chatbot-v2 / README.md
sahil239's picture
Upload folder using huggingface_hub
81fd850 verified
---
license: apache-2.0
tags:
- chat
- chatbot
- LoRA
- instruction-tuning
- conversational
- tinyllama
- transformers
language:
- en
datasets:
- tatsu-lab/alpaca
- databricks/databricks-dolly-15k
- knkarthick/dialogsum
- Anthropic/hh-rlhf
- OpenAssistant/oasst1
- nomic-ai/gpt4all_prompt_generations
- sahil2801/CodeAlpaca-20k
- Open-Orca/OpenOrca
model-index:
- name: chatbot-v2
results: []
---
# πŸ€– chatbot-v2 β€” TinyLLaMA Instruction-Tuned Chatbot (LoRA)
`chatbot-v2` is a lightweight, instruction-following conversational AI model based on **TinyLLaMA** and fine-tuned using **LoRA** adapters. It has been trained on a carefully curated mixture of open datasets covering assistant-like responses, code generation, summarization, safety alignment, and dialog reasoning.
This model is ideal for embedding into mobile or edge apps with low-resource inference needs or running via an API.
---
## 🧠 Base Model
- **Model**: [`TinyLlama/TinyLlama-1.1B-Chat`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat)
- **Architecture**: Decoder-only Transformer (GPT-style)
- **Fine-tuning method**: LoRA (low-rank adapters)
- **LoRA Parameters**:
- `r=16`
- `alpha=32`
- `dropout=0.05`
- Target modules: `q_proj`, `v_proj`
---
## πŸ“š Training Datasets
The model was fine-tuned on the following instruction-following, summarization, and dialogue datasets:
- [`tatsu-lab/alpaca`](https://huggingface.co/datasets/tatsu-lab/alpaca) β€” Stanford Alpaca dataset
- [`databricks/databricks-dolly-15k`](https://huggingface.co/datasets/databricks/databricks-dolly-15k) β€” Dolly instruction data
- [`knkarthick/dialogsum`](https://huggingface.co/datasets/knkarthick/dialogsum) β€” Summarization of dialogs
- [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) β€” Harmless/helpful/honest alignment data
- [`OpenAssistant/oasst1`](https://huggingface.co/datasets/OpenAssistant/oasst1) β€” OpenAssistant dialogues
- [`nomic-ai/gpt4all_prompt_generations`](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations) β€” Instructional prompt-response pairs
- [`sahil2801/CodeAlpaca-20k`](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) β€” Programming/code generation instructions
- [`Open-Orca/OpenOrca`](https://huggingface.co/datasets/Open-Orca/OpenOrca) β€” High-quality responses to complex questions
---
## πŸ”§ Intended Use
This model is best suited for:
- **Conversational agents / chatbots**
- **Instruction-following assistants**
- **Lightweight AI on edge devices (via server inference)**
- **Educational tools and experiments**
---
## 🚫 Limitations
- This model is **not suitable for production use** without safety reviews.
- It may generate **inaccurate or biased responses**, as training data is from public sources.
- It is **not safe for sensitive or medical domains**.
---
## πŸ’¬ Example Prompt
Instruction:
Explain the difference between supervised and unsupervised learning.
Response:
Supervised learning uses labeled data to train models, while unsupervised learning uses unlabeled data to discover patterns or groupings in the data…
---
## πŸ“₯ How to Load the Adapters
To use this model, load the base TinyLLaMA model and apply the LoRA adapters:
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = AutoModelForCausalLM.from_pretrained(
"TinyLlama/TinyLlama-1.1B-Chat",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat")
model = PeftModel.from_pretrained(base_model, "sahil239/chatbot-v2")
πŸ“„ License
This model is distributed under the Apache 2.0 License.
πŸ™ Acknowledgements
Thanks to the open-source datasets and projects: Alpaca, Dolly, OpenAssistant, Anthropic, OpenOrca, CodeAlpaca, GPT4All, and Hugging Face.