ty : Set where
<nat> : Ty
_<⟶>_ : Ty -> Ty -> Ty
freeTyAlg : TyAlg Ty
freeTyAlg = record { nat = <nat>; _⟶_ = _<⟶>_ }
termTyAlg : TyAlg True
termTyAlg = record { nat = _; _⟶_ = \_ _ -> _ }
record TyArrow {ty₁ ty₂ : Set}(T₁ : TyAlg ty₁)(T₂ : TyAlg ty₂) : Set where
field
apply : ty₁ -> ty₂
respNat : apply (TyAlg.nat T₁) == TyAlg.nat T₂
resp⟶ : forall {τ₁ τ₂} ->
apply (TyAlg._⟶_ T₁ τ₁ τ₂) == TyAlg._⟶_ T₂ (apply τ₁) (apply τ₂)
_=Ty=>_ : {ty₁ ty₂ : Set}(T₁ : TyAlg ty₁)(T₂ : TyAlg ty₂) -> Set
_=Ty=>_ = TyArrow
!Ty : {ty : Set}{T : TyAlg ty} -> T =Ty=> termTyAlg
!Ty = record { apply = !
; respNat = refl
; resp⟶ = refl
}
Ctx : Set
Ctx = List Ty
Var : {ty : Set} -> List ty -> ty -> Set
Var Γ τ = Any (_==_ τ) Γ
vzero : {τ : Ty} {Γ : Ctx} -> Var (τ • Γ) τ
vzero = done refl • ε
vsuc : {σ τ : Ty} {Γ : Ctx} -> Var Γ τ -> Var (σ • Γ) τ
vsuc v = step • v
module Term {ty : Set}(T : TyAlg ty) where
private open module TT = TyAlg T
data Tm : List ty -> ty -> Set where
var : forall {Γ τ} -> Var Γ τ -> Tm Γ τ
zz : forall {Γ} -> Tm Γ nat
ss : forall {Γ} -> Tm Γ (nat ⟶ nat)
ƛ : forall {Γ σ τ} -> Tm (σ • Γ) τ -> Tm Γ (σ ⟶ τ)
_$_ : forall {Γ σ τ} -> Tm Γ (σ ⟶ τ) -> Tm Γ σ -> Tm Γ τ
module Eval where
private open module TT = Term freeTyAlg
ty⟦_⟧ : Ty -> Set
ty⟦ <nat> ⟧ = Nat
ty⟦ σ <⟶> τ ⟧ = ty⟦ σ ⟧ -> ty⟦ τ ⟧
Env : Ctx -> Set
Env = All ty⟦_⟧
_[_] : forall {Γ τ} -> Env Γ -> Var Γ τ -> ty⟦ τ ⟧
ρ [ x ] with lookup x ρ
... | result _ refl v = v
⟦_⟧_ : forall {Γ τ} -> Tm Γ τ -> Env Γ -> ty⟦ τ ⟧
⟦ var x ⟧ ρ = ρ [ x ]
⟦ zz ⟧ ρ = zero
⟦ ss ⟧ ρ = suc
⟦ ƛ t ⟧ ρ = \x -> ⟦ t ⟧ (check x • ρ)
⟦ s $ t ⟧ ρ = (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
module MoreExamples where
private open module TT = TyAlg freeTyAlg
private open module Tm = Term freeTyAlg
open Eval
tm-one : Tm ε nat
tm-one = ss $ zz
tm-id : Tm ε (nat ⟶ nat)
tm-id = ƛ (var (done refl • ε))
tm : Tm ε nat
tm = tm-id $ tm-one
tm-twice : Tm ε ((nat ⟶ nat) ⟶ (nat ⟶ nat))
tm-twice = ƛ (ƛ (f $ (f $ x)))
where Γ : Ctx
Γ = nat • (nat ⟶ nat) • ε
f : Tm Γ (nat ⟶ nat)
f = var (vsuc vzero)
x : Tm Γ nat
x = var vzero
sem : {τ : Ty} -> Tm ε τ -> ty⟦ τ ⟧
sem e = ⟦ e ⟧ ε
one : Nat
one = sem tm
twice : (Nat -> Nat) -> (Nat -> Nat)
twice = sem tm-twice
|
algebraic-stack_agda0000_doc_237 | {-# OPTIONS --allow-unsolved-metas #-}
module regex1 where
open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Fin
open import Data.Nat hiding ( _≟_ )
open import Data.List hiding ( any ; [_] )
-- import Data.Bool using ( Bool ; true ; false ; _∧_ )
-- open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ )
open import Relation.Binary.PropositionalEquality as RBF hiding ( [_] )
open import Relation.Nullary using (¬_; Dec; yes; no)
open import regex
open import logic
-- postulate a b c d : Set
data In : Set where
a : In
b : In
c : In
d : In
-- infixr 40 _&_ _||_
r1' = (< a > & < b >) & < c > --- abc
r1 = < a > & < b > & < c > --- abc
r0 : ¬ (r1' ≡ r1)
r0 ()
any = < a > || < b > || < c > || < d > --- a|b|c|d
r2 = ( any * ) & ( < a > & < b > & < c > ) -- .*abc
r3 = ( any * ) & ( < a > & < b > & < c > & < a > & < b > & < c > )
r4 = ( < a > & < b > & < c > ) || ( < b > & < c > & < d > )
r5 = ( any * ) & ( < a > & < b > & < c > || < b > & < c > & < d > )
open import nfa
-- former ++ later ≡ x
split : {Σ : Set} → ((former : List Σ) → Bool) → ((later : List Σ) → Bool) → (x : List Σ ) → Bool
split x y [] = x [] /\ y []
split x y (h ∷ t) = (x [] /\ y (h ∷ t)) \/
split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t
-- tt1 : {Σ : Set} → ( P Q : List In → Bool ) → split P Q ( a ∷ b ∷ c ∷ [] )
-- tt1 P Q = ?
{-# TERMINATING #-}
repeat : {Σ : Set} → (List Σ → Bool) → List Σ → Bool
repeat x [] = true
repeat {Σ} x ( h ∷ t ) = split x (repeat {Σ} x) ( h ∷ t )
-- Meaning of regular expression
regular-language : {Σ : Set} → Regex Σ → ((x y : Σ ) → Dec (x ≡ y)) → List Σ → Bool
regular-language φ cmp _ = false
regular-language ε cmp [] = true
regular-language ε cmp (_ ∷ _) = false
regular-language (x *) cmp = repeat ( regular-language x cmp )
regular-language (x & y) cmp = split ( λ z → regular-language x cmp z ) (λ z → regular-language y cmp z )
regular-language (x || y) cmp = λ s → ( regular-language x cmp s ) \/ ( regular-language y cmp s)
regular-language < h > cmp [] = false
regular-language < h > cmp (h1 ∷ [] ) with cmp h h1
... | yes _ = true
... | no _ = false
regular-language < h > _ (_ ∷ _ ∷ _) = false
cmpi : (x y : In ) → Dec (x ≡ y)
cmpi a a = yes refl
cmpi b b = yes refl
cmpi c c = yes refl
cmpi d d = yes refl
cmpi a b = no (λ ())
cmpi a c = no (λ ())
cmpi a d = no (λ ())
cmpi b a = no (λ ())
cmpi b c = no (λ ())
cmpi b d = no (λ ())
cmpi c a = no (λ ())
cmpi c b = no (λ ())
cmpi c d = no (λ ())
cmpi d a = no (λ ())
cmpi d b = no (λ ())
cmpi d c = no (λ ())
test-regex : regular-language r1' cmpi ( a ∷ [] ) ≡ false
test-regex = refl
test-regex1 : regular-language r2 cmpi ( a ∷ a ∷ b ∷ c ∷ [] ) ≡ true
test-regex1 = refl
test-AB→split : {Σ : Set} → {A B : List In → Bool} → split A B ( a ∷ b ∷ a ∷ [] ) ≡ (
( A [] /\ B ( a ∷ b ∷ a ∷ [] ) ) \/
( A ( a ∷ [] ) /\ B ( b ∷ a ∷ [] ) ) \/
( A ( a ∷ b ∷ [] ) /\ B ( a ∷ [] ) ) \/
( A ( a ∷ b ∷ a ∷ [] ) /\ B [] )
)
test-AB→split {_} {A} {B} = refl
list-eq : {Σ : Set} → (cmpi : (s t : Σ) → Dec (s ≡ t )) → (s t : List Σ ) → Bool
list-eq cmpi [] [] = true
list-eq cmpi [] (x ∷ t) = false
list-eq cmpi (x ∷ s) [] = false
list-eq cmpi (x ∷ s) (y ∷ t) with cmpi x y
... | yes _ = list-eq cmpi s t
... | no _ = false
-- split-spec-01 : {s t u : List In } → s ++ t ≡ u → split (list-eq cmpi s) (list-eq cmpi t) u ≡ true
-- split-spec-01 = {!!}
-- from example 1.53 1
ex53-1 : Set
ex53-1 = (s : List In ) → regular-language ( (< a > *) & < b > & (< a > *) ) cmpi s ≡ true → {!!} -- contains exact one b
ex53-2 : Set
ex53-2 = (s : List In ) → regular-language ( (any * ) & < b > & (any *) ) cmpi s ≡ true → {!!} -- contains at lease one b
evenp : {Σ : Set} → List Σ → Bool
oddp : {Σ : Set} → List Σ → Bool
oddp [] = false
oddp (_ ∷ t) = evenp t
evenp [] = true
evenp (_ ∷ t) = oddp t
-- from example 1.53 5
egex-even : Set
egex-even = (s : List In ) → regular-language ( ( any & any ) * ) cmpi s ≡ true → evenp s ≡ true
test11 = regular-language ( ( any & any ) * ) cmpi (a ∷ [])
test12 = regular-language ( ( any & any ) * ) cmpi (a ∷ b ∷ [])
-- proof-egex-even : egex-even
-- proof-egex-even [] _ = refl
-- proof-egex-even (a ∷ []) ()
-- proof-egex-even (b ∷ []) ()
-- proof-egex-even (c ∷ []) ()
-- proof-egex-even (x ∷ x₁ ∷ s) y = proof-egex-even s {!!}
open import finiteSet
iFin : FiniteSet In
iFin = record {
finite = finite0
; Q←F = Q←F0
; F←Q = F←Q0
; finiso→ = finiso→0
; finiso← = finiso←0
} where
finite0 : ℕ
finite0 = 4
Q←F0 : Fin finite0 → In
Q←F0 zero = a
Q←F0 (suc zero) = b
Q←F0 (suc (suc zero)) = c
Q←F0 (suc (suc (suc zero))) = d
F←Q0 : In → Fin finite0
F←Q0 a = # 0
F←Q0 b = # 1
F←Q0 c = # 2
F←Q0 d = # 3
finiso→0 : (q : In) → Q←F0 ( F←Q0 q ) ≡ q
finiso→0 a = refl
finiso→0 b = refl
finiso→0 c = refl
finiso→0 d = refl
finiso←0 : (f : Fin finite0 ) → F←Q0 ( Q←F0 f ) ≡ f
finiso←0 zero = refl
finiso←0 (suc zero) = refl
finiso←0 (suc (suc zero)) = refl
finiso←0 (suc (suc (suc zero))) = refl
open import derive In iFin
open import automaton
ra-ex = trace (regex→automaton cmpi r2) (record { state = r2 ; is-derived = unit }) ( a ∷ b ∷ c ∷ [])
|
algebraic-stack_agda0000_doc_238 | ------------------------------------------------------------------------
-- Labelled transition systems
------------------------------------------------------------------------
{-# OPTIONS --safe #-}
module Labelled-transition-system where
open import Equality.Propositional
import Logical-equivalence
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Equivalence equality-with-J using (↔⇒≃)
open import Function-universe equality-with-J hiding (id; _∘_)
open import Univalence-axiom equality-with-J
-- Labelled transition systems were perhaps first defined by Robert M.
