|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- robotics |
|
tags: |
|
- LeRobot |
|
- gaze |
|
- foveated-vision |
|
- robot-learning |
|
- simulation |
|
library_name: lerobot |
|
configs: |
|
- config_name: default |
|
data_files: data/*/*.parquet |
|
--- |
|
|
|
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). |
|
|
|
## Dataset Description |
|
|
|
This dataset, presented in the paper [Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers](https://huggingface.co/papers/2507.15833), provides a simulation benchmark and dataset for training robot policies that incorporate human gaze. It includes bimanual robot demonstrations with synchronized human eye-tracking data collected using the AV-ALOHA simulation platform for the peg insertion task. This dataset is part of a larger effort to explore how human-like active gaze can enhance robot learning efficiency and robustness. |
|
|
|
- **Homepage:** [https://ian-chuang.github.io/gaze-av-aloha/](https://ian-chuang.github.io/gaze-av-aloha/) |
|
- **Paper:** [https://huggingface.co/papers/2507.15833](https://huggingface.co/papers/2507.15833) |
|
- **Code:** [https://github.com/ian-chuang/gaze-av-aloha](https://github.com/ian-chuang/gaze-av-aloha) |
|
- **License:** apache-2.0 |
|
|
|
## Dataset Structure |
|
|
|
[meta/info.json](meta/info.json): |
|
```json |
|
{ |
|
"codebase_version": "v2.1", |
|
"robot_type": null, |
|
"total_episodes": 100, |
|
"total_frames": 17741, |
|
"total_tasks": 1, |
|
"total_videos": 600, |
|
"total_chunks": 1, |
|
"chunks_size": 1000, |
|
"fps": 25, |
|
"splits": { |
|
"train": "0:100" |
|
}, |
|
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", |
|
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", |
|
"features": { |
|
"observation.images.zed_cam_left": { |
|
"dtype": "video", |
|
"shape": [ |
|
480, |
|
640, |
|
3 |
|
], |
|
"names": [ |
|
"height", |
|
"width", |
|
"channel" |
|
], |
|
"info": { |
|
"video.height": 480, |
|
"video.width": 640, |
|
"video.codec": "av1", |
|
"video.pix_fmt": "yuv420p", |
|
"video.is_depth_map": false, |
|
"video.fps": 25, |
|
"video.channels": 3, |
|
"has_audio": false |
|
} |
|
}, |
|
"observation.images.zed_cam_right": { |
|
"dtype": "video", |
|
"shape": [ |
|
480, |
|
640, |
|
3 |
|
], |
|
"names": [ |
|
"height", |
|
"width", |
|
"channel" |
|
], |
|
"info": { |
|
"video.height": 480, |
|
"video.width": 640, |
|
"video.codec": "av1", |
|
"video.pix_fmt": "yuv420p", |
|
"video.is_depth_map": false, |
|
"video.fps": 25, |
|
"video.channels": 3, |
|
"has_audio": false |
|
} |
|
}, |
|
"observation.images.wrist_cam_left": { |
|
"dtype": "video", |
|
"shape": [ |
|
480, |
|
640, |
|
3 |
|
], |
|
"names": [ |
|
"height", |
|
"width", |
|
"channel" |
|
], |
|
"info": { |
|
"video.height": 480, |
|
"video.width": 640, |
|
"video.codec": "av1", |
|
"video.pix_fmt": "yuv420p", |
|
"video.is_depth_map": false, |
|
"video.fps": 25, |
|
"video.channels": 3, |
|
"has_audio": false |
|
} |
|
}, |
|
\"observation.images.wrist_cam_right\": { |
|
\"dtype\": \"video\", |
|
\"shape\": [ |
|
480, |
|
640, |
|
3 |
|
], |
|
\"names\": [ |
|
\"height\", |
|
\"width\", |
|
\"channel\" |
|
], |
|
\"info\": { |
|
\"video.height\": 480, |
|
\"video.width\": 640, |
|
\"video.codec\": \"av1\", |
|
\"video.pix_fmt\": \"yuv420p\", |
|
\"video.is_depth_map\": false, |
|
\"video.fps\": 25, |
|
\"video.channels\": 3, |
|
\"has_audio\": false |
|
} |
|
}, |
|
\"observation.images.overhead_cam\": { |
|
\"dtype\": \"video\", |
|
\"shape\": [ |
|
480, |
|
640, |
|
3 |
|
], |
|
\"names\": [ |
|
\"height\", |
|
\"width\", |
|
\"channel\" |
|
], |
|
\"info\": { |
|
\"video.height\": 480, |
|
\"video.width\": 640, |
|
\"video.codec\": \"av1\", |
|
\"video.pix_fmt\": \"yuv420p\", |
|
