File size: 8,122 Bytes
cf345e6
b17912c
cf345e6
f61fca1
8abf449
cf345e6
3b2e319
 
 
8abf449
 
b17912c
cf345e6
 
 
ac8e9ac
0d762ae
cf345e6
b17912c
cf345e6
 
 
 
 
 
8abf449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d26f7c
cf345e6
 
 
 
8abf449
 
 
cf345e6
 
 
 
 
 
 
f61fca1
 
43084dd
3b2e319
 
f61fca1
 
 
 
 
 
 
2ad4e90
 
3b2e319
 
ac8e9ac
3b2e319
 
 
 
 
8abf449
bbd155d
ac8e9ac
 
 
 
8abf449
 
bbd155d
8abf449
ac8e9ac
bbd155d
8abf449
ac8e9ac
3b2e319
 
43084dd
3b2e319
 
 
 
 
 
f61fca1
 
43084dd
ca11d33
43084dd
 
3b2e319
f61fca1
cf345e6
43084dd
cf345e6
cd54b1c
ac8e9ac
 
cf345e6
 
 
 
ac8e9ac
cf345e6
 
 
ac8e9ac
cf345e6
 
921eff1
cf345e6
 
 
ac8e9ac
 
 
 
bbd155d
 
8abf449
ac8e9ac
6a7845d
bbd155d
8abf449
ff570f4
cf345e6
d3f7898
ac8e9ac
cf345e6
 
 
ac8e9ac
 
 
 
 
 
 
 
 
 
 
 
cf345e6
ac8e9ac
 
 
 
af189e3
ac8e9ac
 
 
 
 
 
 
 
 
cf345e6
ac8e9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
cf345e6
ac8e9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
cf345e6
f61fca1
 
 
ac8e9ac
f61fca1
 
cf345e6
 
 
43084dd
9a065a7
cf345e6
 
10b0bca
2ad4e90
b38166b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f61fca1
10b0bca
 
2ad4e90
 
 
 
 
 
 
cf345e6
2ad4e90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch
import gradio as gr
import spaces
import random
import os
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from lycoris import create_lycoris_from_weights

# Define model options
MODEL_OPTIONS = {
    "Wan2.1-T2V-1.3B": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
    "Wan2.1-T2V-14B": "Wan-AI/Wan2.1-T2V-14B-Diffusers",
    "Wan2.1-Fun-Reward-1.3B": "alibaba-pai/Wan2.1-Fun-1.3B-InP"
}

# Define scheduler options
SCHEDULER_OPTIONS = {
    "UniPCMultistepScheduler": UniPCMultistepScheduler,
    "FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
}

def download_adapter(repo_id, weight_name=None):
    adapter_filename = weight_name if weight_name else "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    os.makedirs(path_to_adapter, exist_ok=True)
    
    try:
        path_to_adapter_file = hf_hub_download(
            repo_id=repo_id, 
            filename=adapter_filename, 
            local_dir=path_to_adapter
        )
        return path_to_adapter_file
    except Exception as e:
        if weight_name is None:
            raise ValueError(f"Could not download default adapter file: {str(e)}\nPlease specify the exact weight file name.")
        else:
            raise ValueError(f"Could not download adapter file {weight_name}: {str(e)}")

@spaces.GPU(duration=140)
def generate_video(
    model_choice,
    prompt,
    negative_prompt,
    lycoris_id,
    lycoris_weight_name,
    lycoris_scale,
    scheduler_type,
    flow_shift,
    height,
    width,
    num_frames,
    guidance_scale,
    num_inference_steps,
    output_fps,
    seed
):
    model_id = MODEL_OPTIONS[model_choice]
    
    if seed == -1 or seed is None or seed == "":
        seed = random.randint(0, 2147483647)
    else:
        seed = int(seed)
    
    torch.manual_seed(seed)
    
    vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
    pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.float16)
    
    if scheduler_type == "UniPCMultistepScheduler":
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
    else:
        pipe.scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
    
    pipe.to("cuda")
    