-- Keller (https://doi.org/10.1145/360248.360251). The definition
-- below is a variant with a field "is-silent", added by me.
--
-- I don't know who first came up with the concept of a weak
-- transition. The definitions of _⇒_, _[_]⇒_, _[_]⇒̂_ and _[_]⟶̂_ below
-- are based on definitions in "Enhancements of the bisimulation proof
-- method" by Pous and Sangiorgi.
record LTS ℓ : Type (lsuc ℓ) where
infix 4 _[_]⟶_ _⇒_ _[_]⇒_ _[_]⇒̂_ _[_]⟶̂_
field
-- Processes.
Proc : Type ℓ
-- Labels.
Label : Type ℓ
-- Transitions.
_[_]⟶_ : Proc → Label → Proc → Type ℓ
-- Is the label silent?
is-silent : Label → Bool
-- Is the label silent?
Silent : Label → Type
Silent μ with is-silent μ
... | true = ⊤
... | false = ⊥
-- Silence can be decided.
silent? : ∀ μ → Dec (Silent μ)
silent? μ with is-silent μ
... | true = yes _
... | false = no id
-- Sequences of zero or more silent transitions.
data _⇒_ : Proc → Proc → Type ℓ where
done : ∀ {p} → p ⇒ p
step : ∀ {p q r μ} → Silent μ → p [ μ ]⟶ q → q ⇒ r → p ⇒ r
-- Weak transitions (one kind).
data _[_]⇒_ (p : Proc) (μ : Label) (q : Proc) : Type ℓ where
steps : ∀ {p′ q′} → p ⇒ p′ → p′ [ μ ]⟶ q′ → q′ ⇒ q → p [ μ ]⇒ q
-- Weak transitions (another kind).
data _[_]⇒̂_ (p : Proc) (μ : Label) (q : Proc) : Type ℓ where
silent : Silent μ → p ⇒ q → p [ μ ]⇒̂ q
non-silent : ¬ Silent μ → p [ μ ]⇒ q → p [ μ ]⇒̂ q
-- Weak transitions (yet another kind).
data _[_]⟶̂_ (p : Proc) (μ : Label) : Proc → Type ℓ where
done : Silent μ → p [ μ ]⟶̂ p
step : ∀ {q} → p [ μ ]⟶ q → p [ μ ]⟶̂ q
-- Functions that can be used to aid the instance resolution
-- mechanism.
infix -2 ⟶:_ ⇒:_ []⇒:_ ⇒̂:_ ⟶̂:_
⟶:_ : ∀ {p μ q} → p [ μ ]⟶ q → p [ μ ]⟶ q
⟶:_ = id
⇒:_ : ∀ {p q} → p ⇒ q → p ⇒ q
⇒:_ = id
[]⇒:_ : ∀ {p μ q} → p [ μ ]⇒ q → p [ μ ]⇒ q
[]⇒:_ = id
⇒̂:_ : ∀ {p μ q} → p [ μ ]⇒̂ q → p [ μ ]⇒̂ q
⇒̂:_ = id
⟶̂:_ : ∀ {p μ q} → p [ μ ]⟶̂ q → p [ μ ]⟶̂ q
⟶̂:_ = id
-- An "equational" reasoning combinator that is not subsumed by the
-- combinators in Equational-reasoning, because the types of the two
-- main arguments and the result use three different relations.
infixr -2 ⟶⇒→[]⇒
⟶⇒→[]⇒ : ∀ p μ {q r} → p [ μ ]⟶ q → q ⇒ r → p [ μ ]⇒ r
⟶⇒→[]⇒ _ _ = steps done
syntax ⟶⇒→[]⇒ p μ p⟶q q⇒r = p [ μ ]⇒⟨ p⟶q ⟩ q⇒r
-- Combinators that can be used to add visible type information to
-- an expression.
infix -1 step-with-action step-without-action
step-with-action : ∀ p μ q → p [ μ ]⟶ q → p [ μ ]⟶ q
step-with-action _ _ _ p⟶q = p⟶q
step-without-action : ∀ p {μ} q → p [ μ ]⟶ q → p [ μ ]⟶ q
step-without-action _ _ p⟶q = p⟶q
syntax step-with-action p μ q p⟶q = p [ μ ]⟶⟨ p⟶q ⟩ q
syntax step-without-action p q p⟶q = p ⟶⟨ p⟶q ⟩ q
-- Regular transitions can (sometimes) be turned into weak ones.
⟶→⇒ : ∀ {p μ q} → Silent μ → p [ μ ]⟶ q → p ⇒ q
⟶→⇒ s tr = step s tr done
⟶→[]⇒ : ∀ {p μ q} → p [ μ ]⟶ q → p [ μ ]⇒ q
⟶→[]⇒ tr = steps done tr done
⟶→⇒̂ : ∀ {p μ q} → p [ μ ]⟶ q → p [ μ ]⇒̂ q
⟶→⇒̂ {μ = μ} tr with silent? μ
... | yes s = silent s (⟶→⇒ s tr)
... | no ¬s = non-silent ¬s (⟶→[]⇒ tr)
⟶→⟶̂ : ∀ {p μ q} → p [ μ ]⟶ q → p [ μ ]⟶̂ q
⟶→⟶̂ = step
-- Several transitivity-like properties.
⇒-transitive : ∀ {p q r} → p ⇒ q → q ⇒ r → p ⇒ r
⇒-transitive done p⇒q = p⇒q
⇒-transitive (step s p⟶q q⇒r) r⇒s = step s p⟶q (⇒-transitive q⇒r r⇒s)
⇒[]⇒-transitive : ∀ {p q r μ} → p ⇒ q → q [ μ ]⇒ r → p [ μ ]⇒ r
⇒[]⇒-transitive p⇒q (steps q⇒r r⟶s s⇒t) =
steps (⇒-transitive p⇒q q⇒r) r⟶s s⇒t
[]⇒⇒-transitive : ∀ {p q r μ} → p [ μ ]⇒ q → q ⇒ r → p [ μ ]⇒ r
[]⇒⇒-transitive (steps p⇒q q⟶r r⇒s) s⇒t =
steps p⇒q q⟶r (⇒-transitive r⇒s s⇒t)
⇒⇒̂-transitive : ∀ {p q r μ} → p ⇒ q → q [ μ ]⇒̂ r → p [ μ ]⇒̂ r
⇒⇒̂-transitive p⇒q (silent s q⇒r) = silent s (⇒-transitive p⇒q q⇒r)
⇒⇒̂-transitive p⇒q (non-silent ¬s q⇒r) =
non-silent ¬s (⇒[]⇒-transitive p⇒q q⇒r)
⇒̂⇒-transitive : ∀ {p q r μ} → p [ μ ]⇒̂ q → q ⇒ r → p [ μ ]⇒̂ r
⇒̂⇒-transitive (silent s p⇒q) q⇒r = silent s (⇒-transitive p⇒q q⇒r)
⇒̂⇒-transitive (non-silent ¬s p⇒q) q⇒r =
non-silent ¬s ([]⇒⇒-transitive p⇒q q⇒r)
-- More conversion functions.
[]⇒→⇒ : ∀ {p q μ} → Silent μ → p [ μ ]⇒ q → p ⇒ q
[]⇒→⇒ s (steps p⇒p′ p′⟶p″ p″⇒p‴) =
⇒-transitive p⇒p′ (step s p′⟶p″ p″⇒p‴)
⇒̂→⇒ : ∀ {p q μ} → Silent μ → p [ μ ]⇒̂ q → p ⇒ q
⇒̂→⇒ s (silent _ p⇒q) = p⇒q
⇒̂→⇒ s (non-silent ¬s _) = ⊥-elim (¬s s)
⇒→⇒̂ : ∀ {p q μ} → p [ μ ]⇒ q → p [ μ ]⇒̂ q
⇒→⇒̂ {μ = μ} tr with silent? μ
... | yes s = silent s ([]⇒→⇒ s tr)
... | no ¬s = non-silent ¬s tr
⇒̂→[]⇒ : ∀ {p q μ} → ¬ Silent μ → p [ μ ]⇒̂ q → p [ μ ]⇒ q
⇒̂→[]⇒ ¬s (silent s _) = ⊥-elim (¬s s)
⇒̂→[]⇒ _ (non-silent _ tr) = tr
⟶̂→⇒̂ : ∀ {p μ q} → p [ μ ]⟶̂ q → p [ μ ]⇒̂ q
⟶̂→⇒̂ (done s) = silent s done
⟶̂→⇒̂ (step tr) = ⟶→⇒̂ tr
⟶̂→⇒ : ∀ {p q μ} → Silent μ → p [ μ ]⟶̂ q → p ⇒ q
⟶̂→⇒ s = ⇒̂→⇒ s ∘ ⟶̂→⇒̂
-- Lemmas that can be used to show that relations are weak
-- simulations of various kinds.