\"video.is_depth_map\": false, |
|
\"video.fps\": 25, |
|
\"video.channels\": 3, |
|
\"has_audio\": false |
|
} |
|
}, |
|
\"observation.images.worms_eye_cam\": { |
|
\"dtype\": \"video\", |
|
\"shape\": [ |
|
480, |
|
640, |
|
3 |
|
], |
|
\"names\": [ |
|
\"height\", |
|
\"width\", |
|
\"channel\" |
|
], |
|
\"info\": { |
|
\"video.height\": 480, |
|
\"video.width\": 640, |
|
\"video.codec\": \"av1\", |
|
\"video.pix_fmt\": \"yuv420p\", |
|
\"video.is_depth_map\": false, |
|
\"video.fps\": 25, |
|
\"video.channels\": 3, |
|
\"has_audio\": false |
|
} |
|
}, |
|
\"observation.state\": { |
|
"dtype": "float32", |
|
"shape": [ |
|
21 |
|
], |
|
"names": null |
|
}, |
|
"observation.environment_state": { |
|
"dtype": "float32", |
|
"shape": [ |
|
14 |
|
], |
|
"names": null |
|
}, |
|
"action": { |
|
"dtype": "float32", |
|
"shape": [ |
|
21 |
|
], |
|
"names": null |
|
}, |
|
"left_eye": { |
|
"dtype": "float32", |
|
"shape": [ |
|
2 |
|
], |
|
"names": null |
|
}, |
|
"right_eye": { |
|
"dtype": "float32", |
|
"shape": [ |
|
2 |
|
], |
|
"names": null |
|
}, |
|
"left_arm_pose": { |
|
"dtype": "float32", |
|
"shape": [ |
|
16 |
|
], |
|
"names": null |
|
}, |
|
"right_arm_pose": { |
|
"dtype": "float32", |
|
"shape": [ |
|
16 |
|
], |
|
"names": null |
|
}, |
|
"middle_arm_pose": { |
|
"dtype": "float32", |
|
"shape": [ |
|
16 |
|
], |
|
"names": null |
|
}, |
|
"timestamp": { |
|
"dtype": "float32", |
|
"shape": [ |
|
1 |
|
], |
|
"names": null |
|
}, |
|
"frame_index": { |
|
"dtype": "int64", |
|
"shape": [ |
|
1 |
|
], |
|
"names": null |
|
}, |
|
"episode_index": { |
|
"dtype": "int64", |
|
"shape": [ |
|
1 |
|
], |
|
"names": null |
|
}, |
|
"index": { |
|
"dtype": "int64", |
|
"shape": [ |
|
1 |
|
], |
|
"names": null |
|
}, |
|
"task_index": { |
|
"dtype": "int64", |
|
"shape": [ |
|
1 |
|
], |
|
"names": null |
|
} |
|
} |
|
} |
|
``` |
|
|
|
## Sample Usage |
|
|
|
This dataset is provided in LeRobot format for ease of sharing and visualization. For faster access during training, it is recommended to convert the dataset to a custom `AVAlohaDataset` format based on Zarr. |
|
|
|
1. **Install Dependencies:** |
|
First, ensure you have the `lerobot` library and other necessary dependencies installed as described in the official GitHub repository. |
|
|
|
```bash |
|
# Install LeRobot (if not already installed) |
|
pip install git+https://github.com/huggingface/lerobot.git |
|
|
|
# Clone the gaze-av-aloha repository for scripts and set up environment |
|
git clone https://github.com/ian-chuang/gaze-av-aloha.git |
|
cd gaze-av-aloha |
|
# Follow additional installation steps from the repo's README, e.g., conda env setup |
|
conda create -n gaze python=3.10 |
|
conda activate gaze |
|
pip install -e ./gym_av_aloha |
|
pip install -e ./gaze_av_aloha |
|
``` |
|
|
|
2. **Convert Dataset to Zarr Format:** |
|
Use the conversion script provided in the GitHub repository to convert this dataset to the Zarr format: |
|
|
|
```bash |
|
python gym_av_aloha/scripts/convert_lerobot_to_avaloha.py --repo_id iantc104/av_aloha_sim_peg_insertion |
|
``` |
|
|
|
Converted datasets will be saved under `gym_av_aloha/outputs/`. |
|
|
|
For more detailed usage, including training and evaluating policies, please refer to the [project's GitHub repository](https://github.com/ian-chuang/gaze-av-aloha). |
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
|
|
```bibtex |
|
@misc{chuang2025lookfocusactefficient, |
|
title={Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers}, |
|
author={Ian Chuang and Andrew Lee and Dechen Gao and Jinyu Zou and Iman Soltani}, |
|
year={2025}, |
|
eprint={2507.15833}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.RO}, |
|
url={https://arxiv.org/abs/2507.15833}, |
|
} |
|
``` |