morsetechlab's picture
Update README.md
ba04018 verified
metadata
language: en
license: agpl-3.0
tags:
  - computer-vision
  - object-detection
  - license-plate
  - yolov11
  - ultralytics
  - finetuned
datasets:
  - roboflow/license-plate-recognition-rxg4e
metrics:
  - precision
  - recall
  - mAP@50
  - mAP@50-95

YOLOv11-License-Plate Detection

This is a fine-tuned version of YOLOv11 (n, s, m, l, x) specialized for License Plate Detection, using a public dataset from Roboflow Universe:
License Plate Recognition Dataset (10,125 images)

πŸš€ Use Cases

  • Smart Parking Systems
  • Tollgate / Access Control Automation
  • Traffic Surveillance & Enforcement
  • ALPR with OCR Integration

πŸ‹οΈ Training Details

  • Base Model: YOLOv11 (n, s, m, l, x)
  • Training Epochs: 300
  • Input Size: 640x640
  • Optimizer: SGD (Ultralytics default)
  • Device: NVIDIA A100
  • Data Format: YOLOv5-compatible (images + labels in txt)

πŸ“Š Evaluation Metrics (YOLOv11x)

Metric Value
Precision 0.9893
Recall 0.9508
mAP@50 0.9813
mAP@50-95 0.7260

For full table across models (n to x), please see the README

πŸ“¦ Model Variants

  • PyTorch (.pt) β€” for use with Ultralytics CLI and Python API
  • ONNX (.onnx) β€” for cross-platform inference

🧠 How to Use

With Python (Ultralytics API):

from ultralytics import YOLO
model = YOLO('yolov11x-license-plate.pt')
results = model.predict(source='image.jpg')

πŸ“œ License

  • Base Model (YOLOv11): AGPLv3 by Ultralytics
  • Dataset: CC BY 4.0 by Roboflow Universe
  • This model: AGPLv3 (due to YOLOv11 license inheritance)

βœ… License Compliance Reminder

In accordance with the AGPLv3 license:

  • If you use this model in a service or project, you must open source the code that uses it.
  • Please give proper attribution to Roboflow, Ultralytics, and MorseTechLab when using or deploying.

For license details, refer to GNU AGPLv3 License