module _
{ℓ}
{_%_ _%′_ : Proc → Proc → Type ℓ}
{_[_]%_ : Proc → Label → Proc → Type ℓ}
(left-to-right :
∀ {p q} → p % q → ∀ {p′ μ} →
p [ μ ]⟶ p′ → ∃ λ q′ → q [ μ ]% q′ × p′ %′ q′)
(%′⇒% : ∀ {p q} → p %′ q → p % q)
(%⇒⇒ : ∀ {p p′ μ} → Silent μ → p [ μ ]% p′ → p ⇒ p′)
where
is-weak⇒ :
∀ {p p′ q} →
p % q → p ⇒ p′ →
∃ λ q′ → q ⇒ q′ × (p′ % q′)
is-weak⇒ p%q done = _ , done , p%q
is-weak⇒ p%q (step s p⟶p′ p′⇒p″) =
let q′ , q%q′ , p′%′q′ = left-to-right p%q p⟶p′
q″ , q′⇒q″ , p″%q″ = is-weak⇒ (%′⇒% p′%′q′) p′⇒p″
in q″ , ⇒-transitive (%⇒⇒ s q%q′) q′⇒q″ , p″%q″
is-weak[]⇒ :
∀ {p p′ q μ} →
(∀ {p p′} → p [ μ ]% p′ → p [ μ ]⇒ p′) →
p % q → p [ μ ]⇒ p′ →
∃ λ q′ → q [ μ ]⇒ q′ × (p′ % q′)
is-weak[]⇒ %⇒[]⇒ p%q (steps p⇒p′ p′⟶p″ p″⇒p‴) =
let q′ , q⇒q′ , p′%q′ = is-weak⇒ p%q p⇒p′
q″ , q′%q″ , p″%′q″ = left-to-right p′%q′ p′⟶p″
q‴ , q″⇒q‴ , p‴%q‴ = is-weak⇒ (%′⇒% p″%′q″) p″⇒p‴
in q‴
, ⇒[]⇒-transitive q⇒q′ ([]⇒⇒-transitive (%⇒[]⇒ q′%q″) q″⇒q‴)
, p‴%q‴
is-weak⇒̂ :
∀ {p p′ q μ} →
(∀ {p p′} → p [ μ ]% p′ → p [ μ ]⇒̂ p′) →
p % q → p [ μ ]⇒̂ p′ →
∃ λ q′ → q [ μ ]⇒̂ q′ × (p′ % q′)
is-weak⇒̂ _ q%r (silent s q⇒q′) =
Σ-map id (Σ-map (silent s) id) (is-weak⇒ q%r q⇒q′)
is-weak⇒̂ %⇒⇒̂ q%r (non-silent ¬s q⇒q′) =
Σ-map id (Σ-map ⇒→⇒̂ id) (is-weak[]⇒ (⇒̂→[]⇒ ¬s ∘ %⇒⇒̂) q%r q⇒q′)
-- If no action is silent, then _[_]⇒_ is pointwise isomorphic to
-- _[_]⟶_.
⟶↔⇒ : (∀ μ → ¬ Silent μ) →
∀ {p μ q} → p [ μ ]⟶ q ↔ p [ μ ]⇒ q
⟶↔⇒ ¬silent = record
{ surjection = record
{ logical-equivalence = record
{ to = ⟶→[]⇒
; from = λ
{ (steps (step s _ _) _ _) → ⊥-elim (¬silent _ s)
; (steps _ _ (step s _ _)) → ⊥-elim (¬silent _ s)
; (steps done tr done) → tr
}
}
; right-inverse-of = λ
{ (steps (step s _ _) _ _) → ⊥-elim (¬silent _ s)
; (steps _ _ (step s _ _)) → ⊥-elim (¬silent _ s)
; (steps done tr done) → refl
}
}
; left-inverse-of = λ _ → refl
}
-- If no action is silent, then _[_]⇒̂_ is pointwise logically
-- equivalent to _[_]⟶_, and in the presence of extensionality they
-- are pointwise isomorphic.
⟶↔⇒̂ : ∀ {k} →
Extensionality? k lzero lzero →
(∀ μ → ¬ Silent μ) →
∀ {p μ q} → p [ μ ]⟶ q ↝[ k ] p [ μ ]⇒̂ q
⟶↔⇒̂ ext ¬silent = generalise-ext?
⟶⇔⇒̂
(λ ext →
(λ { (silent s _) → ⊥-elim (¬silent _ s)
; (non-silent _ tr) →
cong₂ non-silent
(apply-ext ext (⊥-elim ∘ ¬silent _))
(_↔_.right-inverse-of (⟶↔⇒ ¬silent) tr)
})
, (λ _ → refl))
ext
where
⟶⇔⇒̂ = record
{ to = λ tr → non-silent (¬silent _) (_↔_.to (⟶↔⇒ ¬silent) tr)
; from = λ
{ (silent s _) → ⊥-elim (¬silent _ s)
; (non-silent _ tr) → _↔_.from (⟶↔⇒ ¬silent) tr
}
}
-- Map-like functions.
map-⇒′ :
{F : Proc → Proc} →
(∀ {p p′ μ} → Silent μ → p [ μ ]⟶ p′ → F p [ μ ]⟶ F p′) →
∀ {p p′} → p ⇒ p′ → F p ⇒ F p′
map-⇒′ f done = done
map-⇒′ f (step s p⟶p′ p′⇒p″) =
step s (f s p⟶p′) (map-⇒′ f p′⇒p″)
map-⇒ :
{F : Proc → Proc} →
(∀ {p p′ μ} → p [ μ ]⟶ p′ → F p [ μ ]⟶ F p′) →
∀ {p p′} → p ⇒ p′ → F p ⇒ F p′
map-⇒ f = map-⇒′ (λ _ → f)
map-[]⇒′ :
∀ {μ} {F : Proc → Proc} →
(∀ {p p′ μ} → Silent μ → p [ μ ]⟶ p′ → F p [ μ ]⟶ F p′) →
(∀ {p p′} → p [ μ ]⟶ p′ → F p [ μ ]⟶ F p′) →
∀ {p p′} → p [ μ ]⇒ p′ → F p [ μ ]⇒ F p′
map-[]⇒′ f g (steps p⇒p′ p′⟶p″ p″⇒p‴) =
steps (map-⇒′ f p⇒p′) (g p′⟶p″) (map-⇒′ f p″⇒p‴)
map-[]⇒ :
{F : Proc → Proc} →
(∀ {p p′ μ} → p [ μ ]⟶ p′ → F p [ μ ]⟶ F p′) →
∀ {p p′ μ} → p [ μ ]⇒ p′ → F p [ μ ]⇒ F p′
map-[]⇒ f = map-[]⇒′ (λ _ → f) f
map-⇒̂′ :
∀ {μ} {F : Proc → Proc} →
(∀ {p p′ μ} → Silent μ → p [ μ ]⟶ p′ → F p [ μ ]⟶ F p′) →
(∀ {p p′} → p [ μ ]⟶ p′ → F p [ μ ]⟶ F p′) →
∀ {p p′} → p [ μ ]⇒̂ p′ → F p [ μ ]⇒̂ F p′
map-⇒̂′ f g (silent s p⇒p′) = silent s (map-⇒′ f p⇒p′)
map-⇒̂′ f g (non-silent ¬s p⇒p′) = non-silent ¬s (map-[]⇒′ f g p⇒p′)
map-⇒̂ :
{F : Proc → Proc} →
(∀ {p p′ μ} → p [ μ ]⟶ p′ → F p [ μ ]⟶ F p′) →
∀ {p p′ μ} → p [ μ ]⇒̂ p′ → F p [ μ ]⇒̂ F p′
map-⇒̂ f = map-⇒̂′ (λ _ → f) f
map-⟶̂ :
∀ {μ p p′} {F : Proc → Proc} →
(p [ μ ]⟶ p′ → F p [ μ ]⟶ F p′) →
p [ μ ]⟶̂ p′ → F p [ μ ]⟶̂ F p′
map-⟶̂ f (done s) = done s
map-⟶̂ f (step p⟶p′) = step (f p⟶p′)
-- Zip-like functions.
