Hugging Face

Enterprise
company
Verified
Activity Feed

AI & ML interests

The AI community building the future.

Recent Activity

Articles

huggingface's activity

thomwolf 
posted an update 4 days ago
view post
Post
2664
The new DeepSite space is really insane for vibe-coders
enzostvs/deepsite

With the wave of vibe-coding-optimized LLMs like the latest open-source DeepSeek model (version V3-0324), you can basically prompt out-of-the-box and create any app and game in one-shot.

It feels so powerful to me, no more complex framework or under-the-hood prompt engineering to have a working text-to-app tool.

AI is eating the world and *open-source* AI is eating AI itself!

PS: and even more meta is that the DeepSite app and DeepSeek model are both fully open-source code => time to start recursively improve?

PPS: you still need some inference hosting unless you're running the 600B param model at home, so check the very nice list of HF Inference Providers for this model: deepseek-ai/DeepSeek-V3-0324
  • 1 reply
·
tomaarsen 
posted an update 8 days ago
view post
Post
2092
‼️Sentence Transformers v4.0 is out! You can now train and finetune reranker models with multi-GPU training, bf16 support, loss logging, callbacks & much more. I also prove that finetuning on your domain helps much more than you might think.

1️⃣ Reranker Training Refactor
Reranker models can now be trained using an extensive trainer with a lot of powerful features:
- MultiGPU Training (Data Parallelism (DP) and Distributed Data Parallelism (DDP))
- bf16 training support; loss logging
- Evaluation datasets + evaluation loss
- Improved callback support + an excellent Weights & Biases integration
- Gradient checkpointing, gradient accumulation
- Model card generation
- Resuming from a training checkpoint without performance loss
- Hyperparameter Optimization
and much more!

Read my detailed blogpost to learn about the components that make up this new training approach: https://huggingface.co/blog/train-reranker
Notably, the release is fully backwards compatible: all deprecations are soft, meaning that they still work but emit a warning informing you how to upgrade.

2️⃣ New Reranker Losses
- 11 new losses:
- 2 traditional losses: BinaryCrossEntropy and CrossEntropy
- 2 distillation losses: MSE and MarginMSE
- 2 in-batch negatives losses: MNRL (a.k.a. InfoNCE) and CMNRL
- 5 learning to rank losses: Lambda, p-ListMLE, ListNet, RankNet, ListMLE

3️⃣ New Reranker Documentation
- New Training Overview, Loss Overview, API Reference docs
- 5 new, 1 refactored training examples docs pages
- 13 new, 6 refactored training scripts
- Migration guides (2.x -> 3.x, 3.x -> 4.x)

4️⃣ Blogpost
Alongside the release, I've written a blogpost where I finetune ModernBERT on a generic question-answer dataset. My finetunes easily outperform all general-purpose reranker models, even models 4x as big. Finetuning on your domain is definitely worth it: https://huggingface.co/blog/train-reranker

See the full release notes here: https://github.com/UKPLab/sentence-transformers/releases/v4.0.1
freddyaboulton 
posted an update 9 days ago
view post
Post
1298
Ever wanted to share your AI creations with friends? ✨

Screenshots are fine, but imagine letting others play with your ACTUAL model!

Introducing Gradio deep links 🔗 - now you can share interactive AI apps, not just images.

Add a gr.DeepLinkButton to any app and get shareable URLs that let ANYONE experiment with your models.