    if lycoris_id and lycoris_id.strip():
        try:
            adapter_file_path = download_adapter(
                repo_id=lycoris_id,
                weight_name=lycoris_weight_name if lycoris_weight_name and lycoris_weight_name.strip() else None
            )
            wrapper, *_ = create_lycoris_from_weights(lycoris_scale, adapter_file_path, pipe.transformer)
            wrapper.merge_to()
        except ValueError as e:
            if "more than one weights file" in str(e) or "Could not download default adapter file" in str(e):
                return f"Error: The repository '{lycoris_id}' may contain multiple weight files. Please specify a weight name.", seed
            else:
                return f"Error loading LyCORIS weights: {str(e)}", seed

    pipe.enable_model_cpu_offload()
    
    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_frames=num_frames,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator("cuda").manual_seed(seed)
    ).frames[0]
    
    temp_file = "output.mp4"
    export_to_video(output, temp_file, fps=output_fps)
    
    return temp_file, seed

# Create the Gradio interface
with gr.Blocks() as demo:
    
    gr.Markdown("# Wan 2.1 T2V with Custom LoRA")

    with gr.Row():
        with gr.Column(scale=1):
            model_choice = gr.Dropdown(
                choices=list(MODEL_OPTIONS.keys()),
                value="Wan2.1-Fun-Reward-1.3B",
                label="Model"
            )
            
            prompt = gr.Textbox(label="Prompt", value="", lines=3)
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static",
                lines=3
            )
            
            lycoris_id = gr.Textbox(
                label="Adapter Repo",
                value="alibaba-pai/Wan2.1-Fun-Reward-LoRAs"
            )
            
            with gr.Row():
                lycoris_weight_name = gr.Textbox(
                    label="Adapter File Name",
                    value="Wan2.1-Fun-1.3B-InP-MPS.safetensors"
                )
                lycoris_scale = gr.Slider(
                    label="Adapter Scale",
                    minimum=0.0,
                    maximum=2.0,
                    value=1.0,
                    step=0.05
                )
            
            scheduler_type = gr.Dropdown(
                choices=list(SCHEDULER_OPTIONS.keys()),
                value="UniPCMultistepScheduler",
                label="Scheduler"
            )
            flow_shift = gr.Slider(
                label="Flow Shift",
                minimum=1.0,
                maximum=12.0,
                value=3.0,
                step=0.5
            )
            
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=1024,
                value=320,
                step=32
            )
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=1792,
                value=480,
                step=30
            )
            
            num_frames = gr.Slider(
                label="Number of Frames",
                minimum=17,
                maximum=129,
                value=33,
                step=4
            )
            output_fps = gr.Slider(
                label="Output FPS",
                minimum=8,
                maximum=30,
                value=16,
                step=1
            )
            
            guidance_scale = gr.Slider(
                label="Guidance Scale (CFG)",
                minimum=1.0,
                maximum=15.0,
                value=4.0,
                step=0.5
            )
            num_inference_steps = gr.Slider(
                label="Inference Steps",
                minimum=10,
                maximum=100,
                value=20,
                step=1
            )
            
            seed = gr.Number(
                label="Seed (-1 for random)",
                value=-1,
                precision=0
            )
            
            generate_btn = gr.Button("Generate Video")
        
        with gr.Column(scale=1):
            output_video = gr.Video(label="Generated Video")
            used_seed = gr.Number(label="Seed", precision=0)
            
    generate_btn.click(
        fn=generate_video,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            lycoris_id,
            lycoris_weight_name,
            lycoris_scale,
            scheduler_type,
            flow_shift,
            height,
            width,
            num_frames,
            guidance_scale,
            num_inference_steps,
            output_fps,
            seed
        ],
        outputs=[output_video, used_seed]
    )
    
    gr.Markdown("""
    ## Tips for best results:
    - Smaller videos: Flow shift 2.0–5.0
    - Larger videos: Flow shift 7.0–12.0
    - Use frame count in 4k+1 form (e.g., 33, 65)
    - Limit frame count and resolution to avoid timeout
    """)

demo.launch()