module _
{F : Proc → Proc → Proc}
(f : ∀ {p p′ q μ} → p [ μ ]⟶ p′ → F p q [ μ ]⟶ F p′ q)
(g : ∀ {p q q′ μ} → q [ μ ]⟶ q′ → F p q [ μ ]⟶ F p q′)
where
zip-⇒ : ∀ {p p′ q q′} → p ⇒ p′ → q ⇒ q′ → F p q ⇒ F p′ q′
zip-⇒ done done = done
zip-⇒ done (step s q⟶q′ q′⇒q″) = step s (g q⟶q′) (zip-⇒ done q′⇒q″)
zip-⇒ (step s p⟶p′ p′⇒p″) tr = step s (f p⟶p′) (zip-⇒ p′⇒p″ tr)
zip-[]⇒ˡ′ :
∀ {p p′ q q′ μ₁ μ₃} →
(∀ {p p′ q} → p [ μ₁ ]⟶ p′ → F p q [ μ₃ ]⟶ F p′ q) →
p [ μ₁ ]⇒ p′ → q ⇒ q′ → F p q [ μ₃ ]⇒ F p′ q′
zip-[]⇒ˡ′ h (steps p⇒p′ p′⟶p″ p″⇒p‴) q⇒q′ =
steps (zip-⇒ p⇒p′ q⇒q′) (h p′⟶p″) (zip-⇒ p″⇒p‴ done)
zip-[]⇒ˡ : ∀ {p p′ q q′ μ} →
p [ μ ]⇒ p′ → q ⇒ q′ → F p q [ μ ]⇒ F p′ q′
zip-[]⇒ˡ = zip-[]⇒ˡ′ f
zip-[]⇒ʳ′ :
∀ {p p′ q q′ μ₂ μ₃} →
(∀ {p q q′} → q [ μ₂ ]⟶ q′ → F p q [ μ₃ ]⟶ F p q′) →
p ⇒ p′ → q [ μ₂ ]⇒ q′ → F p q [ μ₃ ]⇒ F p′ q′
zip-[]⇒ʳ′ h p⇒p′ (steps q⇒q′ q′⟶q″ q″⇒q‴) =
steps (zip-⇒ p⇒p′ q⇒q′) (h q′⟶q″) (zip-⇒ done q″⇒q‴)
zip-[]⇒ʳ : ∀ {p p′ q q′ μ} →
p ⇒ p′ → q [ μ ]⇒ q′ → F p q [ μ ]⇒ F p′ q′
zip-[]⇒ʳ = zip-[]⇒ʳ′ g
zip-[]⇒ :
∀ {μ₁ μ₂ μ₃} →
(∀ {p p′ q q′} →
p [ μ₁ ]⟶ p′ → q [ μ₂ ]⟶ q′ → F p q [ μ₃ ]⟶ F p′ q′) →
∀ {p p′ q q′} →
p [ μ₁ ]⇒ p′ → q [ μ₂ ]⇒ q′ → F p q [ μ₃ ]⇒ F p′ q′
zip-[]⇒ h (steps p⇒p′ p′⟶p″ p″⇒p‴) (steps q⇒q′ q′⟶q″ q″⇒q‴) =
steps (zip-⇒ p⇒p′ q⇒q′) (h p′⟶p″ q′⟶q″) (zip-⇒ p″⇒p‴ q″⇒q‴)
zip-⇒̂ :
∀ {μ₁ μ₂ μ₃} →
(Silent μ₁ → Silent μ₂ → Silent μ₃) →
(∀ {p p′ q} → p [ μ₁ ]⟶ p′ → Silent μ₂ → F p q [ μ₃ ]⟶ F p′ q) →
(∀ {p q q′} → Silent μ₁ → q [ μ₂ ]⟶ q′ → F p q [ μ₃ ]⟶ F p q′) →
(∀ {p p′ q q′} →
p [ μ₁ ]⟶ p′ → q [ μ₂ ]⟶ q′ → F p q [ μ₃ ]⟶ F p′ q′) →
∀ {p p′ q q′} →
p [ μ₁ ]⇒̂ p′ → q [ μ₂ ]⇒̂ q′ → F p q [ μ₃ ]⇒̂ F p′ q′
zip-⇒̂ fs hˡ hʳ h = λ where
(silent s₁ tr₁) (silent s₂ tr₂) → silent (fs s₁ s₂) (zip-⇒ tr₁ tr₂)
(silent s₁ tr₁) (non-silent ¬s₂ tr₂) → ⇒→⇒̂ (zip-[]⇒ʳ′ (hʳ s₁) tr₁ tr₂)
(non-silent ¬s₁ tr₁) (silent s₂ tr₂) → ⇒→⇒̂ (zip-[]⇒ˡ′ (flip hˡ s₂) tr₁ tr₂)
(non-silent ¬s₁ tr₁) (non-silent ¬s₂ tr₂) → ⇒→⇒̂ (zip-[]⇒ h tr₁ tr₂)
zip-⟶̂ :
∀ {F : Proc → Proc → Proc} {μ₁ μ₂ μ₃} →
(Silent μ₁ → Silent μ₂ → Silent μ₃) →
(∀ {p p′ q} → p [ μ₁ ]⟶ p′ → Silent μ₂ → F p q [ μ₃ ]⟶ F p′ q) →
(∀ {p q q′} → Silent μ₁ → q [ μ₂ ]⟶ q′ → F p q [ μ₃ ]⟶ F p q′) →
(∀ {p p′ q q′} →
p [ μ₁ ]⟶ p′ → q [ μ₂ ]⟶ q′ → F p q [ μ₃ ]⟶ F p′ q′) →
∀ {p p′ q q′} → p [ μ₁ ]⟶̂ p′ → q [ μ₂ ]⟶̂ q′ → F p q [ μ₃ ]⟶̂ F p′ q′
zip-⟶̂ s f g h (done s₁) (done s₂) = done (s s₁ s₂)
zip-⟶̂ s f g h (done s₁) (step q⟶q′) = step (g s₁ q⟶q′)
zip-⟶̂ s f g h (step p⟶p′) (done s₂) = step (f p⟶p′ s₂)
zip-⟶̂ s f g h (step p⟶p′) (step q⟶q′) = step (h p⟶p′ q⟶q′)
-- Transforms an LTS into one which uses weak transitions as
-- transitions.
weak : ∀ {ℓ} → LTS ℓ → LTS ℓ
weak lts = record
{ Proc = Proc
; Label = Label
; _[_]⟶_ = _[_]⇒̂_
; is-silent = is-silent
}
where
open LTS lts
-- If no lts action is silent, then weak lts is equal to lts (assuming
-- extensionality and univalence).
weak≡id :
∀ {ℓ} →
Extensionality ℓ (lsuc ℓ) →
Univalence ℓ →
(lts : LTS ℓ) →
(∀ μ → ¬ LTS.Silent lts μ) →
weak lts ≡ lts
weak≡id ext univ lts ¬silent =
cong (λ _[_]⟶_ → record
{ Proc = Proc
; Label = Label
; _[_]⟶_ = _[_]⟶_
; is-silent = is-silent
})
(apply-ext ext λ p → apply-ext ext λ μ → apply-ext ext λ q →
p [ μ ]⇒̂ q ≡⟨ ≃⇒≡ univ $ ↔⇒≃ $ inverse $ ⟶↔⇒̂ (lower-extensionality _ _ ext) ¬silent ⟩∎
p [ μ ]⟶ q ∎)
where
open LTS lts
-- An LTS with no processes or labels.
empty : LTS lzero
empty = record
{ Proc = ⊥
; Label = ⊥
; _[_]⟶_ = λ ()
; is-silent = λ ()
}
-- An LTS with a single process, a single (non-silent) label, and a
-- single transition.
one-loop : LTS lzero
one-loop = record
{ Proc = ⊤
; Label = ⊤
; _[_]⟶_ = λ _ _ _ → ⊤
; is-silent = λ _ → false
}
-- An LTS with two distinct, but bisimilar, processes. There are
-- transitions between the two processes.
two-bisimilar-processes : LTS lzero
two-bisimilar-processes = record
{ Proc = Bool
; Label = ⊤
; _[_]⟶_ = λ _ _ _ → ⊤
; is-silent = λ _ → false
}
-- A parametrised LTS for which bisimilarity is logically equivalent
-- to equality.
bisimilarity⇔equality : ∀ {ℓ} → Type ℓ → LTS ℓ
bisimilarity⇔equality A = record
{ Proc = A
; Label = A
; _[_]⟶_ = λ p μ q → p ≡ μ × p ≡ q
; is-silent = λ _ → false
}
|
algebraic-stack_agda0000_doc_239 | {-
following Johnstone's book "Stone Spaces" we define semilattices
to be commutative monoids such that every element is idempotent.
In particular, we take every semilattice to have a neutral element
that is either the maximal or minimal element depending on whether
we have a join or meet semilattice.
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Semilattice.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommMonoid
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Poset
open import Cubical.Reflection.RecordEquiv
open Iso
private
variable
ℓ ℓ' : Level
record IsSemilattice {A : Type ℓ} (ε : A) (_·_ : A → A → A) : Type ℓ where
constructor issemilattice
field
isCommMonoid : IsCommMonoid ε _·_
idem : (x : A) → x · x ≡ x
open IsCommMonoid isCommMonoid public
unquoteDecl IsSemilatticeIsoΣ = declareRecordIsoΣ IsSemilatticeIsoΣ (quote IsSemilattice)
record SemilatticeStr (A : Type ℓ) : Type ℓ where
constructor semilatticestr
field
ε : A
_·_ : A → A → A
isSemilattice : IsSemilattice ε _·_
infixl 7 _·_
open IsSemilattice isSemilattice public
Semilattice : ∀ ℓ → Type (ℓ-suc ℓ)
Semilattice ℓ = TypeWithStr ℓ SemilatticeStr
semilattice : (A : Type ℓ) (ε : A) (_·_ : A → A → A) (h : IsSemilattice ε _·_) → Semilattice ℓ
semilattice A ε _·_ h = A , semilatticestr ε _·_ h
-- Easier to use constructors
makeIsSemilattice : {L : Type ℓ} {ε : L} {_·_ : L → L → L}
(is-setL : isSet L)
(assoc : (x y z : L) → x · (y · z) ≡ (x · y) · z)
(rid : (x : L) → x · ε ≡ x)
(lid : (x : L) → ε · x ≡ x)
(comm : (x y : L) → x · y ≡ y · x)
(idem : (x : L) → x · x ≡ x)
→ IsSemilattice ε _·_
IsSemilattice.isCommMonoid (makeIsSemilattice is-setL assoc rid lid comm idem) =
makeIsCommMonoid is-setL assoc rid lid comm
IsSemilattice.idem (makeIsSemilattice is-setL assoc rid lid comm idem) = idem
makeSemilattice : {L : Type ℓ} (ε : L) (_·_ : L → L → L)
(is-setL : isSet L)
(assoc : (x y z : L) → x · (y · z) ≡ (x · y) · z)
(rid : (x : L) → x · ε ≡ x)
(lid : (x : L) → ε · x ≡ x)
(comm : (x y : L) → x · y ≡ y · x)
(idem : (x : L) → x · x ≡ x)
→ Semilattice ℓ
makeSemilattice ε _·_ is-setL assoc rid lid comm idem =
semilattice _ ε _·_ (makeIsSemilattice is-setL assoc rid lid comm idem)
SemilatticeStr→MonoidStr : {A : Type ℓ} → SemilatticeStr A → MonoidStr A
SemilatticeStr→MonoidStr (semilatticestr _ _ H) =
monoidstr _ _ (H .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid)
Semilattice→Monoid : Semilattice ℓ → Monoid ℓ
Semilattice→Monoid (_ , semilatticestr _ _ H) =
_ , monoidstr _ _ (H .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid)
Semilattice→CommMonoid : Semilattice ℓ → CommMonoid ℓ
Semilattice→CommMonoid (_ , semilatticestr _ _ H) =
_ , commmonoidstr _ _ (H .IsSemilattice.isCommMonoid)
SemilatticeHom : (L : Semilattice ℓ) (M : Semilattice ℓ') → Type (ℓ-max ℓ ℓ')
SemilatticeHom L M = MonoidHom (Semilattice→Monoid L) (Semilattice→Monoid M)
IsSemilatticeEquiv : {A : Type ℓ} {B : Type ℓ'}
(M : SemilatticeStr A) (e : A ≃ B) (N : SemilatticeStr B) → Type (ℓ-max ℓ ℓ')
IsSemilatticeEquiv M e N =
IsMonoidHom (SemilatticeStr→MonoidStr M) (e .fst) (SemilatticeStr→MonoidStr N)
SemilatticeEquiv : (M : Semilattice ℓ) (N : Semilattice ℓ') → Type (ℓ-max ℓ ℓ')
SemilatticeEquiv M N = Σ[ e ∈ (M .fst ≃ N .fst) ] IsSemilatticeEquiv (M .snd) e (N .snd)
isPropIsSemilattice : {L : Type ℓ} (ε : L) (_·_ : L → L → L)
→ isProp (IsSemilattice ε _·_)
isPropIsSemilattice ε _·_ (issemilattice LL LC) (issemilattice SL SC) =
λ i → issemilattice (isPropIsCommMonoid _ _ LL SL i) (isPropIdem LC SC i)
where
isSetL : isSet _
isSetL = LL .IsCommMonoid.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
isPropIdem : isProp ((x : _) → x · x ≡ x)
isPropIdem = isPropΠ λ _ → isSetL _ _
𝒮ᴰ-Semilattice : DUARel (𝒮-Univ ℓ) SemilatticeStr ℓ
𝒮ᴰ-Semilattice =
𝒮ᴰ-Record (𝒮-Univ _) IsSemilatticeEquiv
(fields:
data[ ε ∣ autoDUARel _ _ ∣ presε ]
data[ _·_ ∣ autoDUARel _ _ ∣ isHom ]
prop[ isSemilattice ∣ (λ _ _ → isPropIsSemilattice _ _) ])
where
open SemilatticeStr
open IsMonoidHom
SemilatticePath : (L K : Semilattice ℓ) → SemilatticeEquiv L K ≃ (L ≡ K)
SemilatticePath = ∫ 𝒮ᴰ-Semilattice .UARel.ua
-- TODO: decide if that's the right approach
module JoinSemilattice (L' : Semilattice ℓ) where
private L = fst L'
open SemilatticeStr (snd L') renaming (_·_ to _∨l_ ; ε to 1l)
open CommMonoidTheory (Semilattice→CommMonoid L')
_≤_ : L → L → Type ℓ
x ≤ y = x ∨l y ≡ y
infix 4 _≤_
IndPoset : Poset ℓ ℓ
fst IndPoset = L
PosetStr._≤_ (snd IndPoset) = _≤_
IsPoset.is-set (PosetStr.isPoset (snd IndPoset)) = is-set
IsPoset.is-prop-valued (PosetStr.isPoset (snd IndPoset)) = λ _ _ → is-set _ _
IsPoset.is-refl (PosetStr.isPoset (snd IndPoset)) = idem
IsPoset.is-trans (PosetStr.isPoset (snd IndPoset)) = path
where
path : (a b c : L) → a ∨l b ≡ b → b ∨l c ≡ c → a ∨l c ≡ c
path a b c a∨b≡b b∨c≡c = a ∨l c ≡⟨ cong (a ∨l_) (sym b∨c≡c) ⟩
a ∨l (b ∨l c) ≡⟨ assoc _ _ _ ⟩
(a ∨l b) ∨l c ≡⟨ cong (_∨l c) a∨b≡b ⟩
b ∨l c ≡⟨ b∨c≡c ⟩
c ∎
IsPoset.is-antisym (PosetStr.isPoset (snd IndPoset)) =
λ _ _ a∨b≡b b∨a≡a → sym b∨a≡a ∙∙ comm _ _ ∙∙ a∨b≡b
∨lIsMax : ∀ x y z → x ≤ z → y ≤ z → x ∨l y ≤ z
∨lIsMax x y z x≤z y≤z = cong ((x ∨l y) ∨l_) (sym (idem z)) ∙ commAssocSwap x y z z
∙ cong₂ (_∨l_) x≤z y≤z
∙ idem z
≤-∨Pres : ∀ x y u w → x ≤ y → u ≤ w → x ∨l u ≤ y ∨l w
≤-∨Pres x y u w x≤y u≤w = commAssocSwap x u y w ∙ cong₂ (_∨l_) x≤y u≤w
≤-∨LPres : ∀ x y z → x ≤ y → z ∨l x ≤ z ∨l y
≤-∨LPres x y z x≤y = ≤-∨Pres _ _ _ _ (idem z) x≤y
module MeetSemilattice (L' : Semilattice ℓ) where
private L = fst L'
open SemilatticeStr (snd L') renaming (_·_ to _∧l_ ; ε to 0l)
open CommMonoidTheory (Semilattice→CommMonoid L')
_≤_ : L → L → Type ℓ
x ≤ y = x ∧l y ≡ x
infix 4 _≤_
IndPoset : Poset ℓ ℓ
fst IndPoset = L
PosetStr._≤_ (snd IndPoset) = _≤_
IsPoset.is-set (PosetStr.isPoset (snd IndPoset)) = is-set
IsPoset.is-prop-valued (PosetStr.isPoset (snd IndPoset)) = λ _ _ → is-set _ _
IsPoset.is-refl (PosetStr.isPoset (snd IndPoset)) = idem
IsPoset.is-trans (PosetStr.isPoset (snd IndPoset)) = path
where
path : (a b c : L) → a ∧l b ≡ a → b ∧l c ≡ b → a ∧l c ≡ a
path a b c a∧b≡a b∧c≡b = a ∧l c ≡⟨ cong (_∧l c) (sym a∧b≡a) ⟩
(a ∧l b) ∧l c ≡⟨ sym (assoc _ _ _) ⟩
a ∧l (b ∧l c) ≡⟨ cong (a ∧l_) b∧c≡b ⟩
a ∧l b ≡⟨ a∧b≡a ⟩
a ∎
IsPoset.is-antisym (PosetStr.isPoset (snd IndPoset)) =
λ _ _ a∧b≡a b∧a≡b → sym a∧b≡a ∙∙ comm _ _ ∙∙ b∧a≡b
≤-∧LPres : ∀ x y z → x ≤ y → z ∧l x ≤ z ∧l y
≤-∧LPres x y z x≤y = commAssocSwap z x z y ∙∙ cong (_∧l (x ∧l y)) (idem z) ∙∙ cong (z ∧l_) x≤y
∧≤LCancel : ∀ x y → x ∧l y ≤ y
∧≤LCancel x y = sym (assoc _ _ _) ∙ cong (x ∧l_) (idem y)
∧≤RCancel : ∀ x y → x ∧l y ≤ x
∧≤RCancel x y = commAssocr x y x ∙ cong (_∧l y) (idem x)
∧lIsMin : ∀ x y z → z ≤ x → z ≤ y → z ≤ x ∧l y
∧lIsMin x y z z≤x z≤y = cong (_∧l (x ∧l y)) (sym (idem z)) ∙ commAssocSwap z z x y
∙ cong₂ (_∧l_) z≤x z≤y
∙ idem z
|
algebraic-stack_agda0000_doc_48 |
module ShouldBeApplicationOf where
data One : Set where one : One
data Two : Set where two : Two
f : One -> Two
f two = two
|
algebraic-stack_agda0000_doc_49 | -- Andreas, bug found 2011-12-31
{-# OPTIONS --irrelevant-projections #-}
module Issue543 where
open import Common.Equality
data ⊥ : Set where
record ⊤ : Set where
constructor tt
data Bool : Set where
true false : Bool
T : Bool → Set
T true = ⊤
T false = ⊥
record Squash {ℓ}(A : Set ℓ) : Set ℓ where
constructor squash
field
.unsquash : A
open Squash
-- ok:
sqT≡sqF : squash true ≡ squash false
sqT≡sqF = refl
-- this should not be provable!!
.irrT≡F : true ≡ false
irrT≡F = subst (λ s → unsquash (squash true) ≡ unsquash s) sqT≡sqF refl
-- the rest is easy
T≠F : true ≡ false → ⊥
T≠F p = subst T p tt
.irr⊥ : ⊥
irr⊥ = T≠F irrT≡F
rel⊥ : .⊥ → ⊥
rel⊥ ()
absurd : ⊥
absurd = rel⊥ irr⊥
|
algebraic-stack_agda0000_doc_50 | {-# OPTIONS --without-K --exact-split --safe #-}
module HoTT.Ident where
data Id (X : Set) : X → X → Set where
refl : (x : X) → Id X x x
_≡_ : {X : Set} → X → X → Set
x ≡ y = Id _ x y
𝕁 : {X : Set}
→ (A : (x y : X) → x ≡ y → Set)
→ ((x : X) → A x x (refl x))
→ (x y : X) → (p : x ≡ y) → A x y p
𝕁 A f x x (refl x) = f x
ℍ : {X : Set}
→ (x : X)
→ (B : (y : X) → x ≡ y → Set)
→ B x (refl x)
→ (y : X) → (p : x ≡ y) → B y p
ℍ x B b x (refl x) = b
-- Defining `𝕁` in terms of `ℍ`.
𝕁' : {X : Set}
→ (A : (x y : X) → x ≡ y → Set)
→ ((x : X) → A x x (refl x))
→ (x y : X) → (p : x ≡ y) → A x y p
𝕁' A f x = ℍ x (A x) (f x)
-- Defining `ℍ` in terms of `𝕁`.
transport : {X : Set} → (f : X → Set) → (x y : X) → (x ≡ y) → f x → f y
transport f = 𝕁 (λ x y p → f x → f y) (λ x y → y)
data Σ (A : Set) (p : A → Set) : Set where
_,_ : (x : A) → p x → Σ A p
curry : {A : Set} {B : A → Set} → ((x : A) → B x → Set) → Σ A B → Set
curry f (x , y) = f x y
-- This is just for the "Note" below.
singl : (A : Set) → A → Set
singl A x = Σ A (λ y → x ≡ y)
-- Note: `≡` in the conclusion is WRT `Id (singl X x)`.
-- Source: http://www.cse.chalmers.se/~coquand/singl.pdf
lemma : {X : Set} → (x y : X) → (p : x ≡ y) → (x , refl x) ≡ (y , p)
lemma = 𝕁 (λ x y p → (x , refl x) ≡ (y , p)) (λ x → refl (x , refl x))
ℍ' : {X : Set}
→ (x : X)
→ (B : (y : X) → x ≡ y → Set)
→ B x (refl x)
→ (y : X) → (p : x ≡ y) → B y p
ℍ' x B b y p = transport (curry B) (x , refl x) (y , p) (lemma x y p) b
|
algebraic-stack_agda0000_doc_51 | ------------------------------------------------------------------------
-- Compiler correctness
------------------------------------------------------------------------
open import Prelude
import Lambda.Syntax
module Lambda.Compiler-correctness
{Name : Type}
(open Lambda.Syntax Name)
(def : Name → Tm 1)
where
import Equality.Propositional as E
import Tactic.By.Propositional as By
open import Prelude.Size
open import List E.equality-with-J using (_++_)
open import Monad E.equality-with-J using (return; _>>=_)
open import Vec.Data E.equality-with-J
open import Delay-monad.Bisimilarity
open import Lambda.Compiler def
open import Lambda.Delay-crash
open import Lambda.Interpreter def
open import Lambda.Virtual-machine.Instructions Name hiding (crash)
open import Lambda.Virtual-machine comp-name
private
module C = Closure Code
module T = Closure Tm
------------------------------------------------------------------------
-- A lemma
-- A rearrangement lemma for ⟦_⟧.
⟦⟧-· :
∀ {n} (t₁ t₂ : Tm n) {ρ} {k : T.Value → Delay-crash C.Value ∞} →
⟦ t₁ · t₂ ⟧ ρ >>= k ∼
⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k
⟦⟧-· t₁ t₂ {ρ} {k} =
⟦ t₁ · t₂ ⟧ ρ >>= k ∼⟨⟩
(do v₁ ← ⟦ t₁ ⟧ ρ
v₂ ← ⟦ t₂ ⟧ ρ
v₁ ∙ v₂) >>= k ∼⟨ symmetric (associativity (⟦ t₁ ⟧ _) _ _) ⟩
(do v₁ ← ⟦ t₁ ⟧ ρ
(do v₂ ← ⟦ t₂ ⟧ ρ
v₁ ∙ v₂) >>= k) ∼⟨ (⟦ t₁ ⟧ _ ∎) >>=-cong (λ _ → symmetric (associativity (⟦ t₂ ⟧ _) _ _)) ⟩
(do v₁ ← ⟦ t₁ ⟧ ρ
v₂ ← ⟦ t₂ ⟧ ρ
v₁ ∙ v₂ >>= k) ∎
------------------------------------------------------------------------
-- Well-formed continuations and stacks
-- A continuation is OK with respect to a certain state if the
-- following property is satisfied.
Cont-OK : Size → State → (T.Value → Delay-crash C.Value ∞) → Type
Cont-OK i ⟨ c , s , ρ ⟩ k =
∀ v → [ i ] exec ⟨ c , val (comp-val v) ∷ s , ρ ⟩ ≈ k v
-- If the In-tail-context parameter indicates that we are in a tail
-- context, then the stack must have a certain shape, and it must be
-- related to the continuation in a certain way.
data Stack-OK (i : Size) (k : T.Value → Delay-crash C.Value ∞) :
In-tail-context → Stack → Type where
unrestricted : ∀ {s} → Stack-OK i k false s
restricted : ∀ {s n} {c : Code n} {ρ : C.Env n} →
Cont-OK i ⟨ c , s , ρ ⟩ k →
Stack-OK i k true (ret c ρ ∷ s)
-- A lemma that can be used to show that certain stacks are OK.
ret-ok :
∀ {p i s n c} {ρ : C.Env n} {k} →
Cont-OK i ⟨ c , s , ρ ⟩ k →
Stack-OK i k p (ret c ρ ∷ s)
ret-ok {true} c-ok = restricted c-ok
ret-ok {false} _ = unrestricted
------------------------------------------------------------------------
-- The semantics of the compiled program matches that of the source
-- code
mutual
-- Some lemmas making up the main part of the compiler correctness
-- result.
⟦⟧-correct :
∀ {i n} (t : Tm n) (ρ : T.Env n) {c s}
{k : T.Value → Delay-crash C.Value ∞} {tc} →
Stack-OK i k tc s →
Cont-OK i ⟨ c , s , comp-env ρ ⟩ k →
[ i ] exec ⟨ comp tc t c , s , comp-env ρ ⟩ ≈ ⟦ t ⟧ ρ >>= k
⟦⟧-correct (var x) ρ {c} {s} {k} _ c-ok =
exec ⟨ var x ∷ c , s , comp-env ρ ⟩ ≳⟨⟩
exec ⟨ c , val By.⟨ index (comp-env ρ) x ⟩ ∷ s , comp-env ρ ⟩ ≡⟨ By.⟨by⟩ (comp-index ρ x) ⟩
exec ⟨ c , val (comp-val (index ρ x)) ∷ s , comp-env ρ ⟩ ≈⟨ c-ok (index ρ x) ⟩∼
k (index ρ x) ∼⟨⟩
⟦ var x ⟧ ρ >>= k ∎
⟦⟧-correct (lam t) ρ {c} {s} {k} _ c-ok =
exec ⟨ clo (comp-body t) ∷ c , s , comp-env ρ ⟩ ≳⟨⟩
exec ⟨ c , val (comp-val (T.lam t ρ)) ∷ s , comp-env ρ ⟩ ≈⟨ c-ok (T.lam t ρ) ⟩∼
k (T.lam t ρ) ∼⟨⟩
⟦ lam t ⟧ ρ >>= k ∎
⟦⟧-correct (t₁ · t₂) ρ {c} {s} {k} _ c-ok =
exec ⟨ comp false t₁ (comp false t₂ (app ∷ c))
, s
, comp-env ρ
⟩ ≈⟨ (⟦⟧-correct t₁ _ unrestricted λ v₁ →
exec ⟨ comp false t₂ (app ∷ c)
, val (comp-val v₁) ∷ s
, comp-env ρ
⟩ ≈⟨ (⟦⟧-correct t₂ _ unrestricted λ v₂ →
exec ⟨ app ∷ c
, val (comp-val v₂) ∷ val (comp-val v₁) ∷ s
, comp-env ρ
⟩ ≈⟨ ∙-correct v₁ v₂ c-ok ⟩∼
v₁ ∙ v₂ >>= k ∎) ⟩∼
(⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∎) ⟩∼
(⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∼⟨ symmetric (⟦⟧-· t₁ t₂) ⟩
⟦ t₁ · t₂ ⟧ ρ >>= k ∎
⟦⟧-correct (call f t) ρ {c} {s} {k} unrestricted c-ok =
exec ⟨ comp false (call f t) c , s , comp-env ρ ⟩ ∼⟨⟩
exec ⟨ comp false t (cal f ∷ c) , s , comp-env ρ ⟩ ≈⟨ (⟦⟧-correct t _ unrestricted λ v →
exec ⟨ cal f ∷ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈⟨ (later λ { .force →
exec ⟨ comp-name f
, ret c (comp-env ρ) ∷ s
, comp-val v ∷ []
⟩ ≈⟨ body-lemma (def f) [] c-ok ⟩∼
(⟦ def f ⟧ (v ∷ []) >>= k) ∎ }) ⟩∼
(T.lam (def f) [] ∙ v >>= k) ∎) ⟩∼
(⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v >>= k) ∼⟨ associativity (⟦ t ⟧ ρ) _ _ ⟩
(⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v) >>= k ∼⟨⟩
⟦ call f t ⟧ ρ >>= k ∎
⟦⟧-correct (call f t) ρ {c} {ret c′ ρ′ ∷ s} {k} (restricted c-ok) _ =
exec ⟨ comp true (call f t) c , ret c′ ρ′ ∷ s , comp-env ρ ⟩ ∼⟨⟩
exec ⟨ comp false t (tcl f ∷ c) , ret c′ ρ′ ∷ s , comp-env ρ ⟩ ≈⟨ (⟦⟧-correct t _ unrestricted λ v →
exec ⟨ tcl f ∷ c
, val (comp-val v) ∷ ret c′ ρ′ ∷ s
, comp-env ρ
⟩ ≈⟨ (later λ { .force →
exec ⟨ comp-name f
, ret c′ ρ′ ∷ s
, comp-val v ∷ []
⟩ ≈⟨ body-lemma (def f) [] c-ok ⟩∼
⟦ def f ⟧ (v ∷ []) >>= k ∎ }) ⟩∼
T.lam (def f) [] ∙ v >>= k ∎) ⟩∼
(⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v >>= k) ∼⟨ associativity (⟦ t ⟧ ρ) _ _ ⟩
(⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v) >>= k ∼⟨⟩
⟦ call f t ⟧ ρ >>= k ∎
⟦⟧-correct (con b) ρ {c} {s} {k} _ c-ok =
exec ⟨ con b ∷ c , s , comp-env ρ ⟩ ≳⟨⟩
exec ⟨ c , val (comp-val (T.con b)) ∷ s , comp-env ρ ⟩ ≈⟨ c-ok (T.con b) ⟩∼
k (T.con b) ∼⟨⟩
⟦ con b ⟧ ρ >>= k ∎
⟦⟧-correct (if t₁ t₂ t₃) ρ {c} {s} {k} {tc} s-ok c-ok =
exec ⟨ comp false t₁ (bra (comp tc t₂ []) (comp tc t₃ []) ∷ c)
, s
, comp-env ρ
⟩ ≈⟨ (⟦⟧-correct t₁ _ unrestricted λ v₁ → ⟦if⟧-correct v₁ t₂ t₃ s-ok c-ok) ⟩∼
(⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ >>= k) ∼⟨ associativity (⟦ t₁ ⟧ ρ) _ _ ⟩
(⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ) >>= k ∼⟨⟩
⟦ if t₁ t₂ t₃ ⟧ ρ >>= k ∎
body-lemma :
∀ {i n n′} (t : Tm (1 + n)) ρ {ρ′ : C.Env n′} {c s v}
{k : T.Value → Delay-crash C.Value ∞} →
Cont-OK i ⟨ c , s , ρ′ ⟩ k →
[ i ] exec ⟨ comp-body t
, ret c ρ′ ∷ s
, comp-val v ∷ comp-env ρ
⟩ ≈
⟦ t ⟧ (v ∷ ρ) >>= k
body-lemma t ρ {ρ′} {c} {s} {v} {k} c-ok =
exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-val v ∷ comp-env ρ ⟩ ∼⟨⟩
exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-env (v ∷ ρ) ⟩ ≈⟨ (⟦⟧-correct t (_ ∷ _) (ret-ok c-ok) λ v′ →
exec ⟨ ret ∷ []
, val (comp-val v′) ∷ ret c ρ′ ∷ s
, comp-env (v ∷ ρ)
⟩ ≳⟨⟩
exec ⟨ c , val (comp-val v′) ∷ s , ρ′ ⟩ ≈⟨ c-ok v′ ⟩∼
k v′ ∎) ⟩∼
⟦ t ⟧ (v ∷ ρ) >>= k ∎
∙-correct :
∀ {i n} v₁ v₂ {ρ : C.Env n} {c s}
{k : T.Value → Delay-crash C.Value ∞} →
Cont-OK i ⟨ c , s , ρ ⟩ k →
[ i ] exec ⟨ app ∷ c
, val (comp-val v₂) ∷ val (comp-val v₁) ∷ s
, ρ
⟩ ≈
v₁ ∙ v₂ >>= k
∙-correct (T.lam t₁ ρ₁) v₂ {ρ} {c} {s} {k} c-ok =
exec ⟨ app ∷ c
, val (comp-val v₂) ∷ val (comp-val (T.lam t₁ ρ₁)) ∷ s
, ρ
⟩ ≈⟨ later (λ { .force →
exec ⟨ comp-body t₁ , ret c ρ ∷ s , comp-val v₂ ∷ comp-env ρ₁ ⟩ ≈⟨ body-lemma t₁ _ c-ok ⟩∼
⟦ t₁ ⟧ (v₂ ∷ ρ₁) >>= k ∎ }) ⟩∎
T.lam t₁ ρ₁ ∙ v₂ >>= k ∎
∙-correct (T.con b) v₂ {ρ} {c} {s} {k} _ =
exec ⟨ app ∷ c
, val (comp-val v₂) ∷ val (comp-val (T.con b)) ∷ s
, ρ
⟩ ≳⟨⟩
crash ∼⟨⟩
T.con b ∙ v₂ >>= k ∎
⟦if⟧-correct :
∀ {i n} v₁ (t₂ t₃ : Tm n) {ρ : T.Env n} {c s}
{k : T.Value → Delay-crash C.Value ∞} {tc} →
Stack-OK i k tc s →
Cont-OK i ⟨ c , s , comp-env ρ ⟩ k →
[ i ] exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c
, val (comp-val v₁) ∷ s
, comp-env ρ
⟩ ≈
⟦if⟧ v₁ t₂ t₃ ρ >>= k
⟦if⟧-correct (T.lam t₁ ρ₁) t₂ t₃ {ρ} {c} {s} {k} {tc} _ _ =
exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c
, val (comp-val (T.lam t₁ ρ₁)) ∷ s
, comp-env ρ
⟩ ≳⟨⟩
crash ∼⟨⟩
⟦if⟧ (T.lam t₁ ρ₁) t₂ t₃ ρ >>= k ∎
⟦if⟧-correct (T.con true) t₂ t₃ {ρ} {c} {s} {k} {tc} s-ok c-ok =
exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c
, val (comp-val (T.con true)) ∷ s
, comp-env ρ
⟩ ≳⟨⟩
exec ⟨ comp tc t₂ [] ++ c , s , comp-env ρ ⟩ ≡⟨ By.by (comp-++ _ t₂) ⟩
exec ⟨ comp tc t₂ c , s , comp-env ρ ⟩ ≈⟨ ⟦⟧-correct t₂ _ s-ok c-ok ⟩∼
⟦ t₂ ⟧ ρ >>= k ∼⟨⟩
⟦if⟧ (T.con true) t₂ t₃ ρ >>= k ∎
⟦if⟧-correct (T.con false) t₂ t₃ {ρ} {c} {s} {k} {tc} s-ok c-ok =
exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c
, val (comp-val (T.con false)) ∷ s
, comp-env ρ
⟩ ≳⟨⟩
exec ⟨ comp tc t₃ [] ++ c , s , comp-env ρ ⟩ ≡⟨ By.by (comp-++ _ t₃) ⟩
exec ⟨ comp tc t₃ c , s , comp-env ρ ⟩ ≈⟨ ⟦⟧-correct t₃ _ s-ok c-ok ⟩∼
⟦ t₃ ⟧ ρ >>= k ∼⟨⟩
⟦if⟧ (T.con false) t₂ t₃ ρ >>= k ∎
-- Compiler correctness. Note that the equality that is used here is
-- syntactic.
correct :
(t : Tm 0) →
exec ⟨ comp₀ t , [] , [] ⟩ ≈
⟦ t ⟧ [] >>= λ v → return (comp-val v)
correct t =
exec ⟨ comp false t [] , [] , [] ⟩ ∼⟨⟩
exec ⟨ comp false t [] , [] , comp-env [] ⟩ ≈⟨ ⟦⟧-correct t [] unrestricted (λ v → laterˡ (return (comp-val v) ∎)) ⟩
(⟦ t ⟧ [] >>= λ v → return (comp-val v)) ∎
|
algebraic-stack_agda0000_doc_52 | {-# OPTIONS --cubical-compatible #-}
data Bool : Set where
true : Bool
false : Bool
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
data Fin : ℕ → Set where
zero : {n : ℕ} → Fin (suc n)
suc : {n : ℕ} (i : Fin n) → Fin (suc n)
infixr 5 _∷_
data Vec {a} (A : Set a) : ℕ → Set a where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
infix 4 _[_]=_
data _[_]=_ {a} {A : Set a} :
{n : ℕ} → Vec A n → Fin n → A → Set a where
here : ∀ {n} {x} {xs : Vec A n} → x ∷ xs [ zero ]= x
there : ∀ {n} {i} {x y} {xs : Vec A n}
(xs[i]=x : xs [ i ]= x) → y ∷ xs [ suc i ]= x
Subset : ℕ → Set
Subset = Vec Bool
infix 4 _∈_
_∈_ : ∀ {n} → Fin n → Subset n → Set
x ∈ p = p [ x ]= true
drop-there : ∀ {s n x} {p : Subset n} → suc x ∈ s ∷ p → x ∈ p
drop-there (there x∈p) = x∈p
_∘_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘ g = λ x → f (g x)
data ⊥ : Set where
infix 3 ¬_
¬_ : ∀ {ℓ} → Set ℓ → Set ℓ
¬ P = P → ⊥
data Dec {p} (P : Set p) : Set p where
yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P
infix 4 _∈?_
_∈?_ : ∀ {n} x (p : Subset n) → Dec (x ∈ p)
zero ∈? true ∷ p = yes here
zero ∈? false ∷ p = no λ()
suc n ∈? s ∷ p with n ∈? p
... | yes n∈p = yes (there n∈p)
... | no n∉p = no (n∉p ∘ drop-there)
|
algebraic-stack_agda0000_doc_53 | module STLC1.Kovacs.Soundness where
open import STLC1.Kovacs.Convertibility public
open import STLC1.Kovacs.PresheafRefinement public
--------------------------------------------------------------------------------
infix 3 _≈_
_≈_ : ∀ {A Γ} → Γ ⊩ A → Γ ⊩ A → Set
_≈_ {⎵} {Γ} M₁ M₂ = M₁ ≡ M₂
_≈_ {A ⇒ B} {Γ} f₁ f₂ = ∀ {Γ′} → (η : Γ′ ⊇ Γ) {a₁ a₂ : Γ′ ⊩ A}
→ (p : a₁ ≈ a₂) (u₁ : 𝒰 a₁) (u₂ : 𝒰 a₂)
→ f₁ η a₁ ≈ f₂ η a₂
_≈_ {A ⩕ B} {Γ} s₁ s₂ = proj₁ s₁ ≈ proj₁ s₂ × proj₂ s₁ ≈ proj₂ s₂
_≈_ {⫪} {Γ} s₁ s₂ = ⊤
-- (≈ᶜ ; ∙ ; _,_)
infix 3 _≈⋆_
data _≈⋆_ : ∀ {Γ Ξ} → Γ ⊩⋆ Ξ → Γ ⊩⋆ Ξ → Set
where
∅ : ∀ {Γ} → ∅ {Γ} ≈⋆ ∅
_,_ : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ} {M₁ M₂ : Γ ⊩ A}
→ (χ : ρ₁ ≈⋆ ρ₂) (p : M₁ ≈ M₂)
→ ρ₁ , M₁ ≈⋆ ρ₂ , M₂
-- (_≈⁻¹)
_⁻¹≈ : ∀ {A Γ} → {a₁ a₂ : Γ ⊩ A}
→ a₁ ≈ a₂
→ a₂ ≈ a₁
_⁻¹≈ {⎵} p = p ⁻¹
_⁻¹≈ {A ⇒ B} F = λ η p u₁ u₂ →
F η (p ⁻¹≈) u₂ u₁ ⁻¹≈
_⁻¹≈ {A ⩕ B} p = proj₁ p ⁻¹≈ , proj₂ p ⁻¹≈
_⁻¹≈ {⫪} p = tt
-- (_≈ᶜ⁻¹)
_⁻¹≈⋆ : ∀ {Γ Ξ} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ}
→ ρ₁ ≈⋆ ρ₂
→ ρ₂ ≈⋆ ρ₁
∅ ⁻¹≈⋆ = ∅
(χ , p) ⁻¹≈⋆ = χ ⁻¹≈⋆ , p ⁻¹≈
-- (_≈◾_)
_⦙≈_ : ∀ {A Γ} → {a₁ a₂ a₃ : Γ ⊩ A}
→ a₁ ≈ a₂ → a₂ ≈ a₃
→ a₁ ≈ a₃
_⦙≈_ {⎵} p q = p ⦙ q
_⦙≈_ {A ⇒ B} F G = λ η p u₁ u₂ →
F η (p ⦙≈ (p ⁻¹≈)) u₁ u₁
⦙≈ G η p u₁ u₂
_⦙≈_ {A ⩕ B} p q = proj₁ p ⦙≈ proj₁ q , proj₂ p ⦙≈ proj₂ q
_⦙≈_ {⫪} p q = tt
-- (_≈ᶜ◾_)
_⦙≈⋆_ : ∀ {Γ Ξ} → {ρ₁ ρ₂ ρ₃ : Γ ⊩⋆ Ξ}
→ ρ₁ ≈⋆ ρ₂ → ρ₂ ≈⋆ ρ₃
→ ρ₁ ≈⋆ ρ₃
∅ ⦙≈⋆ ∅ = ∅
(χ₁ , p) ⦙≈⋆ (χ₂ , q) = χ₁ ⦙≈⋆ χ₂ , p ⦙≈ q
instance
per≈ : ∀ {Γ A} → PER (Γ ⊩ A) _≈_
per≈ =
record
{ _⁻¹ = _⁻¹≈
; _⦙_ = _⦙≈_
}
instance
per≈⋆ : ∀ {Γ Ξ} → PER (Γ ⊩⋆ Ξ) _≈⋆_
per≈⋆ =
record
{ _⁻¹ = _⁻¹≈⋆
; _⦙_ = _⦙≈⋆_
}
--------------------------------------------------------------------------------
-- (≈ₑ)
acc≈ : ∀ {A Γ Γ′} → {a₁ a₂ : Γ ⊩ A}
→ (η : Γ′ ⊇ Γ) → a₁ ≈ a₂
→ acc η a₁ ≈ acc η a₂
acc≈ {⎵} η p = renⁿᶠ η & p
acc≈ {A ⇒ B} η F = λ η′ → F (η ○ η′)
acc≈ {A ⩕ B} η p = acc≈ η (proj₁ p) , acc≈ η (proj₂ p)
acc≈ {⫪} η p = tt
-- (≈ᶜₑ)
_⬖≈_ : ∀ {Γ Γ′ Ξ} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ}
→ ρ₁ ≈⋆ ρ₂ → (η : Γ′ ⊇ Γ)
→ ρ₁ ⬖ η ≈⋆ ρ₂ ⬖ η
∅ ⬖≈ η = ∅
(χ , p) ⬖≈ η = χ ⬖≈ η , acc≈ η p
-- (∈≈)
get≈ : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ}
→ ρ₁ ≈⋆ ρ₂ → (i : Ξ ∋ A)
→ getᵥ ρ₁ i ≈ getᵥ ρ₂ i
get≈ (χ , p) zero = p
get≈ (χ , p) (suc i) = get≈ χ i
-- (Tm≈)
eval≈ : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ}
→ ρ₁ ≈⋆ ρ₂ → 𝒰⋆ ρ₁ → 𝒰⋆ ρ₂ → (M : Ξ ⊢ A)
→ eval ρ₁ M ≈ eval ρ₂ M
eval≈ χ υ₁ υ₂ (𝓋 i) = get≈ χ i
eval≈ χ υ₁ υ₂ (ƛ M) = λ η p u₁ u₂ →
eval≈ (χ ⬖≈ η , p)
(υ₁ ⬖𝒰 η , u₁)
(υ₂ ⬖𝒰 η , u₂)
M
eval≈ χ υ₁ υ₂ (M ∙ N) = eval≈ χ υ₁ υ₂ M idₑ
(eval≈ χ υ₁ υ₂ N)
(eval𝒰 υ₁ N)
(eval𝒰 υ₂ N)
eval≈ χ υ₁ υ₂ (M , N) = eval≈ χ υ₁ υ₂ M , eval≈ χ υ₁ υ₂ N
eval≈ χ υ₁ υ₂ (π₁ M) = proj₁ (eval≈ χ υ₁ υ₂ M)
eval≈ χ υ₁ υ₂ (π₂ M) = proj₂ (eval≈ χ υ₁ υ₂ M)
eval≈ χ υ₁ υ₂ τ = tt
--------------------------------------------------------------------------------
-- (Subᴺᴾ)
-- NOTE: _◆𝒰_ = eval𝒰⋆
_◆𝒰_ : ∀ {Γ Ξ Φ} → {ρ : Γ ⊩⋆ Ξ}
→ (σ : Ξ ⊢⋆ Φ) → 𝒰⋆ ρ
→ 𝒰⋆ (σ ◆ ρ)
∅ ◆𝒰 υ = ∅
(σ , M) ◆𝒰 υ = σ ◆𝒰 υ , eval𝒰 υ M
-- (Subᴺ≈ᶜ)
-- NOTE: _◆≈_ = eval≈⋆
_◆≈_ : ∀ {Γ Ξ Φ} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ}
→ (σ : Ξ ⊢⋆ Φ) → ρ₁ ≈⋆ ρ₂ → 𝒰⋆ ρ₁ → 𝒰⋆ ρ₂
→ σ ◆ ρ₁ ≈⋆ σ ◆ ρ₂
(∅ ◆≈ χ) υ₁ υ₂ = ∅
((σ , M) ◆≈ χ) υ₁ υ₂ = (σ ◆≈ χ) υ₁ υ₂ , eval≈ χ υ₁ υ₂ M
--------------------------------------------------------------------------------
-- (Tmₛᴺ)
eval◆ : ∀ {Γ Ξ Φ A} → {ρ : Γ ⊩⋆ Ξ}
→ ρ ≈⋆ ρ → 𝒰⋆ ρ → (σ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A)
→ eval ρ (sub σ M) ≈ eval (σ ◆ ρ) M
eval◆ {ρ = ρ} χ υ σ (𝓋 i)
rewrite get◆ ρ σ i
= eval≈ χ υ υ (getₛ σ i)
eval◆ {ρ = ρ} χ υ σ (ƛ M) η {a₁} {a₂} p u₁ u₂
rewrite comp◆⬖ η υ σ
= let
υ′ = υ ⬖𝒰 η
in
eval◆ {ρ = ρ ⬖ η , a₁}
((χ ⬖≈ η) , (p ⦙ p ⁻¹))
(υ ⬖𝒰 η , u₁)
(liftₛ σ)
M
⦙ coe ((λ ρ′ → eval (ρ′ , a₁) M ≈ _)
& ( comp◆⬗ (ρ ⬖ η , a₁) (wkₑ idₑ) σ
⦙ (σ ◆_) & lid⬗ (ρ ⬖ η)
) ⁻¹)
(eval≈ ((σ ◆≈ (χ ⬖≈ η)) υ′ υ′ , p)
(σ ◆𝒰 υ′ , u₁)
(σ ◆𝒰 υ′ , u₂)
M)
eval◆ {ρ = ρ} χ υ σ (M ∙ N)
= eval◆ χ υ σ M
idₑ
(eval◆ χ υ σ N)
(eval𝒰 υ (sub σ N))
(eval𝒰 (σ ◆𝒰 υ) N)
eval◆ {ρ = ρ} χ υ σ (M , N) = eval◆ χ υ σ M , eval◆ χ υ σ N
eval◆ {ρ = ρ} χ υ σ (π₁ M) = proj₁ (eval◆ χ υ σ M)
eval◆ {ρ = ρ} χ υ σ (π₂ M) = proj₂ (eval◆ χ υ σ M)
eval◆ {ρ = ρ} χ υ σ τ = tt
--------------------------------------------------------------------------------
-- (~≈)
eval∼ : ∀ {Γ Ξ A} → {ρ₁ ρ₂ : Γ ⊩⋆ Ξ}
→ ρ₁ ≈⋆ ρ₂ → 𝒰⋆ ρ₁ → 𝒰⋆ ρ₂
→ {M₁ M₂ : Ξ ⊢ A}
→ M₁ ∼ M₂
→ eval ρ₁ M₁ ≈ eval ρ₂ M₂
eval∼ χ υ₁ υ₂ {M} refl∼ = eval≈ χ υ₁ υ₂ M
eval∼ χ υ₁ υ₂ (p ⁻¹∼) = eval∼ (χ ⁻¹) υ₂ υ₁ p ⁻¹
eval∼ χ υ₁ υ₂ (p ⦙∼ q) = eval∼ (χ ⦙ χ ⁻¹) υ₁ υ₁ p
⦙ eval∼ χ υ₁ υ₂ q
eval∼ χ υ₁ υ₂ (ƛ∼ p)
= λ η q u₁ u₂ →
eval∼ (χ ⬖≈ η , q)
(υ₁ ⬖𝒰 η , u₁)
(υ₂ ⬖𝒰 η , u₂)
p
eval∼ χ υ₁ υ₂ (_∙∼_ {N₁ = N₁} {N₂} p q)
= eval∼ χ υ₁ υ₂ p
idₑ
(eval∼ χ υ₁ υ₂ q)
(eval𝒰 υ₁ N₁)
(eval𝒰 υ₂ N₂)
eval∼ χ υ₁ υ₂ (p ,∼ q) = eval∼ χ υ₁ υ₂ p , eval∼ χ υ₁ υ₂ q
eval∼ χ υ₁ υ₂ (π₁∼ p ) = proj₁ (eval∼ χ υ₁ υ₂ p)
eval∼ χ υ₁ υ₂ (π₂∼ p ) = proj₂ (eval∼ χ υ₁ υ₂ p)
eval∼ {ρ₁ = ρ₁} {ρ₂} χ υ₁ υ₂ (red⇒ M N)
= coe ((λ ρ₁′ ρ₂′ → eval (ρ₁′ , eval ρ₁ N) M ≈ eval (ρ₂′ , eval ρ₂ N) M)
& (lid⬖ ρ₁ ⁻¹)
⊗ (lid◆ ρ₂ ⁻¹))
(eval≈ (χ , eval≈ χ υ₁ υ₂ N)
(υ₁ , eval𝒰 υ₁ N)
(υ₂ , eval𝒰 υ₂ N)
M)
⦙ eval◆ (χ ⁻¹ ⦙ χ) υ₂ (idₛ , N) M ⁻¹
eval∼ χ υ₁ υ₂ (red⩕₁ M N) = eval≈ χ υ₁ υ₂ M
eval∼ χ υ₁ υ₂ (red⩕₂ M N) = eval≈ χ υ₁ υ₂ N
eval∼ {ρ₂ = ρ₂} χ υ₁ υ₂ (exp⇒ M) η {a₂ = a₂} p u₁ u₂
rewrite eval⬗ (ρ₂ ⬖ η , a₂) (wkₑ idₑ) M ⁻¹
| lid⬗ (ρ₂ ⬖ η)
| eval⬖ η υ₂ M
| rid○ η
= eval≈ χ υ₁ υ₂ M η p u₁ u₂
eval∼ χ υ₁ υ₂ (exp⩕ M) = eval≈ χ υ₁ υ₂ M
eval∼ χ υ₁ υ₂ (exp⫪ M) = tt
--------------------------------------------------------------------------------
mutual
-- (q≈)
reify≈ : ∀ {A Γ} → {a₁ a₂ : Γ ⊩ A}
→ a₁ ≈ a₂
→ reify a₁ ≡ reify a₂
reify≈ {⎵} p = p
reify≈ {A ⇒ B} F = ƛ & reify≈ (F (wkₑ {A = A} idₑ)
(reflect≈ refl)
(reflect𝒰 {A} 0)
(reflect𝒰 {A} 0))
reify≈ {A ⩕ B} p = _,_ & reify≈ (proj₁ p)
⊗ reify≈ (proj₂ p)
reify≈ {⫪} p = refl
-- (u≈)
reflect≈ : ∀ {A Γ} → {M₁ M₂ : Γ ⊢ⁿᵉ A}
→ M₁ ≡ M₂
→ reflect M₁ ≈ reflect M₂
reflect≈ {⎵} p = ne & p
reflect≈ {A ⇒ B} p = λ η q u₁ u₂ →
reflect≈ (_∙_ & (renⁿᵉ η & p)
⊗ reify≈ q)
reflect≈ {A ⩕ B} p = reflect≈ (π₁ & p) , reflect≈ (π₂ & p)
reflect≈ {⫪} p = tt
-- (uᶜ≈)
id≈ : ∀ {Γ} → idᵥ {Γ} ≈⋆ idᵥ
id≈ {∅} = ∅
id≈ {Γ , A} = id≈ ⬖≈ wkₑ idₑ , reflect≈ refl
sound : ∀ {Γ A} → {M₁ M₂ : Γ ⊢ A}
→ M₁ ∼ M₂
→ nf M₁ ≡ nf M₂
sound p = reify≈ (eval∼ id≈ id𝒰 id𝒰 p)
--------------------------------------------------------------------------------
|
algebraic-stack_agda0000_doc_54 | ------------------------------------------------------------------------
-- The Agda standard library
--
-- Decision procedures for finite sets and subsets of finite sets
--
-- This module is DEPRECATED. Please use the Data.Fin.Properties
-- and Data.Fin.Subset.Properties directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Dec where
open import Data.Fin.Properties public
using (decFinSubset; any?; all?; ¬∀⟶∃¬-smallest; ¬∀⟶∃¬)
open import Data.Fin.Subset.Properties public
using (_∈?_; _⊆?_; nonempty?; anySubset?)
renaming (Lift? to decLift)
|
algebraic-stack_agda0000_doc_55 | module ial where
open import ial-datatypes public
open import logic public
open import thms public
open import termination public
open import error public
open import io public
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.